PC Overview

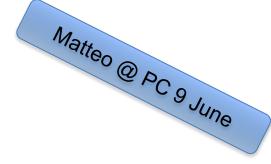
Naples Meeting, 25-26/Oct./2016 M. Komatsu

PC meetings since March

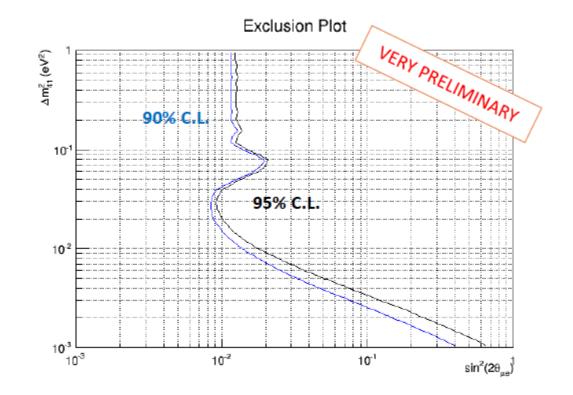
- PC meeting 12/5/2016
 - https://indico.cern.ch/event/527558/
 - Multiplicity Distributions in CC Interactions : Cagin
 - Search for the neutrino disappearance in OPERA : Budimir
 - nue analysis update : Svetlana
 - Update on the lepton number measurement : Giuliana
 - Short decay search : Mustafa
- PC meeting 9/6/2016
 - <u>https://indico.cern.ch/event/538383/</u>
 - nue analysis summary : Svetlana
 - Preliminary oscillation analysis : Matteo
 - Electron energy measurement report : Frank
 - Search for the neutrino disappearance in OPERA : Budimir
 - Update on the lepton number measurement : Giuliana
 - Update of hadron interaction analysis : Mizusawa
 - Updates on annual modulation : Nicoletta, Andrea
 - Outline of SPSC presentation : Giovanni

PC meetings since December

- PC meeting 29/6/2016
 - <u>https://indico.cern.ch/event/545561/</u>
 - nue anlysis statistics and plots : Svetlana
 - nue oscillation analysis result : Matteo
 - numu disappearanc: Budimir
 - Draft slides for Neutrino 2016 : Dominique
- PC meeting 28/7/2016
 - https://indico.cern.ch/event/558967/
 - nue oscillation analysis result : Matteo
 - Marginal event analysis : Giuliana
 - Electron energy reconstruction : Frank
- PC meeting 13/9/2016
 - <u>https://indico.cern.ch/event/567633/</u>
 - Electron neutrino update and prospect : Svetlana and Matteo
 - Numu disappearance analysis update : Budimir
 - Marginal event analysis update : Giuliana
 - Update on electron energy measurement : Frank

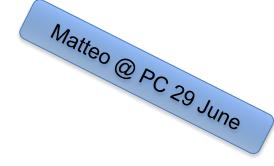

Svetlana and Matteo

NUE ANALYSIS

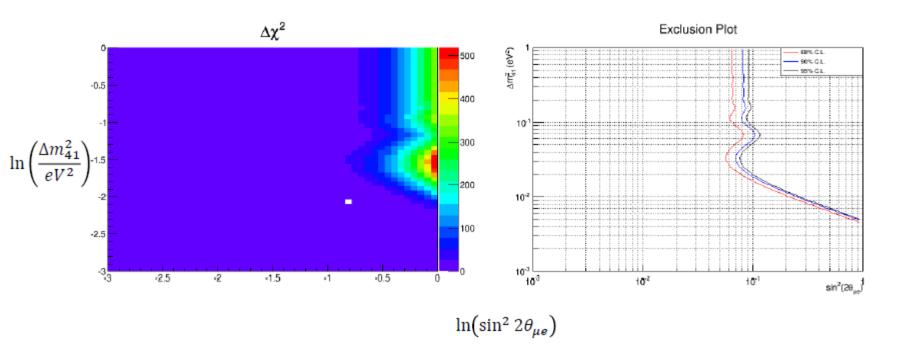

Story on nue analysis

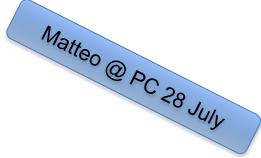
- Very preliminary exclusion @ 9th June
 sin²(2θ) was 0.012 @ high dm² without energy cut.
- Updated exclusion @ 29th June

 sin²(2θ) was about 0.1 @ high dm² with 20 GeV energy cut.
- Due to the lack of confidence, we decided to drop exclusion from Neutrino 2016 presentation.
 We were short in time to get concrete result.
- Sensitivity optimization @ 28th July
 - Best energy cut was not 20 GeV.



Exclusion plot

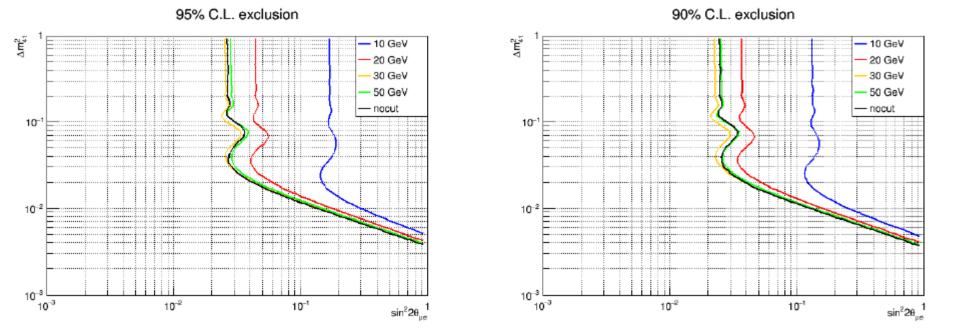



Matteo Tenti - PC meeting

Preliminary results

Slide in Neutrino 2016 OPERA v_{e} appearance search v_e interaction 2008-2012 sample (17.97 x 10¹⁹ p.o.t.) OPERA \rightarrow Observed 34 v events Expected v_e events : v, beam contamination 36.7 ± 5 Background $\tau \rightarrow e + mis - id' d \pi^0 1.2 \pm 0.1$ Location and identification efficiency for v. CC E., vs E. From 3-flavour oscillation: $v_{\mu} \rightarrow v_{e} 2.9 \pm 0.4 \text{ evts}$ $(\sin^2(2\theta_{13}) = 0.098)$ 2008-2012 preliminary distribution Number of events / 10 GeV oscillated, 3 flavour (2.9) X ε_{electron_ID} 8 7 6 5 am contamination (38.7 -> e (0.7) n 0 (0.5) Data (34) To increase signal-to-background ratio: E < 30 GeV 13 observed events for 3 9.2 ± 1 background expected $+ 1.4 \pm 0.2$ (from $v_{\mu} \rightarrow v_{e}$) => Good agreement with expected number of events within the 3 flavour v framework 18 160 E_{rec} [GeVI 80 100 120 140

Sensitivity optimization


The sensitivity was maximized over several selections based on	Normalization on
the reconstructed energy. The table shows the data used for computation.	expected $v_e + \overline{v}_e$ from
	beam without oscillation

Cut on rec. energy	:	10 GeV;	20 GeV;	30 GeV;	50 GeV	No cut	
found nue candidate		_	7	13	21	34	
osc(osc-beam)		0.4(0.1)	2.8(0.7)	9.2(1.4)	14.9(1.7)		3.0)
no osc(beam)		0.3	2.1	7.8	13.2	36.5	
tau-≻e pi0		0.1 0.1	0.4 0.3	0.5 0.4	0.6 0.4	0.7 0.5	
Expected background							
bg(beam+pi+tau-≻e)	:	0.5	2.8	8.7	14.2	37.7	For sensitivity

N.B. These data have a slight difference with respect to the more updated numbers

Sensitivity optimization

The optimal sensitivity is for cuts at high energy, $E_{cut} = 30 \ GeV$ or «no cut»; but for a final choice we have to run with updated numbers.

Numbers of expected signal, BG and Ve found with different energy cuts

Ecut, GeV	10	20	30	40	50	all
pi0	0.11	0.41	0.45	0.46	0.48	0.50
Tau->e	0.10	0.37	0.50	0.57	0.61	0.70
Beam cont	0.40	3.25	8.26	14.18	19.49	36.72
Bg to 3 flavour	0.61	4.03	9.21	15.21	20.58	37.92
OSC	0.20	0.82	1.42	1.84	2.12	2.86
Osc/Bg to 3 flavour	0.328	0.203	0.154	0.121	0.103	0.075
Bg to non- stand	0.81	4.85	10.63	17.05	20.70	40.78
Data	1	7	13	19	21	34

Plan of ve article: 1^{st} article and difference

1st ve article:

Contents

- 1 Introduction
- 2 Detector, beam and data taking
- 3 Emulsion scanning and search for ν_e interactions

4 Oscillation analysis

- 4.1 Background to $\nu_{\mu} \rightarrow \nu_{c}$ appearance
- 4.2 Three-flavour mixing scenario
- 4.3 Non-standard oscillations
- 5 Conclusions and perspectives

Similar to the 1^{st} ve article:

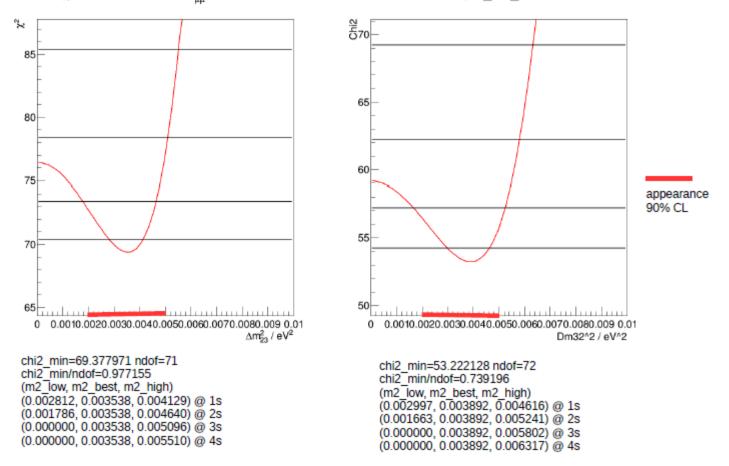
- detector
- beam
- data taking
- · emulsion scanning
- analysis chain
- CS shower hint and nue search procedure

Different from the 1st nue article:

- analyzed sample
- 0mu/1mu classification (and efficiency cause of it)
- normalization to Omu data sample
- energy reconstruction
- analysis: separation of results and interpretation

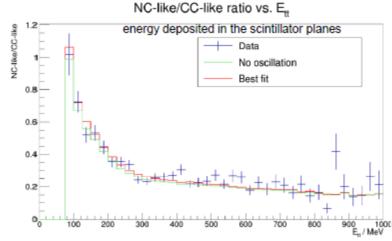
Plan of ve article: proposal

- Introduction (brief description of experimental approach, reference to 1st ve article)
- Analyzed data sample (1st, 2nd bricks 2008-2012)
- Energy reconstruction in TT (and in ECC by Frank?) (brief description)
- Oscillation analysis
 - Background to $\nu\mu$ -> νe appearance (new normalization to 0mu sample)
 - Measured results (spectra of found ve candidates, F&C, Bayesian upper limits and sensitivities for the new statistics)
 - Interpretation of results (Matteo's analysis)
- Conclusions and prospectives


Svetlana @ PC 28 July

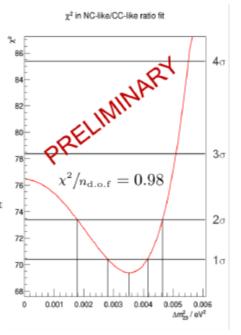
Budimir
NUMU DISAPPEARANCE

Fit results, mixing angle fixed


NC/All ratio, M mu mu = 0.99997

 χ^2 in NC/CC ratio fit, $M_{_{\mu\mu}}$ = 0.99997

ν_{μ} disappearance


- Full data sample (2008-2012)
- Use of electronic detector data only and separation between CC and NC like events

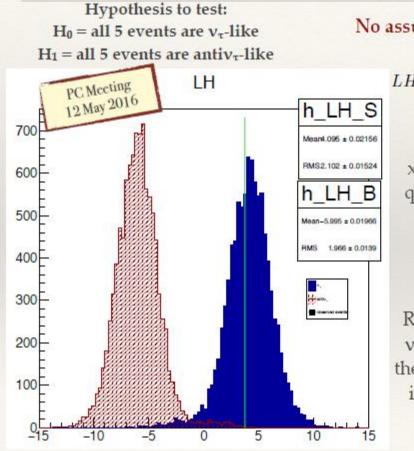
To reduce systematic effects coming from the beam uncertainty (no near detector), NC like over CC like ratio is used Slide in Neutrino 2016 OPERA

a fit using NC-like/CC-like ratio in which all mixing parameters are fixed to the PDG values

but Δm_{23}^2

reweighting MC according to oscillation probability and minimizing χ^2 between MC and data

systematics under study


- \Rightarrow Preliminary measurement of Δm_{32}^2
- \Rightarrow consistent with the world average and the internal OPERA appearance results

see also poster P1.035 from Budimir Kliček

Giuliana

LEPTON NUMBER AND MARGINAL EVENTS

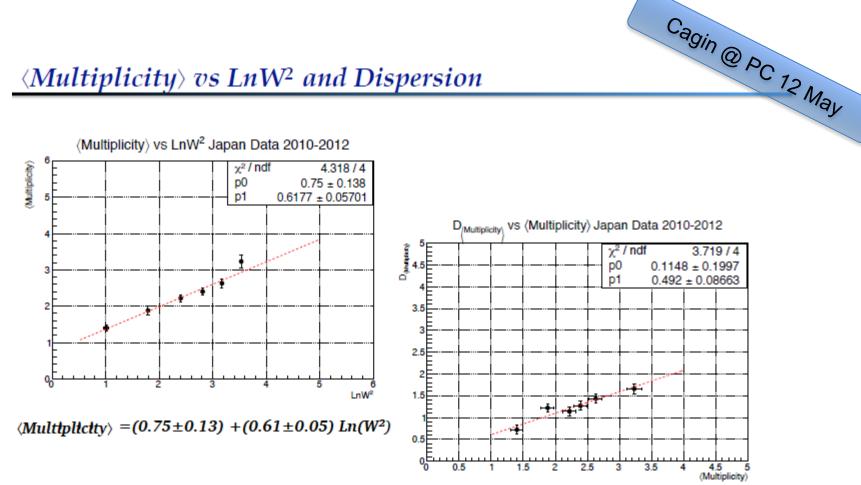
4) LH-ratio p-value and significance

$$LH = -2\log\left(\frac{\mathcal{L}(x_1, x_2, x_3, x_4, x_5; \bar{\nu}_{\tau}) \times P(q_3; \bar{\nu}_{\tau})}{\mathcal{L}(x_1, x_2, x_3, x_4, x_5; \nu_{\tau}) \times P(q_3; \nu_{\tau})}\right)$$
$$\mathcal{L}(x_1, x_2, x_3, x_4, x_5) = \prod_{i=1}^{1} f(x_i)$$
$$x_i = \text{bdt response}$$
$$q_3 = \text{muon charge}$$
$$p\text{-value} = 0.0006$$
$$\textbf{SIGMA} = 3.24$$

Result: Supposing the 5 events are either all v_{τ} or all anti- v_{τ} , the data is compatible with the v_{τ} hypothesis while the anti- v_{τ} hypothesis is disfavored with a 3.2 sigma significance

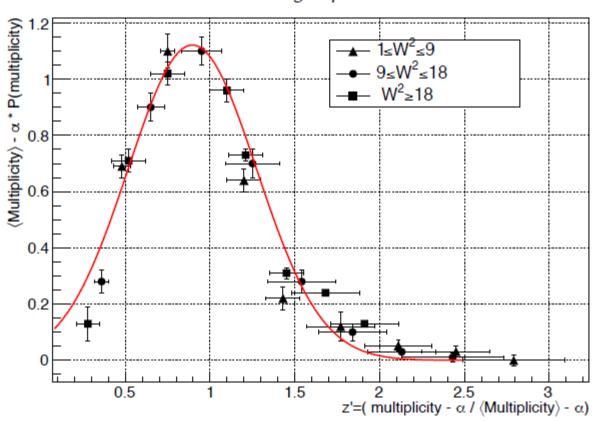
Minimum bias criteria

- * Topological
 - * Kink angle > 20 mrad
 - * Z_{dec} < 2600 (2 plates)
- * Kinematical
 - * Momentum > 1 GeV/c
 - * Pt > 0.1 GeV/c
 - * In case of short decay at least one primary track > 1 GeV/c satisfying IP requirement


Required analysis

- * Evaluation of all kinematical variables
- * Large angle track search
 - * $tan\theta < 1$ for kinematical measurement
 - * $tan\theta < 3$ for fragments
- * Momentum measurement for daughter(s) and primary tracks
- * No track follow down is required

												Giulia massa inv	ana @	Po		
LAB	Event ID	Туре	Topo logy	zdec	DL	ptmiss	phi	Pt (GeV/c)	P _{dau} Total (GeV/c)	psum	kink	massa inv	m min inv	gamnZ decvtx	3 Sep	TFI
1 st cand	9234119599	0μ	kink	435±35	1135±35	0,52 ^{+0,32} -0,17	173±2	0,47 ^{+0,24} -0,12	12+6-3	24,3+3,9-2,7	0,041±0,002	/	/	2	7	DØN
2 nd cand	11113019758	0μ	tride nt	1446±1 0	1466±10	0,31±0,11	167,8±1,1	/	8,4±1,7	12,7 ^{+1,7} -2,3	0,0874±0,0015	0,80±0,12	0,96±0,1 3	0	2	DON
3 rd cand	12123032048	1μ	kink	151±10	376±10	1	/	0,69±0,05	2,8 [2,6; 3,0]	6,8 ^{+0,9} -0,6	0,245±0,005	/	1	0	2	DON
4 th cand	12254000036	0μ	kink	406±30	1090±30	0,55 ^{+0,3} -0,2	166 ⁺² -31	0,82 ^{+0,3} -1,6	6,0 [4,8; 8,2]	14,4 ^{+3,9} -2,7	0,137+0,004	/	/	0	4	DON
5 th cand	12227007334	0μ	kink	630±30	960±30	0,3±1	151±1	1 ^{+1,1} -0,4	11+14-4	12+14-4	90±2	/	1	0	2	DON
Bo- Pd	11143018505	0μ	kink	429,6	1160	0,876	141,1	0,24	2,7 [2,13; 3,70]	23,2	0,090	/	/	1	2	NOT DON
Bern	11172035775	0μ	kink	652	1100	0,90 [0,79;1,16]	140,4	0,68 [0,56; 0,90]	6,9 [5,7; 9,2]	32,2	0,098	/	1	0	5	NOT NEEDI
Nag oya	9190097972	0μ	kink	10	822	0,46	142,8	0,33	2,2 [1,6; 3,6]	9,6	0,146	/	/	0	7	?
Nag oya	11118001124	0μ	kink	?	2096	ND	55,1	0,092	3,7 [1,3; ∞]	6,57	?	/	/	0	2	?
Bari	10123059807	0μ	tride nt	-648	140	0,6	82	/	>6,7	> 16,9	0,231	1,2	2	0	4	DON
Nag oya	12253001642	0μ	tride nt	?	539	245	< 38	0,91	3,56	>35,5	0,297	1,1	1,8	2?	5	?
Nag oya	11213015702	0μ	tride nt	407	256	?	54,7	>0,40	> 6,3	6,78	0,083	?	?	?	5	?


Multiplicity Distributions in CC Interactions : Cagin Electron energy measurement report : Frank Update of hadron interaction analysis : Mizusawa Updates on annual modulation : Nicoletta, Andrea Short decay search : Mustafa

OTHER ACTIVITIES

 $D_{\langle Multiplicity \rangle} = (0.11 \pm 0.19) + (0.49 \pm 0.08) \langle Multiplicity \rangle$

MULTIPLICITY DISTRIBUTIONS IN CHARGE CURRENT NEUTRINO INTERACTIONS. Cašin KAMISCIOGLU, Colloboration Meeting-Nagoya-JAPAN 30/3-1/4/2016

KNO Scaling Japan Data

6

Cagin @ PC 12 May

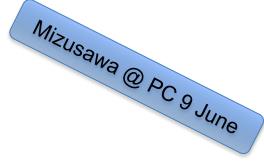
Work on shower reco/ energy

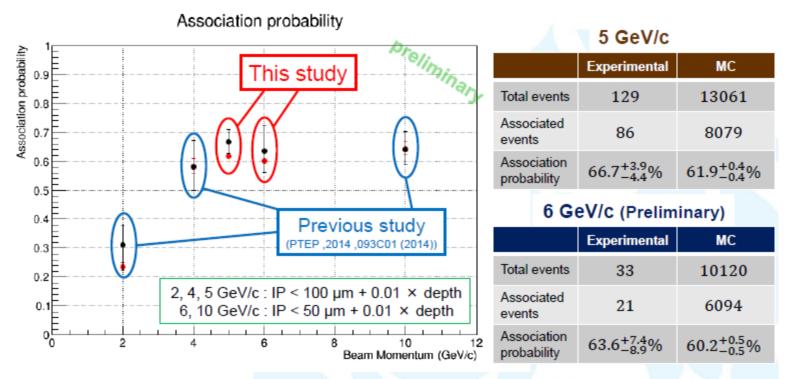
Current status and working topics

Frank, 28 July 2016

DB issues: missing nue events

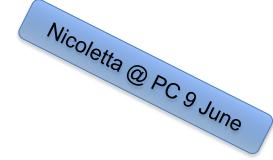
	A	с	D	E	F	G	н	L	M	N	P
1									DB-INFO:	Got Files in	DATA
	eventid 💌	brickId 🖃	slope 🝷	slope 👻	vtxX 👻	vtxY 🖃	vtxZ 📼	SCANNING LA	TS THERE?	Other way?	STRUCTURE
5	11154041686	1017991	0,003	0,061	71403	58125	-7319	NAGOYA	NO		
10	11164031847	1032309	0,1003	-0,0139	23512	52883	-17907	NAPOLI	NO	YES, tgz	BERN -like
11	12196039785	1033362	0,0138	0,0284	8928	11948	-56360	BERN	NO		
12	10257032729	1033983	-0,0376	0,1092	51995	80098	-10575	NAPOLI	NO	YES, toz	BERN -like
13	12162027599	1037011	-0,0158	0,0763	47623	38106	-34934	BERN	NO		
18	12333033193	1049546	0,0816	0,0303	40839	36474	-30362	BERN	NO		
19	10157017947	1050883	-0,0597	0,3925	119172	42831	-16804	<pre> elogna-padova </pre>	NO		
20	11136028585	1053166	-0,0271	0,0466	91899	13031	-25461	BERN	NO		
21	11282000433	1053857	-0,0626	0,1078	89648	36235	-69023	BERN	NO		
23	12092016479	1064585	-0,268	0,105	124020	63817	-13254	NAPOLI	NO	YES, toz	BERN -like
29	12082052269	1083431	0,0206	0,1004	47234	81121	-70826	BERN	NO		
30	9290026555	1084000	-0,0169	-0,0116	21857	63746	-29428	NAPOLI	NO	YES, toz	BERN -like
31	11220031747	1085249	0,0011	0,0672	54723	60942	-58602	BERN	NO		
32	12273018341	1090110	0,0154	0,062	85370	51132	-55481	DUBNA	NO	YES, remote cp	
38	11157015941	1100567	0,193	0,0105	78009	24251	-5366	BERN	NO		
47	12272015885	1127631	0,0367	0,0135	26110	70680	-4270	BERN	NO		
50	10312027541	1143854	0,0035	-0,0673	96583	19774	-33702	BERN	NO		
51	10287005238	1145335	0,0682	0,0806	52280	79639	-45290	NAGOYA	NO		
54	11113049106	1155498	0,039	-0,013	38134	39596	-20460	NAGOYA	NO		




Update of hadron interaction analysis

H. Mizusawa, M. Okubo, J.Ohira, T. Matsuo, T. Fukuda, H. Shibuya, S. Ogawa, et al. Toho University

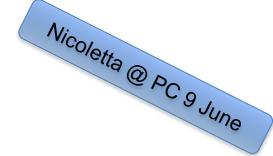
OPERA PC meeting on 9th June 2016


Results (Association probability)

- We obtained new beam momentum data of nuclear fragments.
- The MC data agree reasonably well with the experimental data.

OPERA PC meeting on 9th June 2016

Toho University

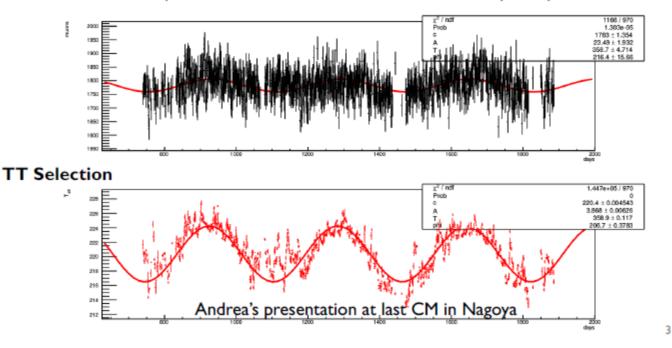


Update on the annual modulation of atmospheric muons

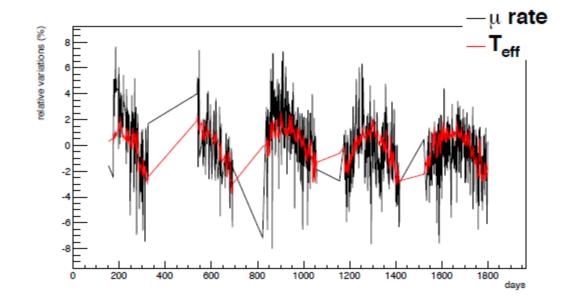
N. Mauri, A. Longhin, A. Paoloni, F. Pupilli, E. Voevodina

OPERA PC Meeting, 9 June 2016

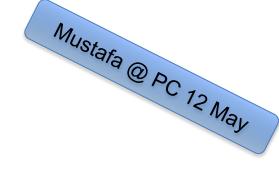
Collaboration meeting at Naples



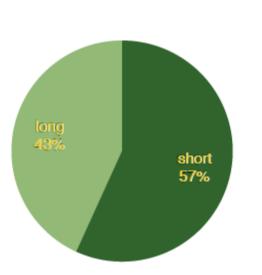
Data Set selection


Issue on the daily rate expected in OPERA

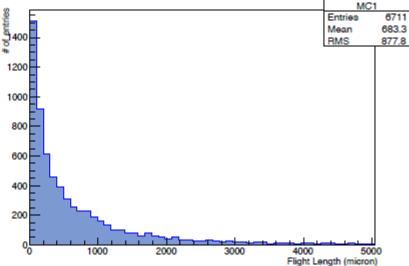
ightarrow investigate in order to use also 2008 and 2009 data sets


 Rate of atmospheric muons in files stored at ccage seems to be different from what expected: some constraints added in the OpRec production?

Preliminary results: correlation with temperature variations


Short Decay Search

Mustafa KAMISCIOGLU METU - OPERA PC MEETING- May,2016


Input File: /sps/opera/operap/production/ v2015r2/charmall_v5.1_CNAF-svn-trunkr1802_8200000004138516/LOC/ RECO_11062015_10:04:00/SYSAL/ DS/","SYSAL_DS_charmall_Op5.1TFD_PBPL-500-tfd_CNAF-svn-trunk-r1802_

Run 7000 events

Flight Length Distributions of MC Events

Flight Length Distribution - All

3

Mustafa @ PC 12 May

To do

- Finalize statistics
 - By the end of November
 - We have to declare end of the scanning
- All analysis should be done by April 2017.
 Regular (at least monthly) PC meeting will be called.
- Several more papers are in the line
 Keep active until the end.

– Most of publication : by June 2017.

Agenda

- nue oscillation analysis with 3+1 : Matteo
- Cross check on the oscillation analysis : Alessandro
- nue analysis summary and prospect for the paper : Svetlana
- nue CC electron energy measurement : Frank
- numu disappearance update : Budimir
- Marginal event analysis : Giuliana
- Analysis on neutrino interaction and prospect toward paper : Cagin
- Short decay search : Mustafa
- Electromagnetic shower reconstruction and possible improvements on event location : Andrey
- Open data access: the experience of LHCb : Andrey