NEWS

NUCLEAR EMULSIONS FOR WIMP SEARCH

"Shielding For NEWS-10g" "Background Simulation"

Valerio Gentile

"Gran Sasso Science Institute" L'Aquila , Italy

on behalf of the NEWS Collaboration

Summary

- Simulation results **without** the shield;
 - Environmental neutrons;
 - Cosmogenic neutrons;
 - Environmental gammas;
 - Alpha source;
 - Beta source;
- NEWS shield idea for 10g test exposure;
- Simulation results **with** the shield;
 - Environmental neutrons;
 - Cosmogenic neutrons;
 - Environmental gammas;
 - Beta from ⁴⁰K;
 - Neutrons from lead;
- Time line for 1Kg exposure.

BACKGROUND SOURCES WITHOUT SHIELD

Environmental Neutrons

10 cm

Density of NIT emulsion = 3.43 g cm^{-3} Mass of 1 NIT layer ($12x10cm^2$) = 2.058 gFlux of environmental neutrons = $8.7 \times 10^{-7} \text{ cm}^{-2} \text{ s}^{-1}$ 12 cm

Signal region: 0.1μm < L < 1μm

Isotropic angular distribution

2000

Rate = Bkg events in signal region / Total exposure = $4 \times 10^{-2} \text{ g}^{-1} \text{ month}^{-1}$

Cosmogenic Neutrons

Density of NIT emulsion = 3.43 g cm^{-3} Mass of 1 NIT layer ($12x10cm^2$) = 2.058 gFlux of cosmogenic neutrons = $7.3 \times 10^{-10} \text{ cm}^{-2} \text{ s}^{-1}$

Simulation Results

No. of films	= 45
No. of generated events	$= 1.5 \ 10^{6}$
Mass of Detector	$= 2.058g \ x \ 45 \ = 92.61 \ g$
Exposure time	= 953.66 month
Total exposure	= 88318 g month

NR in signal region = 0

Signal region: 0.1μm < L < 1μm

Upper Limit on background rate: 2.6 x 10⁻⁵ g⁻¹ month⁻¹

Energy spectrum

12 cm

10 cm

Angular distribution

Environmental Gammas

10 cm

Density of NIT emulsion = 3.43 g cm^{-3} Mass of 1 NIT layer ($12x10cm^2$) = 2.058 gFlux of environmental gammas = $0.35 \text{ cm}^{-2} \text{ s}^{-1}$ 12 cm

Energy spectrum

Isotropic angular distribution

Rate = Bkg events / Total exposure = $4.7 \times 10^9 \text{ Kg}^{-1} \text{ y}^{-1} = 1.6 \times 10^{-2} (10 \text{ um})^{-3} \text{ y}^{-1}$ Factor 10 more than bkg electrons from ${}^{14}\text{C} = 2.5 \times 10^{-3} (10 \text{ um})^{-3} \text{ y}^{-1}$

Stacking Nit Effects

12 cm

Gamma rays lose continuously their energy passing through the matter The electron rate may not be the same in each layer of a NIT stack

ALPHA AND BETA SOURCES EXPOSURE AT LNGS

ALPHA SOURCE (²⁴¹Am)

Activity = 4.3 kBq ($\epsilon @ 99\% \text{ CL: } 3.1\%$)

Shape:CircleRadius:2.5 mmPhi:IsotropicTheta: $[0,\pi/2]$ Energy:5.486 MeV

 241 Am Stopped in NIT = 99.4 % Alpha density (30 s exposure) = 0.08 (10 um)⁻³

Simulation Results

No. of films	= 1
No. of generated events	= 129000
Exposure time	$= 60 \ s$
Alpha stopped in NIT	= 128188

BETA SOURCE (90Sr)

 $T_{1/2} = 28.74$ years

Secular equilibrium

0.546 MeV

Stopped in NIT = 29.4 %

Stopped in NIT = 6.1 %

Electron density (10min exposure) = 0.65 (10um)⁻³

⁹⁰Sr

90**Y**

$(T_{1/2} = 64.1 \,\mathrm{h})$ 2.28 MeV 90Zr Electron density (10min expouse) = 3.12 (10um)⁻³

Energy spectra

NEWS SHIELD FOR 10g EXPOSURE

MATERIALS AVAILABLE NOW

POLYETHILENE FROM DARKSIDE-10

5 Plates (XL): 2.44 x 1.22 x 0.105 m³ 50 Plates (L): 1.22 x 0.61 x 0.105 m³ *(to verify) 5 Plates (M): 0.91 x 0.91 x 0.105 m³ 5 Plates (S): 0.61 x 0.61 x 0.105 m³

LEAD FROM OPERA BRICKS

Brick Dimension: $12.8 \times 10.2 \times 7.9 \text{ cm}^3$ Lead Sheet Dimension: $12.5 \times 10.2 \times 0.1 \text{ cm}^3$

Shield For News-10g

Services Box

Cooling System

Polyethilene Plates

Opera Bricks

Axonometric view

TECHNICAL DETAILS

Maximum width: 2.44 m Maximum height: 1.28 m Polyethilene Thickness: 31.5 cm Lead Thickness: 5.6 cm

Top view

$S_{\text{HIELD}} \, F_{\text{OR}} \, N_{\text{EWS-}} 10_{\text{g}}$

Polyethilene Plates used: 5 XL (2 cutted) 10 L 5 S (1 cutted)

Opera bricks used: 422

BACKGROUND SOURCES WITH SHIELD

Environmental Neutrons

10 cm

Density of NIT emulsion = 3.43 g cm^{-3} Mass of 1 NIT layer ($12x10cm^2$) = 2.058 gFlux of environmental neutrons = $8.7 \times 10^{-7} \text{ cm}^{-2} \text{ s}^{-1}$

12 cm

Signal region: 0.1μm < L < 1μm

Isotropic angular distribution

Upper Limit on background rate: 4 x 10⁻³ g⁻¹ month⁻¹@ 90% C.L.

Cosmogenic Neutrons

Density of NIT emulsion = 3.43 g cm^{-3} Mass of 1 NIT layer ($12x10cm^2$) = 2.058 gFlux of cosmogenic neutrons = $7.3 \times 10^{-10} \text{ cm}^{-2} \text{ s}^{-1}$

Simulation Results

No. of generated events	S
Mass of Detector	
Exposure time	
Total exposure	

= 2.058g x 45 = 92.61g = 953.66 month = 88318 g month

NR in signal region

 $= 1.5 \times 10^{6}$

Signal region: 0.1μm < L < 1μm

Rate = Bkg events in signal region / Total exposure = $6.8 \times 10^{-5} g^{-1} month^{-1}$

Energy spectrum

12 cm

10 cm

Angular distribution

V. Gentile - NEWS Collaboration

Environmental Gammas

Density of NIT emulsion = 3.43 g cm^{-3} Mass of 1 NIT layer ($12x10cm^2$) = 2.058 gFlux of environmental gammas = $0.35 \text{ cm}^{-2} \text{ s}^{-1}$ 12 cm

Energy spectrum

Isotropic angular distribution

Rate = Bkg events / Total exposure = $2 \times 10^{6} \text{ Kg}^{-1} \text{ y}^{-1} = 8 \times 10^{-6} (10 \text{ um})^{-3} \text{ y}^{-1}$

Factor 10⁻³ less than bkg electrons from ${}^{14}C = 2.5 \times 10^{-3} (10 \text{ um})^{-3} \text{ y}^{-1}$

40K FROM OPERA EMULSION

Number of bricks used for the shield = 422 Number of opera emulsion films for each brick = 57 Mass of a film = 3 g Fraction mass of **K** in Opera emulsion = 0.05% Total Mass of **K** in the shield = 36.1 g Natural abundance of 40 **K** = 0.0117% n(mol) in the shield = 1.08 x 10⁻⁴ Number of 40 K nuclei in the shield = 6.50 x 10¹⁹ Mean lifetime = 1.277 x 10¹⁰ y Number of e^- emitted in 30 days ~ 3.8 x 10⁸

Electrons generated in the Opera films

No electrons in NIT emulsion with 10⁶ electrons generated

Upper Limit on background rate: **4 x 10⁻¹⁰ (10um)**⁻³ **y**⁻¹@ 90% C.L.

NEUTRONS FROM LEAD

Decay chain: ²¹⁰Pb \rightarrow ²¹⁰Bi \rightarrow ²¹⁰Po \rightarrow ²⁰⁶Pb (stable) Alpha energy from ²¹⁰Po = 5.305 MeV

$\boldsymbol{\alpha}$ may escape from lead and

(α , n) reaction may occur in opera emulsion Number of bricks used for the shield = 422 Number of opera emulsion films for each brick = 57 Number of lead sheets for each brick = 56 **Alpha-activity from 210 Po ~ 5 cm**⁻² d⁻¹ (conservative) Surface of a lead sheet = 127.5 cm² Total emulsion surface exposed in the shield = 6026160 cm² Number of alpha emitted in 30 days ~ 9 x 10⁸

No neutrons with 10⁶ alpha simulated

Alphas generated in the Opera films

Time dependence of the alpha-activity from ²¹⁰Po

http://iopscience.iop.org/article/ 10.1088/1748-0221/3/07/P07002

Combined with the acceptance factor O(10³) and the rejection power for radiogenic neutron O(10²)

Upper limit on background rate: 10⁻² g⁻¹ month⁻¹

TIME LINE FOR 1Kg

TIME LINE FOR 1Kg EXPOSURE

HOW MUCH TIME CAN THE EMULSION STAY OUTSIDE THE SHIELD?

Development in underground laboratories:

Upper limit for background events due to environmental neutrons after 1 hour: 0.056 Kg⁻¹ Background rate due to cosmogenic neutrons after 1 hour is: 2.4 x 10⁻⁴ Kg⁻¹ Electron rate due to gamma environmental background keeps lower than ¹⁴C until 57 days

NIT may be outside the shield after sensitization and before the development just a few hours

TIME LINE FOR 1Kg

Development on surface laboratories: Neutron yield to be evaluated

Electron rate due to gamma environmental background is 1.8 x 10⁻³ (10um)⁻³ h⁻¹

The rock shielding of LNGS leads in a HPGe γ -ray detector to a thousandfold reduction in the γ -ray background signal above E γ = 2.6 MeV

LUNA: A Laboratory for Underground Nuclear Astrophysics -Costantini, H. et al. Rept.Prog.Phys. 72 (2009) 086301 arXiv:0906.1097 [nucl-ex]

Without any protection, NIT may be transported in the surface facility for development at least in 60 min

Conclusions

• Simulation results of NIT emulsion without shield;

• Simulation results of NIT emulsion for alpha and beta test exposure;

- Simulation of detector and the shield for 10g exposure;
- Neutron background and gamma rays from environmental radioactivity and cosmic muons spallation results negligible for a 10 g exposure;

1Kg exposure: NIT may be outside the shield after sensitization and before the development just a few hours in underground laboratories.

THANK YOU

http://pos.sissa.it/archive/conferences/110/053/IDM2010_053.pdf

V. Gentile - NEWS Collaboration

26