Introduction: Detector Status and Planning

Nagoya University Tatsuhiro Naka

2016. Oct. 27 International Workshop on Nuclear Emulsion for Neutrino Studies and WIMP search @ Naple, Italy

1

(1) Fine-grained emulsion production

Achievement:

- 1. Stable gel production and confirmation of standard process
- 2. Understanding of density and composition
- 3. Understanding of intrinsic radioactivity

<u> Task :</u>

- 1. Background contamination (especially, dust)
- 2. Crystal sensitivity control toward further background rejection
- 3. Further low-radioactive device (gelatin⇒synthetic polymer)
- 4. Gel production in underground

Future plan

Understanding of device itself

Composition table for NIT		
	Mass fraction	Atomic Fraction
Ag	0.44	0.10
Br	0.32	0.10
I	0.019	0.004
С	0.101	0.214
0	0.074	0.118
N	0.027	0.049
Н	0.016	0.410
S	0.003	0.003

www.aciticus.table.fav.NIIT

Device density : 3.3 +- 0.1 g/cm³

✓ Elemental analyze
 ✓ SEM-EDX

✓ SEIVI-EDA
 ✓ content for added

content for added chemical

4

Current intrinsic radioactivity

2 Pouring and sensitization

Achievement:

- 1. Low-background base and the pre-treatment \Rightarrow PMMA base
- 2. Halogen-Accepter(HA) sensitization as standard treatment
- 3. Humidity control and demonstration at underground

<u> Task :</u>

- 1. Radioactivity measurement of base by ICP-MS or Ge
- 2. Accumulation of environment γ -ray background and the prevention
- 3. Clean environment to prevent the contamination

NIT film for dark matter experiment

1 mm	PMMA

Size : 10 x 12 cm² (7.6 x 2.6 cm² for R&D) NIT layer thickness : ~ 50 μ m

Target mass

Both-side pouring: 3 g/film (AgBr(I) 70 %, other 30 %)

- One-side pouring is also possible because of thicker and hard base.
- We don't need the vacuum pump because same reason.

Counterplan

1. Making the shielded space for drying

2. Refresh process before exposure

3 Mount and exposure

Achievement:

- 1. Prototype cooling system
- 2. Fading effect (done preliminary test at Nagoya)
- 3. Demonstration of that in underground

<u> Task :</u>

- 1. Sensitivity of device at cooling condition
- 2. Environment background effect and further shield design
- 3. Further understanding of fading effect
- 4. System for lower temperature

Fading effect for NIT

Analysis of electron events induced by Am-241 y-rays 1.4 - 10 °C condition 1.2 relative number of event 0.2 諅 0 6 8 10 12 0 2 time [weeks] : total electron events

: leakage events into signal region

Error is 10 % systematics due to uncertainty from exposure time of γ -rays

- Fading affect can be seen between 1 4 weeks, but become stable after 4 weeks.
- Probably, this effect is not standard process for oxidation decomposition due to environment H₂O or O₂
- This result should be checked using the sample that tested at LNGS in this month (but, temperature is lower).

- to check about dE/dx dependence
- repeatability
- other dependence (crystal size, structure of crystal etc.) to understand this effect.

Development treatment

Achievement:

- 1. MAA and 5 °C treatment as current standard
- 2. Demonstration in underground

<u> Task :</u>

- 1. Further improvement
- Understanding of activation energy for latent image specks and the optimization of developer

(5) Scanning and analysis

Achievement:

- 1. Elliptical shape selection for first event trigger
- 2. Prototype scanning machine for small scale and the understanding of that
- 3. super-high resolution analysis using Plasmon effect (proof-of-principle) <u>Task</u>:
 - 1. Detection efficiency and the improvement
 - 2. Effective plasmon analysis system
 - 3. Higher level image processing not only elliptical shape (include machine larning)
 - 4. Higher scanning speed system
 - 5. New optical information (e.g., Raman spectrum)
 - 6. Data-base and the sharing

New technologies for nano-scale tracking

- □ Volume scanning (current speed ~ 10 g/month)
- \square Ellipitical shape analysis \Rightarrow first event trigger
- Spatial resolution ~ 230 nm for blue light + high N.A. lens

Accurate shape analysis is not done yet, but it's very important task.

- Nano-scale structure has more detail information reflecting the character of particle or background like low-dE/dx particle, fog and dust.
- Super-high resolution technologies and the output due to that should be enable to distinguish those events
- ➢ For example, localized plasmon resonance from developed silver grain is ont of the promising effect. ⇒ new optical microscope system

6 Dark matter search and the limit

Achievement:

- 1. Simulation using direction information
- 2. Simulation taking into account the track length spectrum and calibration

<u> Task :</u>

1. The simulation taking into account more realistic detector performance

 \Rightarrow discuss in Antonia's talk

- 2. Various scenario in terms of astrophysics and model of dark matter
- **3. Background contamination** \Rightarrow discuss in Valerio's talk

Device

Scanning and analysis Purification of backgroundStability

Sensitivity

- Image processing
 Plasmon analysis system
- High speed scanning
- New technologies

✓ Strategy
 ✓ Near future plan
 ✓ Future plan
 ✓ Priority and schedule
 ✓ Work-sharing

Simulation and DM search

Back up

Corona discharge treatment for PMMA base

- 1. Corona discharge; hydrophilic treatment
- 2. Gelatin coating and dry

New recipe (K free)	Quantity
H ₂ O (de-ionized)	1980 g
Gelatin (P6406)	20 g
Drywel	10 cc
N333 (4 %)	20 cc

3. Pouring the emulsion

Production of film

during film production