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1 Introduction

We consider an EFT where the SM is extended by a set of higher-dimensional operators, and

assume that it reproduces the low-energy limit of a more fundamental UV description. The

theory has the same field content and the same linearly-realized SU(3)× SU(2)×U(1) local

symmetry as the SM. The difference is the presence of operators with canonical dimension D

larger than 4. These are organized in a systematic expansion in D, where each consecutive

term is suppressed by a larger power of a high mass scale Λ. Assuming baryon and lepton

number conservation, the Lagrangian takes the form

Leff = LSM +
∑
i

c
(6)
i

Λ2
O(6)
i +

∑
j

c
(8)
j

Λ4
O(8)
j + · · · , (1.1)

where each O(D)
i is a gauge-invariant operator of dimension D and c

(D)
i is the corresponding

coefficient. Each coefficient scales like a given power of the couplings of the UV theory; in

particular, for an operator made of ni fields one has

c
(D)
i ∼ (coupling)ni−2 . (1.2)

This follows from simple dimensional analysis after restoring ~ 6= 1 in the Lagrangian since

couplings, as well as fields, carry ~ dimensions [1–3] (see also Refs. [4, 5]). An additional

suppressing factor (coupling/4π)2L may arise with respect to the naive scaling if the operator

is first generated at L loops in a perturbative expansion.

This EFT is intended to parametrize observable effects of a large class of BSM theories

where new particles, with mass of order Λ, are much heavier than the SM ones and much

heavier than the energy scale at which the experiment is performed. The main motivation to

use this framework is that the constraints on the EFT parameters can be later re-interpreted
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as constraints on masses and couplings of new particles in many BSM theories. In other

words, translation of experimental data into a theoretical framework has to be done only

once in the EFT context, rather than for each BSM model separately.

The EFT framework is non-renormalizable and therefore it has a limited energy range of

validity. In this note we address the question of the validity range at the quantitative level.

We will discuss the following points:

• What is the energy range in which the EFT makes sense as a quantum field theory? Un-

der what conditions does it give a faithful description of the low-energy phenomenology

of some BSM theory?

• When is it justified to truncate the EFT expansion at the level of dimension-6 operators?

To what extent can experimental limits on dimension-6 operators be affected by the

presence of dimension-8 operators? Are there physically important examples where

dimension-8 operators cannot be neglected?

• When is it justified to calculate the EFT predictions at tree level? In what circumstances

may including 1-loop corrections modify the predictions in an important way?

Finally, we will formulate some practical conclusions concerning experimental EFT analyses

and presentation of results, such that they can applied to constrain a wider range of UV

theories beyond the SM.

It is important to realize that addressing the above questions cannot be done in a com-

pletely model-independent way, but requires a number of (broad) assumptions about the new

physics. An illustrative example is that of the Fermi theory, which is an EFT for the SM de-

grees of freedom below the weak scale after the W and Z bosons have been integrated out. In

this language, the weak interactions of the SM fermions are described by 4-fermion operators

of D=6, such as:

Leff ⊃
c(6)

Λ2
(ēγρPLνe)(ν̄µγρPLµ) + h.c. ,

c(6)

Λ2
= −g

2/2

m2
W

= − 2

v2
. (1.3)

This operator captures several aspects of the low-energy phenomenology of the SM, including

for example the muon decay, µ→ eνν, and the inelastic scattering of neutrinos on electrons

νe → νµ. It can be used to adequately describe these processes as long as the energy scale

involved (i.e. the momentum transfer between the electron current and the muon current) is

well below Λ = mW . However, the information concerning Λ is not available to a low-energy

observer. Instead, only the scale Λ/
√
|c(6)| ∼ v = 2mW/g is measurable at low energies, which

is not sufficient to determine Λ without knowledge of the coupling g. For example, from a

bottom-up viewpoint, a precise measurement of the muon lifetime gives indications on the

energy at which some new particle (i.e. the W boson) is expected to be produced in a higher-

energy process, like the scattering νe→ νµ, only after making an assumption on the strength

of its coupling to electrons and muons. Weaker couplings imply lower scales: for example,

the Fermi theory could have ceased to be valid right above the muon mass scale had the SM
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been very weakly coupled, g ≈ 10−3. On the other hand, a precise measurement of the muon

lifetime sets an upper bound on the mass of the W boson, mW . 1.5 TeV, corresponding to

the limit in which the UV completion is maximally strongly coupled, g ∼ 4π. This example

illustrates the necessity of making assumptions (in this case on the value of the coupling g)

when assessing the validity range of the EFT, that is, when estimating the mass scale at

which new particles appear.

The lack of observation of any new physics prompts us to adopt the EFT approach to

set limits on possible deviations from the SM. In such bottom-up approach, the available

experimental data are used to determine the confidence intervals on the coefficients of D=6

operators. The validity of this procedure depends on some aspects of the experimental anal-

yses and on the assumptions made on the BSM theory replacing the EFT at the scale Λ. In

the rest of this note we discuss these conditions in more detail.

2 General discussion

On a practical level, once the EFT parametrization is adopted, data from any experiment can

be used, without further assumptions, to set limits on, or determine, the value of the effective

coefficients. As we will shortly discuss, working at the level of D = 6 operators is sufficient

in the vast majority of cases. In a situation where no new physics effects are observed, the

experimental results can be thus expressed into the limits1

c
(6)
i

Λ2
< δexp

i (Mcut) . (2.1)

The functions δexp
i depend on the values, here collectively denoted by Mcut, of the kinematic

variables (such as transverse momenta or invariant masses) which set the typical energy scale

characterizing the process and which may be subject to cuts in a collider analysis. For

example, when EFT is applied to describe inclusive on-shell Higgs decays one has Mcut ≈
mh. Another example is e+e− collisions at a fixed center-of-mass energy

√
s, in which case

Mcut ≈
√
s. However, for certain physically important processes these considerations are

less trivial, especially in the context of experiments in hadron colliders. For example, for

production of two on-shell particles in proton-proton collisions, the relevant scale for Mcut is

the center-of-mass energy of the partonic collision
√
ŝ, or equivalently the invariant mass of

the final pair, which may or may not be reconstructed in practice. As the energy scale of the

process determines the range of validity of the EFT description, it is extremely important

that the experimental limits δexp
i are reported by the collaborations for various values of Mcut.

For processes occurring over a wide energy range, unlike for inclusive Higgs decays or e+e−

collisions, knowledge of δexp
i for just one kinematic point severely limits interpretation of the

EFT results as constraints on specific models beyond the SM. The maximum value of Mcut is

1In case a deviation from the SM is observed then Eq. (2.1) should be turned into a confidence interval,

δd,exp
i (Mcut) <

c
(6)
i

Λ2 < δu,exp
i (Mcut).
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set by the scale Munitarity where the EFT ceases to be a unitary theory, but the larger range

v .Mcut .Munitarity should be considered.

While extracting the bounds on the effective coefficients can be done in a completely

model-independent way, determining whether they constrain a non-vanishing portion of the

theoretical parameter space requires some further assumption on the (unknown) UV theory.

What one needs is a power counting, i.e. a set of rules to estimate the coefficients of the

effective operators in terms of the couplings and mass scales of the UV dynamics. This

includes, in particular, specifying the selection rules that operate in the low-energy theory.

The simplest situation is when the microscopic dynamics is characterized by a single mass

scale Λ and a single new coupling g∗ [3]. This particular power counting prescription smoothly

interpolates between the naive dimensional analysis (g∗ ∼ 4π) [2, 6], the simple Λ2 counting

with g∗ = 1 as discussed e.g. in Ref. [7,8], and the very weak coupling limit g∗ � 1. While this

is not a unique prescription, it covers a large selection of popular scenarios beyond the SM. In

this class falls the Fermi theory described previously, as well as weakly coupled models where a

narrow resonance with universal couplings to matter is integrated out. Moreover, despite the

large number of resonances, also some theories with a strongly-interacting BSM sector belong

to this category (e.g. the holographic composite Higgs models [9] or, more generally, theories

where the strong sector has a large-N description). The scaling of the effective coefficients

with g∗ is then determined by Eq. (1.2) and by selection rules. For example, if the coupling

strength of the Higgs boson to the new dynamics is g∗, then the coefficient of an operator

with four Higgs fields and two derivatives will scale like g2
∗. On the other hand, approximate

chiral symmetry implies that the coefficient of an operator with a fermion scalar bilinear and

three Higgs fields scales as yfg
2
∗, where yf is the corresponding Yukawa coupling. Clearly,

the naive estimates of the effective coefficients obtained with such power counting agree with

what one would find by integrating out heavy particles in a specific BSM model satisfying

the initial assumptions.

For a given power counting, it is relatively simple to derive limits on the theoretical

parameter space that are automatically consistent with the EFT expansion, provided the

relevant energy of the process is known. Consider again the case of a single scale Λ and

a single coupling strength g∗. Then the bounds (2.1) can be recast as limits on these two

parameters by using the power counting to estimate c
(6)
i = c

(6)
i (g∗) and setting the relevant

energy scale to Mcut < Λ; one finds

c
(6)
i (g∗)

Λ2
< δexp

i (Mcut) . (2.2)

These inequalities determine the region of the plane (Mcut, g∗) which is excluded consistently

with the EFT expansion. This gives a useful indication of how effective are the experimen-

tal data in constraining the class of theories under consideration (i.e. those respecting the

assumed power counting), though Eq. (2.2) should obviously not be regarded as a strict

exclusion limit on a specific BSM model. If the relevant energy of the process cannot be

determined, because for example the kinematics cannot be closed, setting consistent bounds
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requires a more careful procedure, such as the ones proposed in Refs. [10] and [11] (see also

Refs. [12, 13] for related discussions).

In the region of validity of the EFT expansion, the effects of D = 8 operators are typically

negligible. If two operators with D = 6 and 8 respectively contribute at the tree-level to the

same observable, then they typically have the same field content after electroweak symmetry

breaking.2 In this case the D = 8 operator must have two more powers of the Higgs field

or two more derivatives compared to the D = 6 one. Its contribution is thus suppressed by

a relative factor equal to, respectively, (g∗v/Λ)2 and (E/Λ)2, where E is the relevant energy

of the process. The EFT series is thus built in terms of these two expansion parameters,

which must be both small for the description to be valid. Even when this holds true, the

contribution of D = 8 operators might be exceptionally enhanced compared to those of D = 6

ones due to some structural or even accidental reason. We will discuss this possibility in detail

in Section 3.

It is important to notice that the BSM contribution from D = 6 operators to a given

process might be larger than the SM one without invalidating the EFT expansion. One

important example where this occurs is when the D=6 operators contributes to an observable

which vanishes or is very strongly suppressed in the SM, for example to lepton-flavor violating

Higgs decays, electric dipole moments, etc.). Nevertheless, even if the SM contribution is not

suppressed by a small parameter, D=6 contributions may dominate over the SM ones while

D=8 operators remain subleading compared to the D=6 ones. This occurs, in particular,

if the underlying UV dynamics is strongly coupled, i.e. for g∗ � gSM . Consider for example

a 2 → 2 scattering process. The SM contribution to the amplitude will be at most of order

g2
SM at high energy, where gSM is a SM coupling. The correction from D = 6 operators

involving derivatives will in general grow quadratically with the energy and can be as large as

g2
∗(E

2/Λ2). When this occurs, for Λ > E > Λ (gSM/g∗) the BSM contribution dominates over

the SM one, while the EFT expansion is still valid (hence D = 8 operators are subdominant).

In this case the largest contribution to the cross section comes from the square of the D = 6

contribution, rather than from its interference with the SM. The best sensitivity to c
(6)
i /Λ2

is thus expected to come from the highest value of the relevant energy scale accessible in the

experiment. Notice that although the contributions to the cross section proportional to (c
(6)
i )2

and c
(8)
i are both of order 1/Λ4, the latter (generated by the interference of D = 8 operators

with the SM) has a relative suppression of order (gSM/g∗)
2 independently of the energy, and

can thus be safely neglected. A well known process where the above situation occurs, i.e.

where the energy-growing contribution from D = 6 operators can dominate over the SM

one, is the scattering of longitudinally-polarized vector bosons. Similarly, depending on the

UV dynamics, the same can happen in other 2 → 2 scatterings, such as Higgs associated

production with a W or Z boson (VH) or dijet searches at the LHC. An illustrative example

is discussed in Appendix A.

It is worth discussing at this point one technical issue regarding the contribution of D=6

2This is not true if different particles may contribute in an intermediate state, as is the case for example

in h→ 4` decays, however these exceptions are not relevant for the following discussion.
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and D=8 coefficients to the likelihood used to derive the results. We have seen that when the

UV theory is strongly coupled and the deviations from the SM are large, the D = 6 squared

term dominates the cross section, while the D = 8 one is suppressed by a ratio of weak to

strong couplings. The same holds true in computing the likelihood of course. If instead the

deviations from the SM predictions are small, 3 the D = 6 quadratic terms can be neglected in

the cross section but should be retained in the likelihood. This can be easily seen as follows.

A cross section σ (or any other experimentally measured observable) can be schematically

written as

σ ' σSM

(
1 + 2

δ(6)

ASM

c(6) + 2
δ(8)

ASM

c(8) +

(
δ(6)

ASM

c(6)

)2

+ · · ·

)
(2.3)

where ASM and σSM denote, respectively, the SM amplitude and SM cross section, while

δ(6) ∼ O(E2/Λ2), and δ(8) ∼ O(E4/Λ4) parametrize the effect of higher-dimensional operators.

We have shown terms up to O(1/Λ4), denoting those further suppressed with the dots. The

χ2 function (again, schematically) has the form:

χ2 ∝ (σ − σexp)2 = (σSM − σexp)2 + 4σSM (σSM − σexp)

(
δ(6)

ASM

c(6)

)
+ 4σ2

SM

(
δ(6)c(6)

ASM

)2

+4σSM (σSM − σexp)

(
δ(8)

ASM

c(8)

)
+ 2 [σSM (σSM − σexp)]

(
δ(6)c(6)

ASM

)2

+ · · · ,

(2.4)

where σexp is the experimentally measured value of the cross section, and the dots stand for

O(1/Λ6) terms. The dimension-8 term in the second line enters formally at the same order

1/Λ4 as the one proportional to (c(6))2 in the first line, but it can be always neglected within

the EFT validity regime where c(6) � c(8)E2/Λ2. Indeed, in the strong coupling regime,

g∗ � 1, (c(6))2 is dominant, while for a weak coupling, g∗ . 1, the multiplicative factor

(σSM − σexp) is small and effectively scales like 1/Λ2. Similarly, the (c(6))2 term in the second

line is multiplied by (σSM − σexp) and can be neglected in this regime. On the contrary, the

(c(6))2 term in the first line is not suppressed and in fact it should be retained to ensure that

the χ2 has a local minimum. It is also easy to show that including the term proportional to

c(8) affects the best fit value of c(6) only by an amount of O(E2/Λ2). 4 We thus conclude that

while dimension-8 operators can be neglected, square terms from D = 6 should be retained.

Our discussion so far was limited to tree-level effects of D = 6 operators. The EFT can

be consistently extended to an arbitrary loop order by computing observables perturbatively

in the SM couplings. The corresponding series is controlled by the expansion parameter

3This can occur either because the UV theory is weakly coupled or because, despite strong coupling, the

new physics scale is much higher than the energy probed by the experiment.
4Indeed, minimizing Eq. (2.4) with respect to c(6), one finds, schematically,

c(6) ' σexp − σSM

σSM

ASM

δ(6)
− c(8) δ

(8)

δ(6)
. (2.5)
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g2
SM/16π2, which adds to the two EFT parameters (g2

∗v
2/Λ2) and E2/Λ2 already discussed.

One-loop effects of D=6 operators are formally suppressed by O(g2
SM/16π2), and are thus

subleading compared to the tree-level contributions (some exceptions are discussed in the

next subsection). Note that including loop corrections in the EFT context is less crucial than

for a pure SM calculation. This is because the experimental precision is typically better than

the magnitude of the SM loop corrections, therefore including loop corrections is essential to

obtain a correct description of physical processes. In the case of the EFT, we are yet to observe

any leading-order effect of higher-dimensional operators. There do exist situations, however,

where including NLO corrections may be important for obtaining an adequate description of

physical processes in the EFT. For example, it is well known that NLO QCD corrections to

the SM predictions of certain processes at the LHC can be of order 1, and then large k-factors

are expected to apply to the EFT corrections as well. Another example is the one-loop Higgs

corrections to well-measured electroweak precision observables [14, 15]. Since deviations of

the Higgs couplings due to D=6 operators can be relatively large (up to O(10%)) without

conflicting with current experimental data, the 1-loop effects, in spite of the suppression factor,

can be numerically important for observables measured with a per-mille precision. Next, NLO

effects are expected to be more important for observables that arise at one loop in the SM,

such as h→ γγ. Finally, for LHC observables such as Higgs pT that scan a large energy range

the running of Wilson coefficients may lead to sensitivity to several different combinations of

Wilson coefficients, which may reduce parameter degeneracies [16]. The calculation of NLO

effects in the context of EFT is currently an active field of study, see e.g. [8,17–26]. It is very

important to identify all cases where 1-loop effects of D=6 operators can be relevant.

To summarize, we have argued that, generically, the use of a tree-level EFT truncated at

the level of D=6 operators provides an adequate description of a large class of BSM models.

We recommend using this framework as one of the approaches to interpret the Higgs data

at the LHC. One important conclusion from this discussion is that the cut-off scale Λ is

an integral part of EFT’s formulation, but its value cannot be directly determined from low-

energy experiments. Therefore, results should be presented by the experimental collaborations

as a function of the kinematic variables, here collectively denoted with Mcut, which set the

relevant energy of the process. For the purpose of estimating the validity of the EFT approach,

it is useful to compare the EFT constraints obtained with and without including the quadratic

contributions of D=6 operators in the theoretical calculations of observables. Significant

differences between these two procedures will indicate that the results apply only in the case

of strongly-coupled UV theories, where quadratic terms can give the dominant effect at large

energies. Finally, we argued that quadratic terms from D=6 operators should always be

retained in the calculation of the likelihood function.
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3 Limitations of D=6 EFT

The SM Lagrangian extended by D=6 operators is an effective theory that captures the low-

energy regime of a large class of models with new heavy particles. However, not every such

model can be adequately approximated by truncating the EFT expansion at the D=6 level.

In this section we discuss these special cases where a more complicated approach is in order,

or where the EFT approach fails completely.

As argued in Section 2, generically we expect that the effect of D=8 operators is subleading

compared to that of D=6 ones at energies E � Λ, with Λ � mW . On the other hand, if

E ∼ Λ, the entire tower of operators (D=8, D=10, etc.) contributes, and the EFT expansion

is not useful. Nevertheless, there are physical situations when D=8 operators can be relevant,

despite the whole EFT expansion being convergent. We identify the following cases:

• Symmetries

A suppression of the D=6 operators can arise as the result of some selection rules. One

can envisage situations in which symmetries of the UV theory forbid or suppress cer-

tain D=6 operators but not D=8 ones. An example occurs in models with a pseudo

Nambu–Goldstone boson Higgs, where dim-6 and dim-8 operators contributing to Higgs

pair production via gluon fusion are generated by different mechanisms [30]. In par-

ticular, the dim-6 operator |H|2Ga
µνG

a,µν is suppressed because it violates the shift

symmetry H → H + α (which is part of the Goldstone symmetry). On the other

hand, two D=8 operators with extra derivatives can be constructed (one of them be-

ing DλH
†DλHGa

µνG
a,µν) which respect the shift-symmetry and whose coefficients are

therefore not suppressed. As a consequence, in the energy range Λ
√
c(6)/c(8) < E < Λ

the contribution from D=8 operators dominates over that from D=6 ones but the EFT

expansion is still valid. A similar situation can occur for composite gauge bosons if

their dipole interactions involving, e.g., the abelianized SU(2)L field strength Ŵ a
µν =

∂µA
a
ν − ∂νA

a
µ are characterized by a strong coupling, while the monopole interaction

associated with the covariant derivative is associated with the SM weak coupling g [31].

This is technically natural, because the symmetry group which accompanies the field

strength is SU(2)globalL × U(1)3
local and differs from the one associated with the covari-

ant derivative, SU(2)localL . Then, since Ŵ a
µν has dimension two, this structure implies,

for instance, that the first strong correction to V V → V V scattering comes from a

dimension-8 operator of the form Ŵ 4
µν . Finally, the same can also happen for fermions

if they are identified with the goldstino of N spontaneously broken symmetries [32].

In this case the first interactions respecting supersymmetry arise at dimension 8 and

include self interaction of the form ψ̄2∂2ψ2 [39].

• Zero at leading order

For certain processes the contribution to the scattering amplitude from D=6 operators,

as well as perhaps the SM one, vanishes and the first non-trivial correction appears only

at the D=8 level. One well known example is the s-channel production of neutral gauge
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boson pairs. Such a process does not occur in the SM nor in the D=6 EFT because

triple gauge couplings of neutral gauge bosons arise only from D ≥ 8 operators. This

category includes also processes, such as all scatterings with transverse gauge bosons,

where, because of the helicity structure of the amplitudes, the dim-6 operators do not

interfere with the SM but the dim-8 ones do [33]. Another example is the triple Higgs

production by vector boson fusion whose energy-growing piece originates from D ≥ 8

operators only [34].

• Hierarchy of sensitivity

The present experimental constraints on physics beyond the SM display a hierarchical

structure. For example, electroweak precision observables were measured by LEP-1

with a per-mille accuracy, while for the LHC Higgs observables are currently measured

with an O(10%) accuracy at best. There exist UV theories where integrating out new

particles generates D=6 operators affecting Higgs physics, but only D=8 operators

affecting electroweak precision observables. One example is a theory with an SU(2)L
triplet of vector resonances coupled only to the Higgs current and not coupled to SM

fermions. In such a case, D=8 operators may be phenomenologically as important as

the D=6 ones, and both should be retained.

• Fine-tuning

One can imagine a fine-tuned situation where integrating out the heavy states in the

UV theory generates D=6 operators with coefficients that are accidentally much smaller

than their naive estimate and much smaller than those of the D=8 operators, c
(6)
i � c

(8)
i .

In such a case, the EFT with only D=6 operators will not correctly approximate the

dynamics of the UV theory, and someD=8 operators need to be included for an adequate

description. By nature, naive dimensional analysis and simple power counting are

just not suited when some parameters are accidentally small. Notice that, contrary to

the structural hierarchies described in the previous points, finely tuned or accidental

hierarchies are not stable under RGE evolution.

In summary, there do exist physical situations where the inclusion of dimension-8 opera-

tors on top of dimension-6 ones is well motivated and where, nonetheless, the EFT expansion

remains well defined. This does not mean, however, that introducing a complete set of D=8

operators into EFT analyses is preferable in practice. Indeed, such a framework would be

utterly complicated, and, moreover, the existing experimental data do not contain enough in-

formation to lift the degeneracy between D=6 and D=8 operators. Instead, it is recommended

to focus on the (already challenging) EFT with D=6 operators and address case-by-case the

special situations discussed above.
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4 Summary

In this short note we discussed the validity of an EFT where the SM is extended by D=6

operators. One important message is that the validity range cannot be determined using only

low-energy information. The reason is that while the EFT is valid up to energies of order of

the mass Λ of the new particles, low-energy observables depend on the combinations c(6)/Λ2,

where the effective coefficient c(6) is a function of the couplings of the UV theory. Furthermore,

relative contributions of theD=8 operators, c
(8)

c(6)
E2

exp

Λ2 , depend on the assumptions about the UV

theory. Only when a particular power counting is adopted, such as the g∗-counting discussed

in this note, can these relative contributions be estimated in the bottom-up approach. Note

that similar issues regarding validity of the expansion may arise also in the context of LHC

pseudo-observables [35] and are addressed in a similar fashion, although details of the power-

counting may be different in that case.

The practical conclusion is that the experimental constraints on the Wilson coefficients

of D=6 operators be reported as functions Mcut < Λ, where Mcut is the limiting value of

relevant kinematic variables such as transverse momenta or invariant masses. This is espe-

cially important for hadron collider experiments such as those performed at the LHC, where

collisions probe a wide range of energy scales. The maximum possible value of Mcut is set

by the scale Munitarity where the unitarity is lost within the EFT ceases, but the larger range

v . Mcut . Munitarity should be explored. Furthermore, the results should be presented both

with and without taking account the quadratic contributions in the Wilson coefficients to the

measured cross sections and decay widths. With this way of presentation, the experimental

results can be applied to constrain a larger class of theories beyond the SM in a larger range

of their parameter space. Other frameworks to present results, for example template cross-

sections discussed elsewhere, should also be pursued in parallel, as they may address some of

the issues discussed in note.

The energy at which the EFT breaks down typically coincides with the scale where the

contribution of D=8 and higher-dimensional operators is of the same order as that of D=6

operators. Conversely, when the EFT expansion is well convergent at the LHC energies, the

effects of D=8 operators can be normally neglected. Exceptions from this rule may arise as

a consequence of selection rules or for certain well-defined classes of processes. The inclusion

of D=8 operators in experimental analyses is justified only when dealing with these special

cases, and it is unnecessary and would represent an inefficient strategy in a generic situation.

If no large deviations from the SM are observed at the LHC Run-2, stronger constraints

on D=6 operators can be set. This will extend the EFT validity range to a larger class of

UV theories and, for a fixed Eexp, leave less room for contributions of D=8 operators. As a

consequence, the internal consistency and the validity range of the LO D=6 EFT will only

increase. 5 On the other hand, if a deviation from the SM is observed, efforts to include EFT

5The validity range can also be improved by means of a global analysis combining different measurements,

which often lifts flat directions in the parameter space and leads to stronger constraints on D=6 Wilson

coefficients, see e.g. [36].

10



loop corrections and to estimate the effects of D > 6 operators will be crucial to improve

characterization of the underlying UV theory.

A Appendix: Example

For our example, we consider the SM extended by a triplet of vector bosons V i
µ with mass Λ

transforming in the adjoint representation of the SM SU(2)L symmetry. Its coupling to the

SM fields is described by [37,38]

L ⊃ κH
ig

2
V i
µH
†σi
←→
DµH + κq

g

2
V i
µ q̄Lγµσ

iqL, (1.1)

where qL = (uL, dL) is a doublet of the 1st generation left-handed quarks. In this model V i
µ

couples to light quarks, the Higgs boson, and electroweak gauge bosons, and it contributes to

the qq̄ → V h process at the LHC. Below the scale Λ, the vector resonances can be integrated

out, giving rise to an EFT where the SM is extended by D=6 and higher-dimensional oper-

ators. Using the language of the Higgs basis, the EFT at the D=6 level is described by the

parameter δcz (correction to the SM Higgs couplings to WW and ZZ) and δgZqL (corrections

to the Z and W boson couplings to left-handed quarks), plus other parameters that do not

affect the qq̄ → V h process at tree level. The relevant EFT parameters are matched to those

in the UV model as

δcz = −3m2
W

2Λ2
κ2
H , [δgZuL ]11 = −[δgZdL ]11 = −m

2
W

2Λ2
κHκq . (1.2)

When these parameters are non-zero, certain EFT amplitudes grow as the square of the

center-of-mass energy s of the analysed process, M ∼ s/Λ2. Then, for a given value of

the parameters, the observable effects of the parameters become larger at higher energies.

However, above certain energy scale, the EFT may no longer approximate correctly the UV

theory defined by Eq. (1.1), and then experimental constraints on the EFT parameters do

not provide any information about the UV theory.

To illustrate this point, we compare the UV and EFT descriptions of qq̄ → V h for three

benchmark points:

• Strongly coupled: Λ = 6 TeV, κH = κq = 3;

• Moderately coupled: Λ = 2 TeV, κH = κq = 1;

• Weakly coupled: Λ = 1 TeV, κH = κq = 1/2;

Clearly, all three benchmarks lead to the same EFT parameters at the D=6 level. However,

because Λ varies, these cases imply different validity ranges in the EFT. This is illustrated

in Fig. 1. In all cases, the EFT is valid near the production threshold, but above a certain

energy Emax the EFT is no longer a good approximation of the UV theory. Clearly, the value

of Emax is different in each case. For the moderately coupled case, it coincides with the energy
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Figure 1: Left: The partonic ud̄ → W+h cross section as a function of the center-of-mass

energy of the parton collision. The black lines correspond to the SU(2)L triplet model with

mV = 1 TeV, κH = κq = 1/2 (dashed), mV = 2 TeV, κH = κq = 1 (dotted), and mV =

6 TeV, and κH = κq = 3 (solid). The corresponding EFT predictions are shown in the

linear approximation (red), and when quadratic terms in D=6 parameters are included in the

calculation of the cross section (purple). Right: The same, for the sign of κq flipped, so that

the production rate is enhanced rather than suppressed compared to the SM.

at which the linear and quadratic EFT approximations diverge. From the EFT perspective,

this happens because D=8 operators can no longer be neglected. However, for the strongly

coupled case, the validity range extends beyond that point. In this case, it is the quadratic

approximation that provides a better approximation of the UV theory. As discussed in the

main text, that is because, for strongly-coupled UV completions, the quadratic contribution

from D=6 operators dominate over that of D=8 operators in a larger energy range.
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