# $\nu_{\mu} \rightarrow \nu_{e}$ sterile analysis status

G. Sirri, M. Tenti

25 October 2016

1

Counting Analysis No systematic effects Matter effects (const. density) POI:

• 
$$\sin^2 2\theta_{\mu e} = 4 |U_{\mu 4}|^2 |U_{e 4}|^2$$

•  $\Delta m_{41}^2$ 

Nuisance parameters:

 $\begin{array}{l} \theta_{12}, \theta_{13}, \theta_{23}, \theta_{34}, \delta_1, \delta_2, \delta_3\\ \text{Costants: } \Delta m^2_{21}\\ \text{Prior on } \Delta m^2_{31} \end{array}$ 

• Signal channels:

• 
$$\boldsymbol{\nu}_{\mu} \rightarrow \boldsymbol{\nu}_{e}$$
  
•  $\overline{\boldsymbol{\nu}}_{\mu} \rightarrow \overline{\boldsymbol{\nu}}_{e}$ 

• Background channels:

• 
$$\nu_e \rightarrow \nu_e$$

• 
$$\overline{\nu}_e \rightarrow \overline{\nu}_e$$

• Background (not osc):

• 
$$\tau \rightarrow e$$

NB:  $\theta_{ij}$  and  $\delta_k$  are not physical observables. They depend on the model and parametrization. In particular, they are not the same ones of a 3- $\nu$  model.

### Efficiency and Smearing Matrix

- Evaluation from MC: [True Energy of  $\nu_e$  CC] vs [Rec. Energy of  $\nu_e$  cand.]
- ν<sub>e</sub> CC selected as: CC\_true==1
- $v_e$  cand. selected as:

```
(Muld != 1 && tracklength < 20) &&&
(int_type == 1) &&&
(Brick1 == 1 || Brick2 == 1) &&&
is_loc==1 &&&&
is_triggered==1 &&&&
is_nue==1 &&&&</pre>
```

#### Efficiency and Smearing Matrix

{CC\_true=&&}{(Muld != 1 && tracklength < 20) && (int\_type == 1) && (Brick1 == 1 || Brick2 == 1) && is\_to=1 & is\_to=1





#### Sensitivity optimization

The sensitivity was maximized over several selections based on the reconstructed energy. The table shows the data used for computation.

Normalization on expected  $v_e + \overline{v}_e$  from beam without oscillation

| Cut on rec. energy  | :   | 10 GeV;  | 20 GeV;  | 30 GeV;  | 50 GeV    | No cut |                |
|---------------------|-----|----------|----------|----------|-----------|--------|----------------|
|                     |     |          |          |          |           |        |                |
| found nue candidate | s : | 1        | 7        | 13       | 21        | 34     |                |
| osc(osc-beam)       | :   | 0.4(0.1) | 2.8(0.7) | 9.2(1.4) | 14.9(1.7) | 39.5 ( | 3.0)           |
| no osc(beam)        | ;   | 0.3      | 2.1      | 7.8      | 13.2      | 36.5   |                |
| tau-≻e              | :   | 0.1      | 0.4      | 0.5      | 0.6       | 0.7    |                |
| pi0                 | :   | 0.1      | 0.3      | 0.4      | 0.4       | 0.5    |                |
| Expected background |     |          |          |          |           |        |                |
| bg(beam+pi+tau-≻e)  | :   | 0.5      | 2.8      | 8.7      | 14.2      | 37.7   | For sensitivit |

N.B. These data have a slight difference with respect to the more updated numbers

#### Sensitivity optimization

95% C.L. sensitivity

90% C.L. sensitivity



The optimal sensitivity is for cuts at high energy ,  $E_{cut} = 30 \ GeV$  or «no cut»; but for a final choice we have to run with shape analysis.

#### Exclusion region evaluation

The exclusion region is evaluated for the selections which maximize the sensitivity  $(E_{cut} = 30 \ GeV$  and «no cut»).

The data reported here are for reference ; they are the same ones of the slide 3.

| Cut on rec. energy :  | 30 GeV;  | No cut                |            |
|-----------------------|----------|-----------------------|------------|
| found nue candidates: | 13       | 34                    | Observed   |
| osc(osc-beam) :       | 9.2(1.4) | 39.5 (3.0)            | events     |
| no osc(beam) :        | 7.8      | 36.5                  |            |
| tau->e :              | 0.5      | 0.7 🔶 🛁 🗸 🛶 🛶 🛶 🛶 🛶 🛶 | background |
| pi0 :                 | 0.4      | 0.5                   |            |

# Preliminary results $[E_{cut} = 30 \ GeV]$



 $\ln(\sin^2 2\theta_{\mu e})$ 

## Preliminary results [no cut]



 $\ln(\sin^2 2\theta_{\mu e})$ 

### Comparison

# The difference (factor 2) depends on some **fluctuations** of the energy distribution bins.



| Data Set         | E (GeV) | Observed | Expected | Obs – Exp |  |
|------------------|---------|----------|----------|-----------|--|
| OLD<br>27/06     | < 30    | 13       | 9        | 4 (+30%)  |  |
|                  | > 30    | 21       | 29       | -8 (-28%) |  |
| UPDATED<br>30/06 | < 30    | 13       | 11       | 2         |  |
|                  | > 30    | 21       | 29       | -8        |  |

#### Is just a matter of statistics ?

or is there information in the energy distribution which could be exploited by a **shape** analysis ?

#### 11

#### To do list

- Shape analysis
  - Check in progess

#### Add systematics

#### to do

done

• Most conservative approach is to use same systematic uncertainty with the previous article. It is 10% and 20% for energy above and below 10GeV respectively.