Susceptibilities from a Black Hole Engineered EoS with a Critical Point

Israel Portillo

UNIVERSITY of HOUSTON

Collaborators:

University of Houston:

University of Sao Paulo: Claudia Ratti, Jacquelyn Noronha-Hostler, Paolo Parotto

Jorge Noronha, Romulo Rougemont, Stefano Finazzo, Renato Critelli

イロト イポト イヨト イヨト

Exploring QCD Phase Diagram

Lattice QCD

Perform calculations at $\mu_B = 0$, and extrapolate via Taylor expansion to finite μ_B

Black Hole Engineering

Based on Lattice data at $\mu_B = 0$, allows us to calculate observable at finite density.

Fluctuations of conserved Charges

Provide essential information about the effective degrees of freedom of a system.

イロン イヨン イヨン イヨン

2/22

- Study QCD from first principles in the non-perturbative region.
- Calculates equilibrium properties at $\mu_B = 0$ or at imaginary- μ_B (sign problem!)
- It has technical difficulties to compute transport properties
- Critical behavior of the CEP can be lost when extrapolate calculations at finite μ

イロト イポト イヨト イヨト

< 67 ▶

æ

∃ >

Lattice at Finite μ_B

Phase diagram bases on the μ -dependent T_c from the chiral condensate (analytically continued from the imaginary- μ_B)

Introduction Motivation BH Model Results Conclusions

Evolution of a heavy ion collision

- Chemical freeze-out: all inelastic interactions cease. The chemical composition of the system is fixed
- Kinetic freeze-out: all elastic interactions cease: the spectra of the particles are fixed

- We want to study the chemical freeze-out
- Observable: fluctuations of conserved charges
 - They are fixed at the freeze-out
 - They can be measured and calculated
 - They are sensitive to the critical point

Introduction	Motivation	BH Model	Results	Conclusions
Susceptibi	lities			

A system in thermal equilibrium is characterized by

$$Z = \operatorname{Tr} \left[-\frac{H - \sum_{i} \mu_{i} Q_{i}}{T} \right]$$
$$P = \frac{T}{V} \ln Z$$

$$\mu_{u} = \frac{1}{3}\mu_{B} + \frac{2}{3}\mu_{Q}$$
$$\mu_{d} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q}$$
$$\mu_{s} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q} - \mu_{S}$$

白 と く ヨ と く ヨ と …

æ

The Susceptibilities χ_{lmn}^{BSQ} are defined as $\chi_{lmn}^{BSQ} = \frac{\partial^{l}}{\partial(\mu_{B}/T)^{l}} \frac{\partial^{m}}{\partial(\mu_{S}/T)^{m}} \frac{\partial^{n}}{\partial(\mu_{Q}/T)^{n}} \left(\frac{P}{T^{4}}\right)$

33rd Winter Workshop on Nuclear Dynamics, Utah, USA

Net-proton (ΔN_p)

-20

0 20

-20 0 20 -20 0 20 -20 0 20

[STAR] Phys. Rev. Lett. 112 (2014) 032302

Karsch Central Eur.J.Phys. 10 (2012) 1234

M. A. Stephanov, Phys. Rev. Lett. 102 (2009) 032301

イロト イポト イヨト イヨト

M. A. Stephanov, Phys. Rev. Lett. 107 (2011) 052301

イロン イヨン イヨン イヨン

Net-Proton Fluctuations from STAR

- Preliminary STAR data for net-proton fluctuations $(\kappa\sigma^2 = \chi_4/\chi_2)$
- Non-monotonic behavior at low energies
- Is it due to the critical point?
- If so, how close to the critical point does the Non-monotonic behavior show up?

[STAR] Xiaofeng Luo, Quark Matter 2015

A (1) > A (1) > A

• Holography \rightarrow Near Perfect fluidity

20

Quark-gluon plasma

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

J M Maldacena 1999 Int. J. Theor. Phys. (38) 1113

Lagrangian of non-conformal General Relativity in 5 dimensions

O DeWolfe, S S Gubser, and C Rosen, Phys. Rev. D 83, (2011) 086005

R Rougemont, A Ficnar, S Finazzo and J Noronha, High Energ. Phys. (2016) 102.

◆□→ ◆ □→ ◆ □→ □ □

Black Hole Engineering

Black Hole Model

- Input parameter are fixed by Lattice data at ($T, \mu_B = 0$)
- Non-conformal Equation of State
 - at finite T and finite μ_B
 - with a critical end point
 - \blacksquare agrees with lattice data at small μ_B
 - allows to extract freeze-out parameters
- Near perfect fluidity
 - Ability to compute transport coefficients near the crossover and at large μ_B

R Rougemont, J Noronha, and J Noronha-Hostler Phys.Rev.Lett. 115 (2015) 202301

イロト イヨト イヨト イヨト

 χ_2 and χ_4 agree with lattice points

33rd Winter Workshop on Nuclear Dynamics, Utah, USA

Introduction Motivation

BH Model

Results

(1日) (日)

< ≣⇒

æ

Conclusions

Black Hole Susceptibility Ratios

æ

Э

[STAR] Net Proton Fluctuation Susceptibility Ratios

[STAR] Phys. Rev. Lett. 112 (2014) 032302

Trajectory in the $[T - \mu]$ plane that satisfy the experimental values

Freeze out points $[T - \mu_B]$ are extracted from the line made by the closer points between χ_1/χ_2 and χ_3/χ_2

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

BH Model

æ

∢ ≣ ≯

Freeze-out Line

Introduction	Motivation	BH Model	Results	Conclusions
Conclusions				

We study a Black Hole Model that up to a $\mu_B=400 {\rm MeV}$ and found that

- Reproduces lattice data at $\mu_{\scriptscriptstyle B} = 0$
- Contains a critical end point at $\mu_B = 705 \text{MeV}$ and T = 80 MeV
- The freeze-out points we found are very close to the points obtained by HRG, and they are far from our critical end point
- When we extrapolate to points close to the CEP we found a monotonic behavior of χ_4/χ_2 .

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Introduction	Motivation	BH Model	Results	Conclusions
Outlooks				

- \blacksquare Explore susceptibilities for $\mu_{\scriptscriptstyle B}$ closer to the critical end point
- Study sensitivity of the location of the critical point to initial parameters
- Determine the universality class of the critical end point in the black hole model

向下 イヨト イヨト

2