Cross check of v_{μ} to v_{e} oscillation results

A. Paoloni

OPERA General meeting

25-26 October 2016

Formulas

$$\begin{split} P(E) &= C^2 \sin^2 \Delta_{31} \, + \, \sin^2 2\theta_{\mu e} \, \sin^2 \Delta_{41} \\ &+ \, 0.5 \, C \, \sin 2\theta_{\mu e} \, \cos \phi_{\mu e} \, \sin 2\Delta_{31} \, \sin 2\Delta_{41} \\ &- \, C \, \sin 2\theta_{\mu e} \, \sin \phi_{\mu e} \, \sin^2 \Delta_{31} \, \sin 2\Delta_{41} \\ &+ \, 2 \, C \, \sin 2\theta_{\mu e} \, \cos \phi_{\mu e} \, \sin^2 \Delta_{31} \, \sin^2 \Delta_{41} \\ &+ \, C \, \sin 2\theta_{\mu e} \, \sin \phi_{\mu e} \, \sin 2\Delta_{31} \, \sin^2 \Delta_{41} \\ &+ \, C \, \sin 2\theta_{\mu e} \, \sin \phi_{\mu e} \, \sin 2\Delta_{31} \, \sin^2 \Delta_{41} \end{split}$$

$$C = 2 |U_{\mu 3} U_{e 3}^*| \quad \text{Sin } 2\theta_{\mu e} = 2 |U_{\mu 4} U_{e 4}^*| \quad \phi_{\mu e} = \text{Arg } (U_{\mu 3} U_{e 3}^* U_{\mu 4}^* U_{e 4}^*)$$

$$\Delta_{ij} = 1.27 \Delta m_{ij}^2 \text{ L/E}$$

$$P(E) = 1 - 4|U_{e4}|^2(1 - |U_{e4}|^2) \sin^2 \Delta_{41}$$

 v_e disappearance

Formulas

$$\begin{split} P(E) &= C^2 \sin^2 \Delta_{31} \, + \, \sin^2 2\theta_{\mu e} \, \sin^2 \Delta_{41} \\ &+ \, 0.5 \, C \, \sin 2\theta_{\mu e} \, \cos \phi_{\mu e} \, \sin 2\Delta_{31} \, \sin 2\Delta_{41} \\ &- \, C \, \sin 2\theta_{\mu e} \, \sin \phi_{\mu e} \, \sin^2 \Delta_{31} \, \sin 2\Delta_{41} \\ &+ \, 2 \, C \, \sin 2\theta_{\mu e} \, \cos \phi_{\mu e} \, \sin^2 \Delta_{31} \, \sin^2 \Delta_{41} \\ &+ \, C \, \sin 2\theta_{\mu e} \, \sin \phi_{\mu e} \, \sin 2\Delta_{31} \, \sin^2 \Delta_{41} \\ &+ \, C \, \sin 2\theta_{\mu e} \, \sin \phi_{\mu e} \, \sin 2\Delta_{31} \, \sin^2 \Delta_{41} \end{split}$$

$$C = 2 |U_{\mu 3} U_{e 3}^*| \quad \text{Sin } 2\theta_{\mu e} = 2 |U_{\mu 4} U_{e 4}^*| \quad \phi_{\mu e} = \text{Arg } (U_{\mu 3} U_{e 3}^* U_{\mu 4}^* U_{e 4}^*)$$

$$\Delta_{ij} = 1.27 \Delta m_{ij}^2 \text{ L/E}$$

$$P(E) = 1 - 4|U_{e4}|^2(1 - |U_{e4}|^2) \sin^2 \Delta_{41}$$

 v_e disappearance

This formula however is not correct at OPERA Baseline.

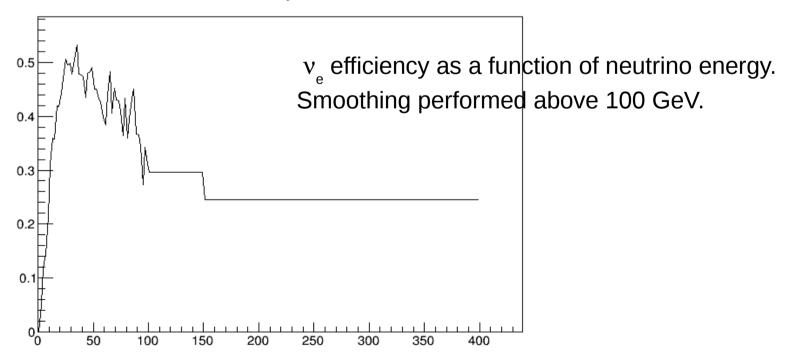
The mixing matrix U

$$U = \begin{pmatrix} U_{e1} & U_{e2} & c_{14}s_{13}e^{-i\delta_{1}} & s_{14} \\ U_{\mu 1} & U_{\mu 2} & -s_{14}s_{13}e^{-i\delta_{1}}s_{24}e^{-i\delta_{2}} + c_{13}s_{23}c_{24} & c_{14}s_{24}e^{-i\delta_{2}} \\ U_{\tau 1} & U_{\tau 2} & -s_{14}c_{24}s_{34}s_{13}e^{-i\delta_{1}} & c_{13}s_{23}s_{34}s_{24}e^{i\delta_{2}} + c_{13}c_{23}c_{34} & c_{14}c_{24}s_{34} \\ U_{s1} & U_{s2} & -s_{14}c_{24}c_{34}s_{13}e^{-i\delta_{1}} & c_{13}s_{23}c_{34}s_{24}e^{i\delta_{2}} - c_{13}c_{23}s_{34} & c_{14}c_{24}c_{34} \end{pmatrix}$$

Matrix elements of interest for OPERA baseline

Normalization

Folding between flux, oscillation probability, cross section, efficiency. Normalization to Matteo presentation in July PC.


Observed events: 34

Expected v_u to v_e oscillations (without 3+1): 3.0

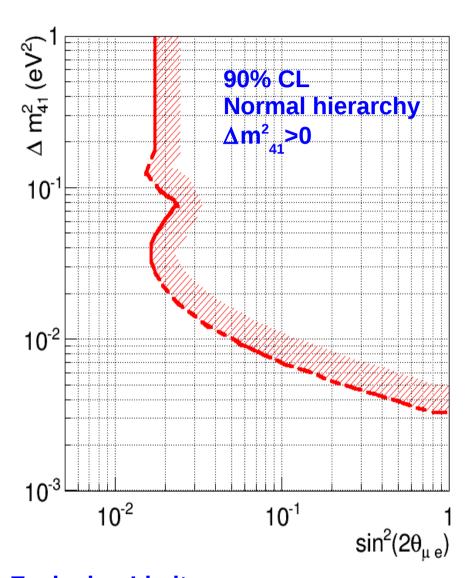
Beam v_e contamination (without 3+1): 36.5

Other bkg (τ to e, π^0 mis-identification): 1.2

Graph

Analysis description

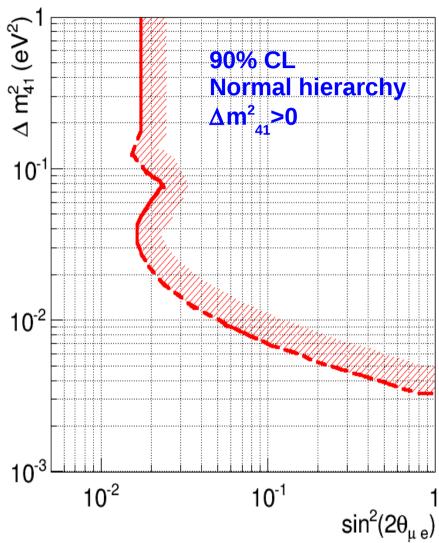
For high Δm_{41}^2 values (>1 eV²) or at fixed Δm_{41}^2 values: 10⁶ extractions of U parameters. Δm_{31}^2 =2.43*10⁻³ eV², Δm_{21}^2 =0

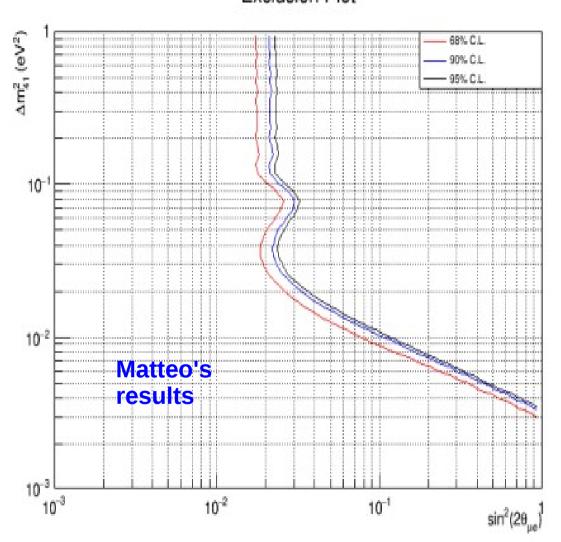

Pure counting analysis. No cut on neutrino energy.

$$L(\Delta m_{41}^2, \phi_{\mu e}, \sin^2 2\theta_{\mu e}, C^2) = e^{-\mu} \mu^n/n!$$
 Likelihood definition

$$\Delta\chi^2 = -2 \; \ln \; \frac{\widetilde{L}(\Delta m_{41}^2, \sin^2 2\theta_{\mu e})}{\widetilde{L}_{max}}$$

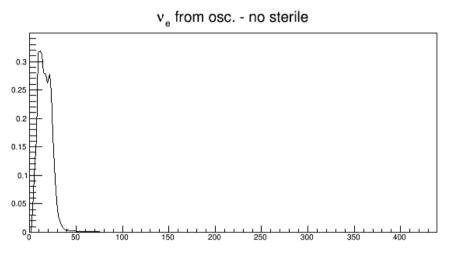
Exclusion limits using χ 2 statistics with 1 degree of freedom.

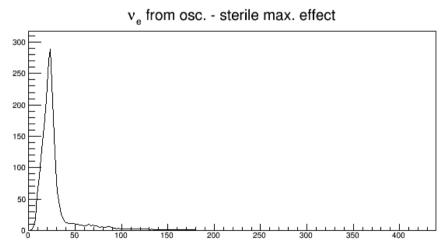

Results

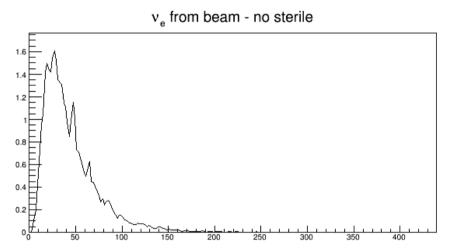

Exclusion Limits: $Sin^2 2\theta_{\mu e} > 0.017 \ for \ high \ \Delta m^2_{_{41}} \\ \Delta m^2_{_{41}} > 3*10^{\text{-}3} \ for \ Sin^2 2\theta_{\mu e} = 1.0$

Results

Exclusion Plot






Results are similar but not perfectly equal. In this analysis, however, ν_e disapperance is not well described.

Number of expected v

 $\Delta m_{_{41}}^2 > 1 \text{ eV}^2$

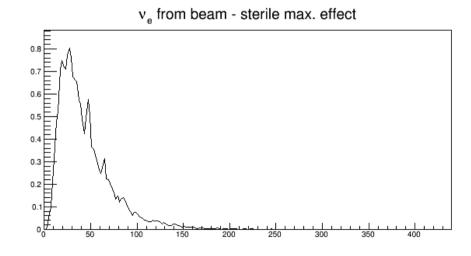


Table 1: Limits of the 90% CL exclusion region 1 in the $|\Delta m_{41}^2|$ vs $sin^2(2\theta_{\mu e})$ plane

Description	$\sin^2 2\theta_{\mu e}$	$\Delta m_{41}^2 (eV^2)$
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-3} eV^2$	0.017	3×10^{-3}
IH, $\Delta m_{31}^2 = -2.43 \times 10^{-3} eV^2$	0.017	0.8×10^{-3}
NH, $\Delta m_{31}^2 = 2.3 \times 10^{-3} eV^2$	0.017	3×10^{-3}
NH, $\Delta m_{31}^2 = 2.5 \times 10^{-3} eV^2$	0.017	3×10^{-3}
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-3} eV^2$, $\theta_{23} \theta_{13}$ fixed	0.014	0.85×10^{-3}
IH, $\Delta m_{31}^2 = -2.43 \times 10^{-3} eV^2$, $\theta_{23} \ \theta_{13}$ fixed	0.014	0.75×10^{-3}
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-3} eV^2$, $\epsilon(E > 150 GeV) = 0$	0.017	3×10^{-3}
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-3} eV^2$, $\epsilon(E > 150 GeV) \times 2$	0.017	3×10^{-3}
NH, $\epsilon(E < 10 GeV) * 1.2 \ \epsilon(E > 10 GeV) * 1.1$	0.016	3×10^{-3}
NH, $\epsilon(E < 10 GeV) * 0.8 \ \epsilon(E > 10 GeV) * 0.9$	0.020	3.5×10^{-3}

Table 1: Limits of the 90% CL exclusion region 1 in the $|\Delta m_{41}^2|$ vs $sin^2(2\theta_{\mu e})$ plane

	411	(μc/ 1
Description	$\sin^2 2\theta_{\mu e}$	$\Delta m_{41}^{2} (eV^{2})$
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-3} eV^2$	0.017	3×10^{-3}
IH, $\Delta m_{31}^2 = -2.43 \times 10^{-3} eV^2$	0.017	0.8×10^{-3}
Inverse hierarchy:	^ 017	3×10^{-3}
Exclusion limits extend down to lower $\Delta m_{_{41}}^2$ values.	017	3×10^{-3}
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-6} V^2$, $\theta_{23} \; \theta_{13} \; \text{nxea}$	υ.014	0.85×10^{-3}
IH, $\Delta m_{31}^2 = -2.43 \times 10^{-3} eV^2$, $\theta_{23} \theta_{13}$ fixed	0.014	0.75×10^{-3}
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-3} eV^2$, $\epsilon(E > 150 GeV) = 0$	0.017	3×10^{-3}
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-3} eV^2$, $\epsilon(E > 150 GeV) \times 2$	0.017	3×10^{-3}
NH, $\epsilon(E < 10 GeV) * 1.2 \ \epsilon(E > 10 GeV) * 1.1$	0.016	3×10^{-3}
NH, $\epsilon(E < 10 GeV) * 0.8 \ \epsilon(E > 10 GeV) * 0.9$	0.020	3.5×10^{-3}

Table 1: Limits of the 90% CL exclusion region 1 in the $|\Delta m_{41}^2|$ vs $sin^2(2\theta_{\mu e})$ plane

0	1 -FT	···· (με) Γ
Description	$\sin^2 2\theta_{\mu e}$	$\Delta m_{41}^2 (eV^2)$
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-3} eV^2$	0.017	3×10^{-3}
IH, $\Delta m_{31}^2 = -2.43 \times 10^{-3} eV^2$	0.017	0.8×10^{-3}
NH, $\Delta m_{31}^2 = 2.3 \times 10^{-3} eV^2$	0.017	3×10^{-3}
NH, $\Delta m_{31}^2 = 2.5 \times 10^{-3} eV^2$	0.017	3×10^{-3}
Δm_{31}^2 :		0.85×10^{-3}
Exclusion limits not strongly dependent on Δm_{31}^2 values.		0.75×10^{-3}
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-3} eV^2$, $\epsilon(E > 150 GeV) = 0$	0.017	3×10^{-3}
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-3} eV^2$, $\epsilon(E > 150 GeV) \times 2$	0.017	3×10^{-3}
NH, $\epsilon(E < 10 GeV) * 1.2 \ \epsilon(E > 10 GeV) * 1.1$	0.016	3×10^{-3}
NH, $\epsilon(E < 10 GeV) * 0.8 \ \epsilon(E > 10 GeV) * 0.9$	0.020	3.5×10^{-3}

Table 1: Limits of the 90% CL exclusion region 1 in the $|\Delta m_{41}^2|$ vs $sin^2(2\theta_{\mu e})$ plane

sole I. Ellines of the cove of cherefold region I in the	——————————————————————————————————————	σον (Ξυμε) βιο
Description	$\sin^2 2\theta_{\mu e}$	$\Delta m_{41}^2 (eV^2)$
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-3} eV^2$	0.017	3×10^{-3}
IH, $\Delta m_{31}^2 = -2.43 \times 10^{-3} eV^2$	0.017	0.8×10^{-3}
NH, $\Delta m_{31}^2 = 2.3 \times 10^{-3} eV^2$	0.017	3×10^{-3}
NH, $\Delta m_{31}^2 = 2.5 \times 10^{-3} eV^2$	0.017	3×10^{-3}
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-3} eV^2$, $\theta_{23} \theta_{13}$ fixed	0.014	0.85×10^{-3}
IH, $\Delta m_{31}^2 = -2.43 \times 10^{-3} eV^2$, $\theta_{23} \theta_{13}$ fixed	0.014	0.75×10^{-3}
θ_{23} θ_{13} fixed at measured values:	_	3×10^{-3}
Greater excluded area.		3×10^{-3}
NΠ, ε(£ < 10GeV) * 1.2 ε(£ > 10GeV) * 1.1	0.010	3×10^{-3}
NH, $\epsilon(E < 10 GeV) * 0.8 \ \epsilon(E > 10 GeV) * 0.9$	0.020	3.5×10^{-3}

Table 1: Limits of the 90% CL exclusion region 1 in the $|\Delta m_{41}^2|$ vs $sin^2(2\theta_{\mu e})$ plane

411	(pc) 1
$\sin^2 2\theta_{\mu e}$	$\Delta m_{41}^2 (eV^2)$
0.017	3×10^{-3}
0.017	0.8×10^{-3}
0.017	3×10^{-3}
0.017	3×10^{-3}
	0.85×10^{-3}
	0.75×10^{-3}
0.017	3×10^{-3}
0.017	3×10^{-3}
0.016	3×10^{-3}
0.020	3.5×10^{-3}
	$\sin^2 2\theta_{\mu e}$ 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.016

Table 1: Limits of the 90% CL exclusion region 1 in the $|\Delta m_{41}^2|$ vs $sin^2(2\theta_{\mu e})$ plane

Description	$\sin^2 20$	4 9 / ***
Description	$\sin^2 2\theta_{\mu e}$	$\Delta m_{41}^2 (eV^2)$
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-3} eV^2$	0.017	3×10^{-3}
IH, $\Delta m_{31}^2 = -2.43 \times 10^{-3} eV^2$	0.017	0.8×10^{-3}
NH, $\Delta m_{31}^2 = 2.3 \times 10^{-3} eV^2$	0.017	3×10^{-3}
NH, $\Delta m_{31}^2 = 2.5 \times 10^{-3} eV^2$	0.017	3×10^{-3}
NH, $\Delta m_{31}^2 = 2.43 \times 10^{-3} eV^2$, $\theta_{23} \theta_{13}$ fixed	0.014	0.85×10^{-3}
IH. $\Delta m_{21}^2 = -2.43 \times 10^{-3} eV^2$. θ_{22} θ_{12} fixed	0.014	0.75×10^{-3}
Efficiency studies: Exclusion limit area increases with efficiency.		3×10^{-3}
		3×10^{-3}
NH, $\epsilon(E < 10 GeV) * 1.2 \ \epsilon(E > 10 GeV) * 1.1$	0.016	3×10^{-3}
NH, $\epsilon(E < 10 GeV) * 0.8 \ \epsilon(E > 10 GeV) * 0.9$	0.020	3.5×10^{-3}