Muon neutrino disappearance update

Budimir Kliček OPERA Collaboration Meeting 26 October 2016

What's new since last CM

- First NC/CC analysis
 - shown at the Neutrino 2016, as a plot only, without systematics, simple statistical treatment
 - systematics will certainly dilute the result
- Better statistical treatment
 - in progress
- Systematics study
 - in progress

First NC/CC analysis

Event selection

- CC-like selection
 - n_mu_tracks > 0 && bending_topology && p_mu_good != 0
- NC-like selection
 - n_mu_tracks = 0 && !bending_topology && p_mu_good = 0
 - note that this is different from NOT(CC-like selection)
- Global selection
 - CONTAINED && TT_digits >= 10
 - must be either CC-like or NC-like
 - gets rid of the mess in the middle
 - TT photoelectrons > 400

Additional cut

- Additional global cut
 - total TT photoelectrons per event > 400
 - this comes by comparing tt_pe between MC and data and cutting where they diverge
 - I believe this is detector noise

Fit results, mixing angle fixed

NC/All ratio, M mu mu = 0.99997

 χ^2 in NC/CC ratio fit, $M_{\!\mu\mu}$ = 0.99997

Further work

- This analysis looks OK, but needs to be improved to make sure it's correct
- We need:
 - better statistical treatment to be sure
 - inclusion of systematics mandatory
 - better proxy variable than E_tt optional

Better statistical treatment

Statistics

- We are using NC/CC ratio to reduce systematics coming from the beam uncertainty
 - statistics of a ratio is different than statistics of a counting experiment (Poissonian or Gaussian)
 - therefore, we think Chi2 statistics might not be entirely appropriate for our analysis
 - we are investigating this effect and trying to construct a proper statistical treatment for our problem

Bayesian approach

- Bayesian approach seems better for this problem because:
 - easier to marginalize unknown beam uncertainty coefficients
 - easier to combine with other measurements
 - can be used as prior to tau appearance measurement
- Actually, we are currently using the maximum a posteriori estimation, but are thinkng to construct full bayesian pdf $P(\Delta m_{32}^2|\text{data})$
- An internal note will be available with all the details

Pseudoexperiments

- Since we have a large MC sample (~100 times data), we can use it to construct simulated experiments
 - data is simulated by randomly choosing MC events, according to their weight
 - number of chosen events is roughly equal to number of data we have
- We have used such pseudoexperiments to test the statistical procedures in our analysis, and it will be further used to study systematic effects
 - for systematics modify beam normalization and shape and see how it affects the result of simulated experiments

Simulated experiment sample, bayesian statistics

10000 experiments using NC-like/CC-like ratio and E

Bayesian MAP estimation, no systematics

Example of one pseudoexperiment

Beam systematics

Beam systematics

- NC/CC ratio should decrease the systematics coming from the beam
 - BUT this will work if dependence of true nu energy on a proxy variable (E_tt, E_had, ...) is similar for NC and CC samples
 - this similarity is not the best in our case
- Idea to improve this was to use TMVA regression to train the various MVA systems to reconstruct true nu energy, wich would be our new proxy variable for E_nu

BF hadronic energy vs. true nu energy

TMVA energy reconstruction

- we tried using TMVA regression to reconstruct energy on event-by-event basis
 - separately trained for CC-like and NC-like events
 - MLP (neural network) gave the best results

Variables used for MVA training

	CC-like	NC-like
BF hadronic energy	yes	yes
TT deposited energy	yes	yes
Good muon momentum	yes	no
First brick center X	yes	yes
First brick center Y	yes	yes
First brick wall	yes	yes
BF predicted SM	yes	yes
TT planes	yes	yes
RPC planes	yes	yes
Non-mu tracks	yes	yes
Angle between hadronic jet and beam direction	no	yes

TMVA energy reconstruction

- results reasonable for CC-like events, useless for NC-like events
 - CC-like events have closed kinematics
- it seems we are stuck with leftover systematics of the beam, even when using NC/CC ratio

TMVA NC/CC classification – a possibility

- an additional possibility is to train MVAs to make a better NC/CC classification
- however, pseudoexperiments show that there would be no gain in the sensitivity
 - we compared pseudoexperments using true NC/CC information and the ones using NC-like/CC-like classification
- could be done, as an acaemic exercise sometime along the line, but it's not a priority now since time is critical

Conclusions

Conclusions

- We are working towards the end of disappearance analysis
 - in worst case scenario we will get only the upper limit on square mass difference
- Bayesian approach will make it easier to combine disappearance result with results from other channels
 it can be used as a prior, but it might be technically difficult
- As suggested by the PC, we will have a single paper containing disappearance and other channels
 - I completely agree with this

The end