
  

Precision measurements of jet-like correlations
And what they teach us about flow
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Jets and flow

– K, O’Hara, S. Hemmer, M. Gehm, S. Granade, J. Thomas    Science 298 2179 (2002) 

● Both lead to azimuthal correlations

● Jets → background for flow

● Flow → background for jets

p+p di-jet event in STAR
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Overview

● New method for separating jets from flow
● Apply it to data

– Di-hadron correlations

– Jet-hadron correlations

● And what we learn about flow from jet-like 
correlations
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MethodsMethods
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Two component model

● Two component model
– Assume contributions can be factorized

– Alternately, define signal as anything which isn't consistent with 
separable flow and jet components

– Assumptions even embedded in studies of full jets

Jets

Flow

h-h
√s

NN
 = 2.76 TeV

30-40% PbPb
8<p

T

trigger<10 GeV/c

1<p
T

assoc<2 GeV/c
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Zero Yield At Minimum

● Flow component given by

● Fix background level at minimum

● Use independent measurements of vn

Jets

Flow

B (1+∑n=2

∞

vn
t vn

a cos(nΔϕ))
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Issues with ZYAM

● Tends to underestimate background level
– Can use fixed point (e.g. Δφ=1) instead

● vn for background may not be the same as independent measurements

– Cumulant methods suppress fluctuations

– Reaction plane measurements may include effects from jets

– Events with jets may be different

– High and low pT reaction planes may be different

● If jet peak is broadened, may overestimate background (underestimate signal)

Jets

Flow

vn<
~vn

vn>
~vn

vn≠
~vn

vn≠
~vn
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Background Subtraction Methods
● Δη Method: Project near-side signal onto Δη and subtract constant 

background.  Near-side only
● Δη Gap Method: Use signal at large Δη to determine background, 

assuming constant background in Δη.  Near-side only

● Zero-Yield at Minimum (ZYAM): Assumes vn from other studies, 
assumes region around Δφ≈1 is background dominated

● Near-Side Fit (NSF): assumes small Δφ/large Δη region background 
dominated, fits vn and B

● Reaction Plane Fit (RPF): assumes small Δφ/large Δη region 
background dominated, fits vn and B using reaction plane dependence

● Near-Side Subtracted NSF/RPF (NSS NSF/RPF): fits vn and B at 
small small Δφ using reaction plane dependence after subtracting the 
near-side with a fit
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Separating the signal and the 
background

Separating the signal and the 
background

Toy model:
● Signal: PYTHIA
● Background: thrown to v

n
 = 10 to match data

● Details in backup and paper
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Signal vs background

Signal+background

Background dominated region

Signal only
h-h
√s

NN
 = 2.76 TeV

30-40% PbPb
8<p

T

trigger<10 GeV/c

1<p
T

assoc<2 GeV/c
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Near-Side Fit (NSF) method 
No reaction plane dependence

Signal+background

Background dominated region

Fit extrapolation

h-h
√s

NN
 = 2.76 TeV

30-40% PbPb
8<p

T

trigger<10 GeV/c

1<p
T

assoc<2 GeV/c

● Project signal+background over 1.0<|Δη|<1.4
● Fit background in |Δφ|<π/2 with v

n
 up to n=4



12Christine Nattrass (UTK), Winter Workshop on Nuclear Dynamics, January 2017

Near-Side Fit (NSF) method 
No reaction plane dependence

● Reconstructs signal 
with less bias and 
smaller errors than 
ZYA1 method

● Extract vn consistent 
with input

Standard ZYA1 = Zero Yield at ΔΦ=1
Modified ZYA1 = Zero Yield at ΔΦ=1 for 1.0<|Δη|<1.4

h-h
√s

NN
 = 2.76 TeV

30-40% PbPb
8<p

T

trigger<10 GeV/c

1<p
T

assoc<2 GeV/c
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Near-Side Fit (NSF) method 
No reaction plane dependence

Signal+background

Background dominated region

Fit extrapolation

h-h
√s

NN
 = 2.76 TeV

30-40% PbPb
8<p

T

trigger<10 GeV/c

1<p
T

assoc<2 GeV/c

● Project signal+background over 1.0<|Δη|<1.4
● Fit background in |Δφ|<1
● Not reliable over narrower Δφ region
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Background Subtraction Methods
● Δη Method: Project near-side signal onto Δη and subtract constant 

background.  Near-side only
● Δη Gap Method: Use signal at large Δη to determine background, 

assuming constant background in Δη.  Near-side only

● Zero-Yield at Minimum (ZYAM): Assumes vn from other studies, 
assumes region around Δφ≈1 is background dominated

● Near-Side Fit (NSF): assumes small Δφ/large Δη region background 
dominated, fits vn and B

● Reaction Plane Fit (RPF): assumes small Δφ/large Δη region 
background dominated, fits vn and B using reaction plane dependence

● Near-Side Subtracted NSF/RPF (NSS NSF/RPF): fits vn and B at 
small small Δφ using reaction plane dependence after subtracting the 
near-side with a fit
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Adding reaction plane 
dependence

Adding reaction plane 
dependence
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Background in correlations
● All reaction plane angles

● When trigger is restricted relative to 
reaction plane
– Background level modified

– Effective vn modified

B (1+∑n=2

∞

vn
t vn

a cos(nΔϕ))

Phys.Rev. C69 (2004) 021901  arXiv:nucl-ex/0311007

B=1+∑k=2

∞

2vk
a vk

R ,t cos(k ϕS)
sin(kc)

kc
Rn

φ
S
 is the angular threshold

Rn=⟨cos(n(ψtrue−ψreco))⟩

vn
R , t

=

vn+cos(n 8S)
sin (nc )

nc
Rn+∑k=2,4,6. ..

∞

(vk +n+vk−n)cos(kϕS)
sin (kc )

kc
Rn

1+∑k=2,4,6. ..

∞

2 vk cos(kϕS)
sin (kc)

kc
Rn

, n=even

http://arxiv.org/abs/nucl-ex/0311007
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Reaction Plane Fit (RPF) method
30-40% central

Fit

● Project signal+background over 1.0<|Δη|<1.4
● Fit background in |Δφ|<1 including reaction plane dependence
● v

n
 and B extracted with v

n
 up to n=4

h-h
√s

NN
 = 2.76 TeV

30-40% PbPb
8<p

T

trigger<10 GeV/c

1<p
T

assoc<2 GeV/c
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Reaction Plane Fit (RPF) method
30-40% central

h-h
√s

NN
 = 2.76 TeV

30-40% PbPb
8<p

T

trigger<10 GeV/c

1<p
T

assoc<2 GeV/c
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Background Subtraction Methods
● Δη Method: Project near-side signal onto Δη and subtract constant 

background.  Near-side only
● Δη Gap Method: Use signal at large Δη to determine background, 

assuming constant background in Δη.  Near-side only

● Zero-Yield at Minimum (ZYAM): Assumes vn from other studies, 
assumes region around Δφ≈1 is background dominated

● Near-Side Fit (NSF): assumes small Δφ/large Δη region background 
dominated, fits vn and B

● Reaction Plane Fit (RPF): assumes small Δφ/large Δη region 
background dominated, fits vn and B using reaction plane dependence

● Near-Side Subtracted NSF/RPF (NSS NSF/RPF): fits vn and B at 
small small Δφ using reaction plane dependence after subtracting the 
near-side with a fit
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Background Subtraction Methods
● Δη Method: Project near-side signal onto Δη and subtract constant 

background.  Near-side only
● Δη Gap Method: Use signal at large Δη to determine background, 

assuming constant background in Δη.  Near-side only

● Zero-Yield at Minimum (ZYAM): Assumes vn from other studies, 
assumes region around Δφ≈1 is background dominated

● Near-Side Fit (NSF): assumes small Δφ/large Δη region background 
dominated, fits vn and B

● Reaction Plane Fit (RPF): assumes small Δφ/large Δη region 
background dominated, fits vn and B using reaction plane dependence

● Near-Side Subtracted NSF/RPF (NSS NSF/RPF): fits vn and B at 
small small Δφ using reaction plane dependence after subtracting the 
near-side with a fit
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STAR dataSTAR data
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STAR measurements of dihadron 
correlations relative to reaction plane

● Correlations on arxiv (nucl-ex/1010.0690 v2)
– Published article (Phys. Rev. C 89 (2014) 41901) does not include raw 

correlations

● ZYAM background subtraction
– Reports ridge at Δη> 0.7

– RPF method assumes no signal at Δη> 0.7

0.7<Δη< 2
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Dihadron correlations

Phys. Rev. C 94, 011901(R) 2016

Phys.Rev.Lett.93:252301,2
004

4.0<p
T

trig<6.0 GeV/c
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ALICE dataALICE data

Joel Mazer: Hot Quarks 2016, Quark Matter 2017
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1.0-1.5 GeV/c 
1) signal+bkgrd
2) bkgrd dominated
3) bkgrd RPF fit

Correlation function

 Uncertainties dominated by statistics
 Background uncertainty is non-trivially correlated point-to-point
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1) signal+bkgrd
2) bkgrd dominated
3) bkgrd RPF fit

Correlation function

 v
3 
and v

4 
components important

 Background uncertainty is non-trivially correlated point-to-point

1.5-2.0 GeV/c 
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1) signal+bkgrd
2) bkgrd dominated
3) bkgrd RPF fit

Correlation function

 Away side clearly there and suppressed

2.0-3.0 GeV/c 
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1) signal+bkgrd
2) bkgrd dominated
3) bkgrd RPF fit

Correlation function

 Background level negligible

4.0-5.0 GeV/c 
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What about flow?What about flow?
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v
n
 from RPF method

● Different vn from RPF method for h-h correlations

● Same vn as inclusive studies from RPF for jet-h 
correlations
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One of the following must be true:
● vn

jet ≠ vn
bkgd

– Dihadron correlations: 
● Background: J-B, B-J, B-B
● Signal: J-J

– Jet-hadron correlations: fake jets negligible
● Background: J-B
● Signal: J-J

● Hard and soft rxn planes decorrelated
– Soft rxn plane reconstructed

● Reaction plane measurements may include effects from jets
● Events with jets have different flow

B (1+∑n=2

∞

vn
t vn

a cos(nΔϕ))=B (1+∑n=2

∞

vn
t , corr(1+

vn
t ,uncorr

vn
t , corr

)vn
acos(nΔϕ))
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Conclusions

● RPF method is robust
– Allows studies of away side

– Move beyond ZYAM.

● Precision correlation studies possible
– No more Mach cone!

● Jets exhibit little/no reaction plane dependence
● Something interesting is going on with flow

ConclusionsConclusions
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Toy modelToy model
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Model for signal

● Use PYTHIA Perugia 2011

● π±, K±,p, p for unidentified hadrons

● Quarks and gluons as proxy for reconstructed jets

h-h
√s = 2.76 TeV
pp collisions
8<p

T

trigger<10 GeV/c

1<p
T

assoc<2 GeV/c
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Model for background

● True reaction plane angle is always at φ=0 in detector coordinates
● Throw random reconstructed reaction plane angle

– Assume Gaussian reaction plane resolution

– Selected to approximate data

● Use measured particle yields to calculate how many associated 
particles would be measured

● Use measured vn to determine their anisotropy relative to the 
reaction plane

● Throw associated particles matching distribution observed in data 
using vn up to n=10
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Acceptance correction

● Fixed acceptance cuts leads to a trivial structure due 
to acceptance

● This is fixed with a “mixed event” correction
– Throw random trigger, associated particle within 

acceptance

– Calculate Δφ, Δη

– Use this distribution 
to correct for 
acceptance
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Going to lower momentaGoing to lower momenta
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Low momenta

● ZYAM assumptions break 
down at low pT

● If method doesn't work on 
PYTHIA, it can't be trusted on 
data!

● But low pT is interesting!

h-h
√s

NN
 = 2.76 TeV

30-40% PbPb
8<p

T

trigger<10 GeV/c

0.5<p
T

assoc<1 GeV/c
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Going to lower momenta, medium 
modifications

● Peak gets broader
● Fit near-side peak and subtract it
● Increase Δη range available for background subtraction

h-h, √s
NN

 = 2.76 TeV, 0-10% PbPb

8<p
T

trigger<10 GeV/c

1<p
T

assoc<2 GeV/c for background, 0.5<p
T

assoc<1.0 GeV/c for signal

Before subtraction After subtraction Data/Fit

Structure from 
imperfect fit
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Near-Side Subtracted RPF method
30-40% central

Fit

● Project signal+background over 0.0<|Δη|<1.4
● Fit background in |Δφ|<1 including reaction plane dependence
● v

n
 and B extracted with v

n
 up to n=4

h-h, √s
NN

 = 2.76 TeV, 0-10% PbPb

8<p
T

trigger<10 GeV/c

1<p
T

assoc<2 GeV/c for background

0.5<p
T

assoc<1.0 GeV/c for signal
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Reaction Plane Fit (RPF) method
30-40% central

h-h
√s

NN
 = 2.76 TeV

30-40% PbPb
8<p

T

trigger<10 GeV/c

1<p
T

assoc<2 GeV/c

● Works beautifully!

h-h, √s
NN

 = 2.76 TeV, 0-10% PbPb

8<p
T

trigger<10 GeV/c

1<p
T

assoc<2 GeV/c for background

0.5<p
T

assoc<1.0 GeV/c for signal
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Stages of a heavy ion collision

Jets Flow
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trigger Phys Rev Lett 90, 082302

Jets – azimuthal correlations
p+p  dijet

Trigger

Associated

Select high momentum particles → biased towards jets
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Azimuthal correlations

Phys.Rev.Lett.93:252301,2004
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Competing effects

Quenching
Fewer jets, lower 
yield out of plane

Bremsstrahlung
Softer, higher yield out 
of plane

Fluctuations
Individual jets' 
energy loss may vary
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Dihadron correlations

Phys. Rev. C 94, 011901(R) 2016
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Near-side jet yields vs EP
Jets 20-40 GeV/c, 30-50% centrality

Competing effects  
1) Quenching
2) Bremsstrahlung
3) etc

Within uncertainties of
current statistics, no 
event plane ordering

Different effects in 
different p

T
 associated 

bins
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Away-side jet yields vs EP
Jets 20-40 GeV/c, 30-50% centrality

Competing effects  
1) Quenching
2) Bremsstrahlung
3) etc

Within uncertainties of
current statistics, no 
event plane ordering

Different effects in 
different p

T
 associated 

bins
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PYTHIA at 200 GeV

8<p
T

t<10 GeV/c
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PYTHIA at 200 GeV

3<p
T

t<4 GeV/c

4<p
T

t<6 GeV/c
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Near-Side Subtracted NSF method

● Project signal+background over 0.0<|Δη|<1.4
● Fit background in |Δφ|<1 including reaction plane dependence
● Bias from residual contamination by near-side

h-h, √s
NN

 = 2.76 TeV, 0-10% PbPb

8<p
T

trigger<10 GeV/c

1<p
T

assoc<2 GeV/c for background

0.5<p
T

assoc<1.0 GeV/c for signal
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Correlations - STAR

● Green: d+Au, Red: Au+Au
● Large error bars
● “Mach Cone” evident, even decrease in amplitude for 

higher pT
t 
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Background subtracted correlations 4<p
T

t<6 GeV/c

1.5<p
T

a<2.0 GeV/c

2.0<p
T

a<3.0 GeV/c

3.0<p
T

a<4.0 GeV/c

Yellow bands:  uncertainty in rescaling of background
Statistical error bars include correlated statistical error on background No “Mach Cone”
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STAR
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RPF Method
● 6 bins relative to reaction plane
● Background level

– Normalized per trigger → B same in all bins if v2
t is the only effect → reduces info for 

RPF

– “The background levels can be different for the different φs slices because of the net 
effect of the variations in jet-quenching with φs and the centrality cuts in total charged 
particle multiplicity in the TPC within |η| < 0.5.” (Pg. 10, arxiv version)  → Not 
consistent with ZYAM assumptions!

● Used reaction plane resolution values from paper and their uncertainties
– Used TPC for reaction plane and analysis – potential autocorrelations

● Data available for Δη< 0.7 (signal+background) and 0.7<Δη< 2 (background 
dominated)
– Acceptance correction in not applied → background must be scaled → uncertainty

–  Jet-like correlation not eliminated in 0.7<Δη< 2 for all pT
t, pT

a given in paper →  focus 
on high pT
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v
2
 STAR vs Fit

● Centrality bin is 20-60% - proper weighting of average?

● Bias in event selection with high pT trigger?

● Bias in reconstructed reaction plane in the presence of a jet?
● Residual jet-like signal in background dominated region?

● Less information in fit due to normalization by Ntrigger?

v
2
 STAR (Table I) v

2
 Fit (stat. errors only)

1.5<p
T
<2.0 GeV/c 0.164 ± 0.011 0.194 ± 0.008

2.0<p
T
<3.0 GeV/c 0.189 ± 0.012 0.237 ± 0.010

3.0<p
T
<4.0 GeV/c 0.194 ± 0.013 0.293 ± 0.058

4.0<p
T
<6.0 GeV/c 0.163 ± 0.020 0.073 ± 0.025

0.036 ± 0.033
0.033 ± 0.068
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trigger Phys Rev Lett 90, 082302

Jets – azimuthal correlations
p+p  dijet

Trigger

Associated

Select high momentum particles → biased towards jets
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Azimuthal correlations

Phys.Rev.Lett.93:252301,2004
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Dihadron correlations

Phys. Rev. C 94, 011901(R) 2016

4.0<p
T

trig<6.0 GeV/c

Sharma, Mazer, Stuart, Nattrass: (Phys. Rev. C 93, 044915 2016)

Phys.Rev.Lett.93:252301,2004
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Dihadron correlations

Phys. Rev. C 94, 011901(R) 2016
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1) signal+bkgrd
2) bkgrd dominated
3) bkgrd RPF fit

Correlation function

 Away side clearly there and suppressed

2.0-3.0 GeV/c 

Joel Mazer
Hot Quarks 2016
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Away-side jet yields vs EP
Jets 20-40 GeV/c, 30-50% centrality

Competing effects  
1) Quenching
2) Bremsstrahlung
3) etc

Within uncertainties of
current statistics, no 
event plane ordering

Different effects in 
different p

T
 associated 

bins

Joel Mazer
Hot Quarks 2016
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Little/no path length dependence?

● Path length dependence naively predicted by every model
– No path length dependence seen in rxn plane dependent Aj either

● Insufficient sensitivity?
● Statistical variation in energy loss is more important than path 

length dependence
– J. G. Milhano and K. C. Zapp, “Origins of the di-jet asymmetry in heavy 

ion collisions,” arXiv:1512.08107

– F. Senzel, O. Fochler, J. Uphoff, Z. Xu, and C. Greiner, “Influence of 
multiple in-medium scattering processes on the momentum imbalance of 
reconstructed di-jets,” J. Phys. G42 no. 11, (2015) 115104, 
arXiv:1309.1657 [hep-ph]. 
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BiasBias

● Modified jets probably look more like the mediumModified jets probably look more like the medium
● Quark jets are narrower, have fewer tracks, fragment Quark jets are narrower, have fewer tracks, fragment 

harder [Z Phys C 68, 179-201 (1995), Z Phys C 70, 179-196 harder [Z Phys C 68, 179-201 (1995), Z Phys C 70, 179-196 
(1996), ](1996), ]

● Gluon jets reconstructed with kGluon jets reconstructed with kTT algorithm have more  algorithm have more 
particles than jets reconstructed with anti-kparticles than jets reconstructed with anti-kTT algorithm  algorithm 
[Phys. Rev. D 45, 1448 (1992)][Phys. Rev. D 45, 1448 (1992)]

● Gluon jets fragment into more baryons [EPJC 8, 241-254, Gluon jets fragment into more baryons [EPJC 8, 241-254, 
1998]1998]
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