Report on underground LNGS activity

2016/10/27 Speaker: Takashi Asada Valerio Gentile, Seina Okada

purpose and estimation

Purpose

- test of new PMMA base
- test of cooling system with emulsion
- fading effect under cooling system
- measurement of environmental gamma integration amount (or upper limit)
- estimation of effective BG rate

fading of electron signal

detected gamma event rate measured by Nagoya

 \rightarrow same measurement with GS cooling system

F.D expectation (without fading effect)

underground activity

base type

slide grass base: efficiency check for optical backward compatibility
← basic samplePMMA base: efficiency check as new standard opticsLarge PMMA base: mechanical test

sample list (plan)

emulsion : NIT, filtered solution & non-stress deionization method077f dev all events : $F.D = 0.335 / (10 \text{ um})^3$ bad quality \leftarrow reference, mechanical test $\bigcirc 079f$ dev all events : $F.D = 0.197 / (10 \text{ um})^3$ good quality \leftarrow basic sample

sample treatment

- sample list
 - No.1-4 Large PMMA / 077f
 - No.5-24 PMMA / 077f
 - No.25-40 PMMA / 079f
 - No.81-85 PMMA / 079f (add)
 - No.41-68 glass / 079f
- drying condition
 - humidity 55%
 - uniform air flow

process

- 5 Oct 3 p.m. : pouring (1 side)
- 6 Oct 0 p.m. : protection coat
- 6 Oct 5 p.m. : HA sensitization
- 7 Oct 10 4 p.m. : exposure & cooling start
- 7 Oct 5 p.m. : 0 week dev
- 14 Oct 4.m. : 1 week dev

alpha & beta exposure

previous test beta is exposed for 15 min \rightarrow changed to 10 min to finish in 1 day

25	41	7	for Oday developing	alpha: 30 sec
27	43	9		<u>beta : 10 min</u>
29	45	11	for cooling system	
31	47	13		exposure position
33	49	15		
35	51	17	for room exposure	
37	53	19		d B
39	59	21		-
81	57	23		

alpha source

Attention	PRESENCE OF RADIOACTIVE SOURCE
RADIONUCLIDE Cod. LN Am-241 N. 071 kBq 4.37	GS: Source certif. AF-241-A1 n. 1168-1-1 at: 02/09/2006 SEALED SOURCE Radioactive contamination : absent
T1/2 (y) = 432.70 Rad. emission : gamma Dose rate d= 10 cm (μGy/h) 0.00	Half value layer (mmPb) = (keV 60) , alfa (MeV 5.48;5.44) , + neutrons on Be d= 20 cm d= 50 cm d= 100 cm 0.00 0.00 0.000
Notes Am-241 electroph	must be exposed where the source is in use
Delivery date : User: Experim. and Location : Signature of the user:	29/7/16 Nicola D'Ambrosio Opera Lab. Microscopi Laboratori Esterni
Signature of the user .	

beta source

Attention	PRESENCE OF RADIOACTIVE SOURCE
RADIONUCLIDE Cod. LNG Sr-90 N. 036 kBq 360.5	SS: Source certif. SIR1221 n. 109988-1 at: 02/09/2006 SEALED SOURCE Radioactive contamination : absent
T1/2 (y) = 28.20 <i>Rad. emission : beta (Me</i> Dose rate (μGy/h) (foton)	Half value layer (mmPb) = ev 0,546; 2,24) d= 20 cm d= 50 cm d= 100 cm
Notes This CARD	must be exposed where the source is in use
<i>Delivery date : User : Experim. and Location :</i>	29/7/16 Nicola D'Ambrosio Opera Lab. Microscopi Laboratori Esterni
Signature of the user :	Uda D'Anharra 1

detail sample number list (for staffs)

[077f:old&filtered] 4 large PMMA, 18+1 PMMA [079f:new&filtered] 21 PMMA, 28 slide glass **α**, **β** exposure for fading test no exposure for BG integration

week	cooli 077 L	ling system 079 PMMA		079 glass		077 PMMA		room temp 079 PMMA		erature 079 glass		077 PMMA	
0	1	25	26	41	42	7	6	-	-	-	-	-	-
1	2	27	28 38	43	65 44	9	10	33	34	49	50	15	16
3	3	29	30	45	46	11	12	35	36	51	52	β +30 <u>17</u>	sec 18
5	4	31	32	47	48	13	14	83 37	38	α +8s 53	5 4	19	20
13								39	40	63 59	56	21	22
25								81	82	57	58	23	24

abnormal thin film 8, 55, 60, 62, lost 5, 61, 44, 37, 59, 66 remains 079f only glass 61, <u>63</u>, 64, <u>65</u>, 66, 67, 68 PMMA <u>83</u>, 84, 85 __:used_3

room temperature exposure set up

cooling system

inner space ~16 cm x 16cm x 3.5 cm

sensor temperature was at -15.6 degree

This time Nitrogen is mainly used to disturb freezing, so nitrogen flux is a little. (The minimum amount for radon purging have not been checked yet) The tube of nitrogen is closed, and nitrogen escapes from gap of thermal sensor hole.

cooling system set up (0 - 1 week)

update of cooling system (1 week ~)

coolant tubes were completely wrapped by insulation seats temperature became at -17.8 degree

N2 flux became visible

gas flow meter

Thermal sensor was packed as same as films

status of N_2 gas

1 of 3 cylinder

from 14 Oct

the unit of gas flow meter

- <u>set value is ~ 4 </u> 108 bar @14 Oct
 - gas cylinder = 50L?
 - 4 l/h ?

 \rightarrow 56 day?

Temperature of cooling system / extraction

Temperature becomes stable within $1\sim2$ hours The temperature is -15.6 degree (0 - 1 week)-17.8 degree (1 week -)

To pick up the samples, we need to heat them up to room temperature to avoid condensation

time of sample extraction

- 1. box heating 1-2 h
- 2. disassembling/assembling 1-2 h
- 3. box cooling 1-2 h

The samples may be kept at room temperature for ~4 hours on extraction

extraction /developing (14 Oct 2016)

time	9	10	11		12		1	
						lu	nch	
		preparation of dev						
		solution						
				ł	neating	g up o	of cool	ling
						boz	X	

developing of 0 week and 1 week are finished successfully

several samples are scanned by Nagoya and Napoli \rightarrow to be compared

result

result of PMMA mechanical test

basically OK, but be careful

- The developing was no problem including Large size PMMA film, after 1 week cooling.
- 1 side pouring cause the bend of the film even with 1 mm thickness
 - \rightarrow both side pouring or mechanical fixation(this time) is required

- the adhesive strength is weaker than that of glass type
 - taping cause peeling of emulsion layer

• Optical difference is under checking

use weights or vacuuming for scanning

result of Scanning : reference sample

sample 42 (0 week, 079f slide grass, non-exposed) sample 65 (1 week, 079f slide grass, non-exposed)

Nagoya scan : removing large dust & cluster dust & surface Napoli scan : including all above the difference must be checked 23

prospects

- all sample check up to 1 month
 - fading effect (standard parameter is needed for comparison)
 - integration of environmental gamma and $^{14}\mathrm{C}$
- combined calculation of fading effect and integration
 → conservative BG estimation (or upper limit)
- fading parameter from exposure timing and temperature (Okada start this study)
 - \rightarrow approximate BG estimation (or upper limit)

summary

- We started underground test for demonstration under cooling system.
- Pouring, developing, and cooling system look no problem.
- Scanning also started in Nagoya and Napoli for cross check.
- The result will show fading effect and environmental gamma integration.