

A.Bazilevsky (BNL)

For RHIC Spin Collaboration

The 33rd Winter Workshop on Nuclear Dynamics

January 8-14, 2017

Snowbird, Utah

Factorization – a Cornerstone of QCD

Predictive power (for hard probes):

$$\sigma(pp \to hX) \sim (f_a(x_1)) \otimes (f_b(x_2)) \otimes (\hat{\sigma}^{f_a f_b \to f}(\hat{s})) \otimes (D_f^h(z))$$

Parton Distribution Func. from experiment <u>Universal</u> Partonic x-section from pQCD Process dependent Fragmentation Func. from experiment Universal

PDF (and FF) Universality

Evolution in QCD

ln x

Evolution is different (more complicated) for:

TMD: $f(x) \rightarrow f(x,k_T)$ Twist-3: $f(x) \rightarrow T(x,x)$

→ Important for Spin effects studies

Completing the RHIC mission

US DOE Charge

- Compelling physics questions the future polarized p+p and p+A program at RHIC can address
- Unique "must-do" measurements, which require running beyond the currently planned RHIC runs
- Key measurements which are critical for the planning of the EIC physics program or are necessary as sources of critical information for the interpretation of the expected EIC data.
- > Possible detector upgrades that are required to perform the proposed measurements

Year	Species @ Vs (GeV)	Goals
2017	pp@510 GeV	Transverse Spin in QCD
2018	⁹⁶ Ru - ⁹⁶ Zr	Chiral Magnetic Effect in HI
2019/20	AuAu, low energy scan	Search for QGP critical point
2022	AuAu@200 GeV	Precision QGP measurements
2023	pp@200 GeV pA@200GeV	Transverse Spin in QCD A-dependence of nPDF and nFF

The Goals of the Plan

Establish the validity and limits of factorization and universality

- Essential to separate intrinsic properties of hadrons from interactiondependent dynamics
- Requires pushing the envelope beyond just those measurements that have been proven theoretically

E.g. challenge theory prediction on evolution for Twist-3 and TMD PDF and FF

- Requires precision measurements to enable meaningful comparisons between RHIC data and future EIC data
- Perform key measurements with a broader range of probes and wider kinematic coverage than will be possible at the EIC alone
 - Significantly enhance the impact and interpretation of the future EIC data

RHIC's unique opportunities

 \rightarrow A-scan (Au, Cu, Al, He, d ...)

Nuclear dependence of PDFs, test for saturation models

- → Polarized proton beam
- → Energy scan

To separate different underlying mechanisms

pA -> Cold Nuclear Matter

Understanding of Cold Nuclear Matter effects is necessary to understand fundamental properties of Hot Nuclear Matter (Glasma, sQGP)

Need to separate initial and final state effects

- Parton dynamics (Non-linear evolution? Saturated gluon fields?)
- Parton energy loss in CNM (connection to TMD?)
- Hadronization mechanisms

nPDF: Current State

DGLAP: predicts Q² but not A-dependence and x-dependence

Saturation models: predict A-dependence and x-dependence but not Q² Need: wide range in x at various Q²; A-scan

Observables:

 R_{pA} for dir. γ and DY (forward for low x) Correlations (di-h, di-jet, γ -h, γ -jet)

pA: nPDF

Significant constraint of nPDF with alternative observable and kinematics to EIC

pA: Saturation

CGC prediction for direct photon R_{pA}

Forward-forward correlations

Selects large-x parton (quark) in p and low-x parton (gluon) in A

Di-hadron includes both initial and final state contributions

 γ -jet and γ -h: no final state contribution; 1M events expected in 2023 from pAu and pAl

Production rate of hadrons in eA differs from ep

Can not be explained by nPDF Do these effects survive at high \sqrt{s} ? Are these effects universal?

12

pA: nFF

Measure $d\sigma/dz_h$ within jet

Polarized pp (pA)

Focus on TMDs

Transverse Momentum Distributions (TMD)

Initially driven by spin studies, now getting broader application

Expand nucleon and nuclei imaging from 1D to (2+1)D

Correlation between proton trans. spin and parton kT (Sivers function) is sensitive to orbital angular momentum

Correlation between trans. spin of fragmented quark and hadron pT (Collins FF) gives access to tensor charge (valence quark transversity $\delta q = \int_0^1 (\delta q(x) - \delta \overline{q}(x)) dx$)

Fundamental value, calculable on the lattice Sensitivity to beyond standard model (BSM)

Un-integrated gluon density g(x,Q2,kT) is critical for physics at small x

Connection to CGC

Applications to LHC, e.g. Higgs production

Trans. Spin: To measure at RHIC

Initial State:

Sivers/Twist3 mechanism

- \succ A_N for jets, direct photons
- \succ A_N for heavy flavor \rightarrow gluon
- \succ A_N for W, Z, DY

Final State:

Collins mechanism

- ➢ Hadron azimuthal asymmetry in jet
- Hadron pair azimuthal asymmetry (Interference fragmentation function)

Sensitive to correlations proton spin – parton transverse motion

Not universal between SIDIS & pp

Sensitive to transversity x spin-dependent FF

Universal between SIDIS & pp & e+e-

Initial State: TMD vs Twist3

Color Interaction in QCD

Controlled non-universality of Sivers function

Sivers_{DIS} = $-(Sivers_{DY} \text{ or } Sivers_{W} \text{ or } Sivers_{Z})$ A_N(dir. γ) has related sign change in Twist-3

> Critical test of TMD factorization All observables can be explored at RHIC

Trans. Spin: Initial state

Sivers function non-universality and evolution

Too strong evolution effect ? - No consensus yet

Need experimental data!

Trans. Spin: Initial State

Run-2009 (PRL 116, 132301)

First hint for Sivers function sign change!

Evolution is small?

20

Trans. Spin: Initial State

Run 2017 *p*↑*p*@510*GeV*

Proj. for Run-2017

(a factor ~4 reduced uncertainties compared to Run9)

Photons

Trans. Spin: Initial state

Run 2023+ *p*↑*p*@200,510*GeV*

 $\times 2$ reduced uncertainties for earlier measurements: W, Z, DY, γ

With forward upgrade: Calorimetry + Tracking

Charged hadron A_N at highest \sqrt{s}

Twist-3 correl. func. flavor dependence and evolution

Twist-3 FF contribution

u/d enhanced jet

0.6

0.7 0.8 Twist-3 correl, func, flavor dependence:

u (d) jet enhanced by h+(-) tagging at z>0.5

Trans. Spin: Final State Mechanism

First IFF (Interference Fragmentation) asymmetry in pp !

=>Another way to access transversity !

Trans. Spin: Final state

<u>Considerably improve earlier</u> <u>measurements:</u>

Transversity through Collins vs IFF ⇒ Universality and factorization breaking

 $\sqrt{s=200 \text{ vs } 500 \text{ GeV}}$ \Rightarrow Evolution

Linearly polarized gluon PDF through $sin(\phi_s-2\phi_h)$ modulation

Trans. Spin: Final state

Run >2023? *p*↑*p*@510*GeV*

×2 reduced uncertainties for earlier measurements

h± Collins asymmetry within jet

Need forward upgrade:

To understand the contribution of final state effect to hadron SSA

Need x>0.3 (for tensor charge)

Need lower x (to study gluons)

Proposal Summary

	Year	√s (GeV)	Goals	Observables	Upgrade	
Scheduled RHIC Running	2017 <i>p</i> ↑ <i>p</i>	510	Sivers non-universality TMD and Twist-3 evolution Transversity, Collins FF, lin. pol. gluons, gluon Sivers GPD Eg	A_N for γ , W, Z, DY A_{UT} ~sin(ϕ_s - ϕ_h), sin(ϕ_s -2 ϕ_h) within jet, A_{UT} ~sin(ϕ_s) for jets A_{UT} for J/ ψ in UPC	DY: Postshower to FMS@STAR None None	
	2023 $p \uparrow p(A)$	200	Source of A _N at high xF, Twist-3 flavor dependence Diffraction	A_N for h± and flavor enhanced jets A_N for diffraction	Forward None	
Proposed Running	202X <i>p</i> ↑ <i>p</i>	510	TMD at low and high x Validity and limits of factorization and universality in ep vs pp	A_{UT} for h± in jet in forward- and mid-rapidity	Forward None	
	202X <i>pp</i>	510	Δg at small x	A_{LL} for jets, $\pi 0$, di-jets, h/γ-jet	Forward	If EIC not realized or delayed

Forward upgrade for 2020+

STAR

fsPHENIX

Add forward instrumentation up to η=4: EMCal+Hcal+Tracking

(Instead of) Summary

Factorization & Universality

Evolution

Higher and lower x Also the source of large A_N in pp

Precision

Unique measurements: probes and kin. ranges; e.g. W, DY, Twist-3 => both p+p(A) and e+p(A)

=> different √s

=> forward instrumentation

=> more L

=> p+p(A)

Backup

$\Delta G: \pi 0$ and jet A_{LL}

Are gluons polarized?

Observation of non-zero A_{LL} associated with non-zero ΔG !

 $\frac{1}{2} = \frac{1}{2} \left(\Delta q + \Delta \overline{q} \right) + \Delta G + L_Z$

ΔG : DIS+pp global QCD fit

DSSV: D. de Florian R. Sassot M. Stratmann W. Vogelsang

DSSV: Phys Rev Lett, 101, 072001 (2008) Data from up to 2006
New DSSV: Phys Rev Lett, 113, 012001 (2014) Data from up to 2009

$$\int_{.05}^{1} dx \Delta g(x) = 0.2^{+0.06}_{-0.07}$$

0

Significant non-zero ∆g(x) in the kin. region probed by RHIC
Similar result from another global fit NNPDF
Still huge uncertainty in unmeasured region (x<0.05)
=> Measurements at higher √s and forward rapidity

ΔG : Near Term Projections

From already available data from 2011-15

STAR 2009 run

10

20

p_T [GeV]

30

↓ |η| < 0.5 ↓ 0.5 < |n| < 1.0

0.04

0.02

 A_{LL}^{jet} 0

Other channels also being measured (but with weaker stat. power) γ , η , $\pi \pm$, $h \pm$, heavy flavor through e and μ , jet-jet, h-h, γ -jet, γ -h

Great improvement expected

... Still not enough precision for ΔG full integral

 $d_L \overline{u}_R \to W^ u_L \overline{d}_R \to W^+$

 Δq -bar: W[±] \rightarrow I[±]

Constrains flavor separated (anti-)quark polarization at high $Q \sim M_W$ at x>0.05, with no fragmentation involved (as in SIDIS)

∆u-bar tends to be more positive
=> Symmetry breaking in polarized sea?
Twice reduced uncertainties when all data analyzed

Long. Spin: ΔG

Run >2023? *pp*@510*GeV*

×1.5 more statistics for "traditional" channels (incl. π 0 and jets)

Photons and $\pi \pm$ will get sensitivity to non-zero ΔG Though with smaller stat. power than incl. $\pi 0$ and jets

With forward upgrade (to $\eta \sim 4$): Di-jets – cleaner access to lower x down to 10^{-3} .

EIC can do it down to $x\sim 10^{-5}$ with considerably higher precision

Sivers

DY

PHENIX: longer term plans

~2021-22

By ~2025

Evolve sPHENIX (pp and HI detector) to EIC Detector (ep and eA detector)

- To utilize e and p (A) beams at eRHIC with *e*-energy up to 15 GeV and *p*(A)energy up to 250 GeV (100 GeV/n)
- > e, p, He3 polarized
- Stage-1 luminosity ~10³³ cm⁻² s⁻¹ (~1fb⁻¹/month)

Nucleon Helicity Structure: from RHIC to EIC

$$\frac{1}{2} = \frac{1}{2} \sum_{q} \left[\Delta q + \Delta \overline{q} \right] + \Delta g + L$$

arXiv: 1509.06489

1/2 - Gluon - Quarks =

Orbital angular momentum

Spin puzzle will be solved

RHIC Transverse Spin

Collinear (higher twist) pQCD predicts $A_N \sim 1/p_T \dots$ at what p_T ?

No fall off is observed out to $p_T \sim 7 \text{ GeV/c}$

Main focus: Disentangle different contributors Naïve collinear pQCD predicts $A_N \sim \alpha_s m_q / p_T \sim 0$

Asymmetries survive at highest \sqrt{s} Non-perturbative regime! Asymmetries of the ~same size at all \sqrt{s}

Asymmetries scale with x_F

TMD vs Twist3: Sign Mismatch?

$$-\int d^2k_{\perp} \frac{\left|k_{\perp}^2\right|}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{SIDIS} = T_{q,F}(x,x)$$

Kang, Qiu, Vogelsang, Yuan PRD 83 (2011), 094011

pp→π X (Twist-3) SIDIS (TMD)

Sign mismatch! Sivers contribution is small in $pp \rightarrow \pi X$? => Collins dominate?

Collins dominate?

A_N from twist-3 fragmentation functions (Kanzawa, Koike, Metz, Pitoniak, arXiv:1404.1033)

Describes data well !

 $A_N: pp \rightarrow \pi X$

Anselmino et al., Eur. Phys. J. A39, 89 (2009)

PYTHIA: π + mainly produced from u π - equally produced from d and u

$$> |A_N(\pi +)| >> |A_N(\pi -)|$$

Sivers contribution is small in $pp \rightarrow \pi X$?

=

f+sPHENIX

Forward upgrade to barrel sPHENIX detector

 $\underline{\eta=1.1-4:\pi0,\gamma,e,\mu,h\pm,jets}$

EMCal + MPC (from PHENIX): HCal (PbSc): Magnetic piston field shaper Tracking (GEM): MuID (from PHENIX) Roman Pots $\begin{array}{c} \sigma_{E}/E \sim 8\%/\sqrt{E} \\ \sigma_{E}/E \sim 100\%/\sqrt{E} \end{array}$

 $\sigma_p/p < 0.3\% * p$

The majority of the cost – as a down payment to potential EIC detector ("ePHENIX")