Comments on the EFT Validity

Francesco Riva (CERN) Based on LHCHXSWG2 internal note

written by Contino, Falkowski, Goertz, Grojean, and FR

includes multiple comments received by email and vidyo conference last Friday

Effective Field Theory

Expansion in physical scale of new physics Λ :

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)} + \cdots$$

$$\mathcal{O}_{i}^{(D)} = \text{field operators of dimension-P}$$
Wilson coefficients:
$$c_{i}^{(D)} \sim (\text{coupling})^{n_{i}-2} \qquad \text{number of fields in } \mathcal{O}_{i}^{(D)} \text{independently of P}$$
(can be easily seen by counting powers of $\hbar \neq 1$)

Cohen,Kaplan,Nelson'97; Luty'97 Giudice,Grojean,Pomarol,Rattazzi,'07

Effective Field Theory

Expansion in physical scale of new physics Λ :

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)} + \cdots$$

$$\mathcal{O}_{i}^{(D)} = \text{field operators of dimension-P}$$
Wilson coefficients:
$$c_{i}^{(D)} \sim (\text{coupling})^{n_{i}-2} \qquad \text{number of fields in } \mathcal{O}_{i}^{(D)} \text{independently of P}$$
(can be easily seen by counting powers of $\hbar \neq 1$)
$$C_{i}^{\text{ohen Kaplan Nelson'97, Luty'97} \text{field every for a product of the set of the set$$

Why EFT? Motivation for precision tests: SM test \rightarrow New Physics Search Organisation e.g. E/A expansion = hierarchy between departures from SM Self-Consistency Check Perturbativity $(E/\Lambda, \operatorname{coupling} \times v/\Lambda) \ll 1$

Effective Field Theory

Expansion in physical scale of new physics Λ :

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)} + \cdots$$

$$\mathcal{O}_{i}^{(D)} = \text{field operators of dimension-P}$$
Wilson coefficients:
$$c_{i}^{(D)} \sim (\text{coupling})^{n_{i}-2} \qquad \text{number of fields in } \mathcal{O}_{i}^{(D)}$$
independently of P
(can be easily seen by counting powers of $\hbar \neq 1$)
$$Cohen Kapian Nelson 97; Luty 97$$
(biddec Projean Pomarol, Rattazzl, 07)
Why EFT? Motivation for precision tests: SM test \rightarrow New Physics Search
Organisation e.g. E/A expansion = hierarchy between departures from SM
Self-Consistency Check Perturbativity $(E/\Lambda, \operatorname{coupling} \times v/\Lambda) \ll 1$

relevant experiment energy

Under what conditions does it faithfully describe some BSM at low-energy?
 When is it justified to truncate the EFT expansion at dimension-6? Exceptions?

Can validity of (truncated) EFT be established model-independently?

Problem: Expansion Validity: E/ Λ <<1 Experimentally: better access to leading $c_i E^2/\Lambda^2$ Truncation depends on $c^{(S)}_i E^4/\Lambda^4$

Can validity of (truncated) EFT be established model-independently?

Problem: Expansion Validity: E/ Λ <<1 Experimentally: better access to leading $c_i E^2/\Lambda^2$ Truncation depends on $c^{(S)}_i E^4/\Lambda^4$

No. EFT validity depends on (broad) BSM hypotheses on Λ or c_i

Can validity of (truncated) EFT be established model-independently?

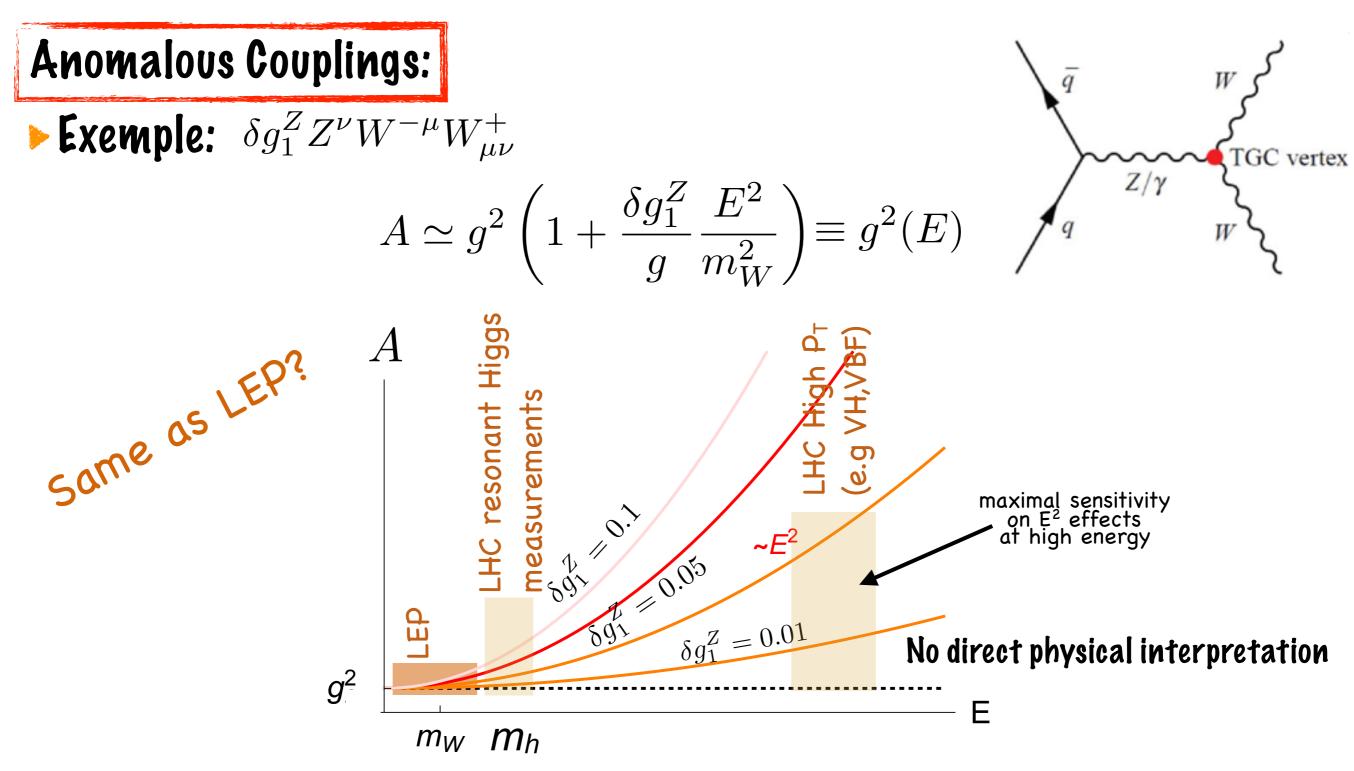
Problem: Expansion Validity: E/ Λ <<1 Experimentally: better access to leading $c_i E^2/\Lambda^2$ Truncation depends on $c^{(S)}_i E^4/\Lambda^4$

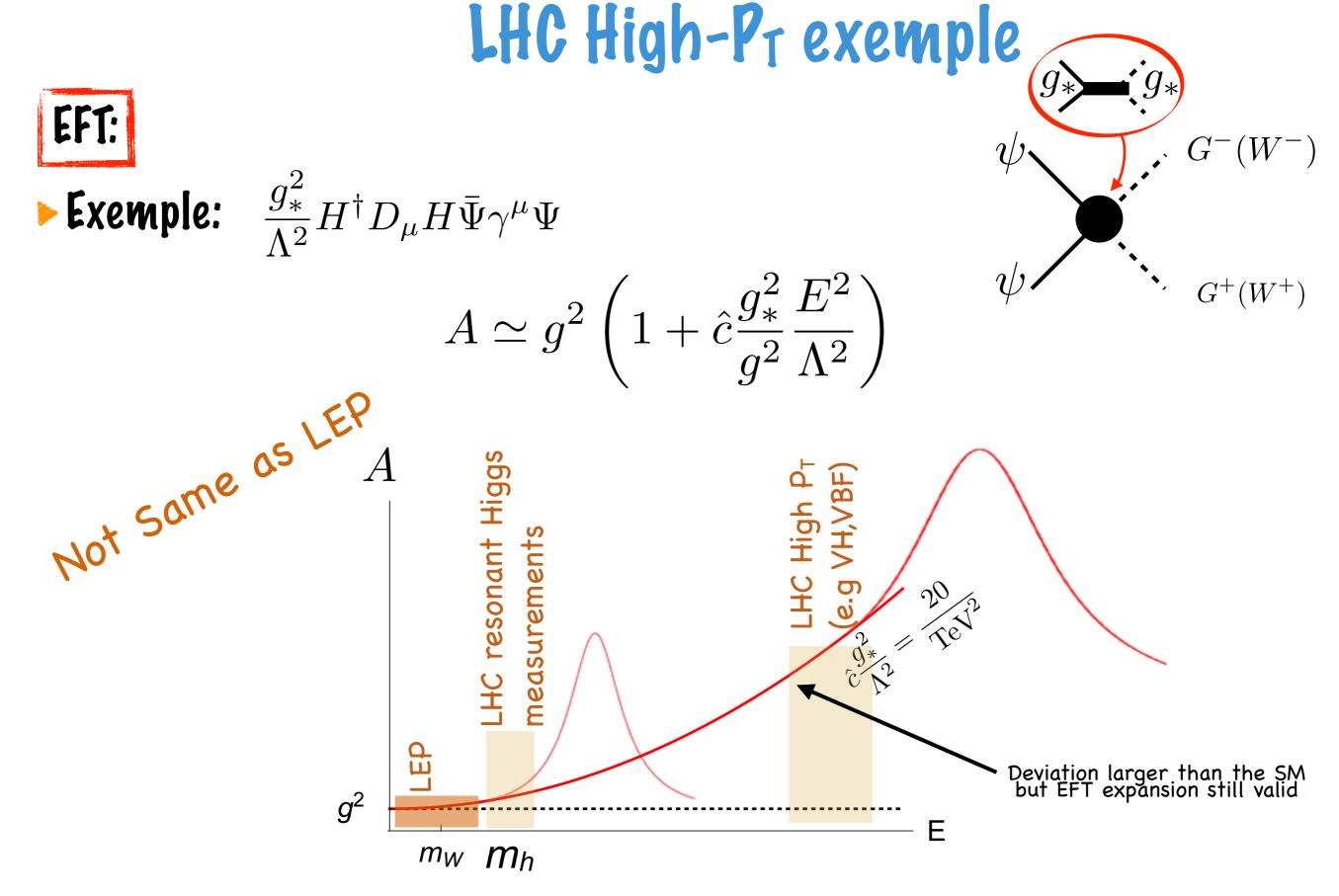
No. EFT validity depends on (broad) BSM hypotheses on Λ or c_i

Example: Fermi theory $\frac{2}{v^2} \bar{\psi}_{\nu_{\mu}} \gamma^{\mu} \psi_{\mu} \bar{\psi}_{\nu_{e}} \gamma^{\mu} \psi_{e}$ is it valid up to v=246 GeV? No, only to $E = m_W = \frac{g}{2} v \approx 81 \text{ GeV}$ $c_i^{6} = c_i^{8} = g^2$ * Weak couplings reduce the validity range of the EFT (as naively expected)

Strong couplings extend it (for g=41 Fermi theory ok up to E=3 TeV!)

LHC High-PT exemple





Although similar constraint as LEP on $cg*^2/\Lambda^2$, the LHC one consistent only for large g*>g

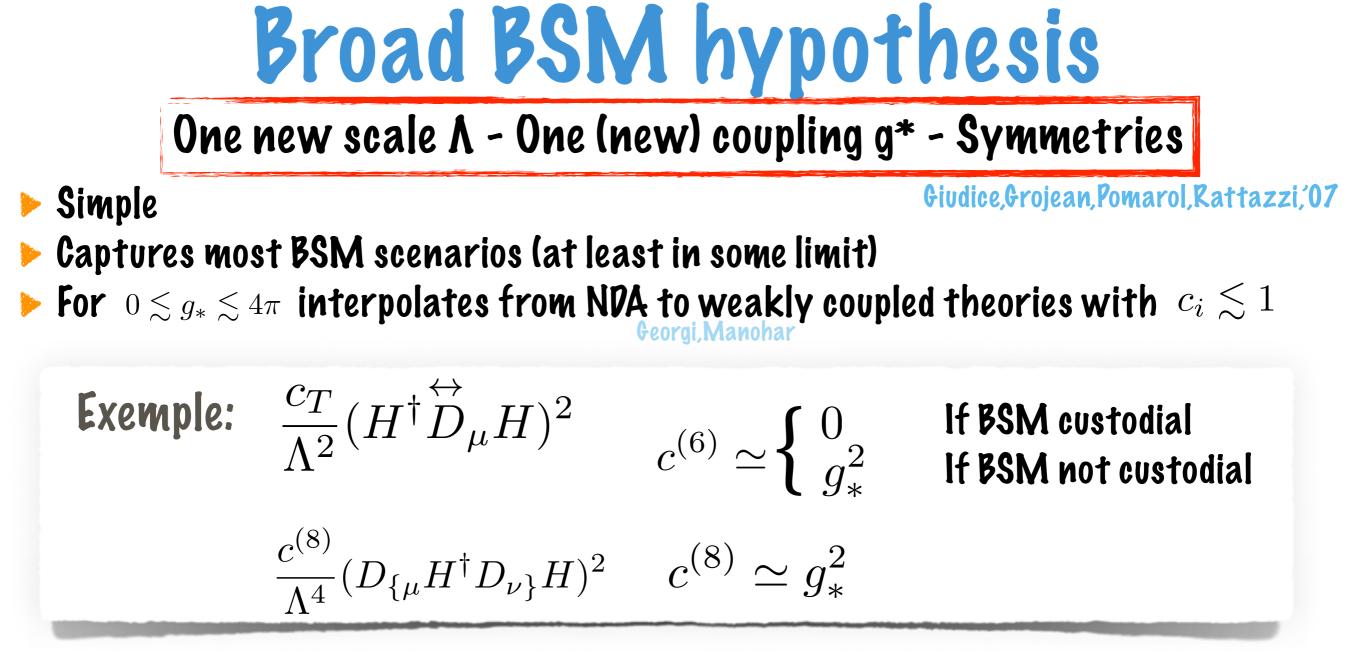
One new scale Λ - One (new) coupling g* - Symmetries

🕨 Simple

Giudice, Grojean, Pomarol, Rattazzi, '07

- Captures most BSM scenarios (at least in some limit)
- For $0 \lesssim g_* \lesssim 4\pi$ interpolates from NDA to weakly coupled theories with $c_i \lesssim 1$

Broad BSM hypothesis One new scale Λ - One (new) coupling g* - Symmetries Giudice, Grojean, Pomarol, Rattazzi, '07 🕨 Simple Captures most BSM scenarios (at least in some limit) \blacktriangleright For $0 \lesssim g_* \lesssim 4\pi$ interpolates from NDA to weakly coupled theories with $c_i \lesssim 1$ **Exemple:** $\frac{c_T}{\Lambda^2} (H^{\dagger} \overleftrightarrow{D}_{\mu} H)^2$ $c^{(6)} \simeq \begin{cases} 0 & \text{If BSM custodial} \\ q_*^2 & \text{If BSM not custodial} \end{cases}$ $\frac{c^{(8)}}{\Lambda^4} (D_{\{\mu} H^{\dagger} D_{\nu\}} H)^2 \quad c^{(8)} \simeq g_*^2$



Gives physical meaning to assumption $c^{(6)} \simeq c^{(8)}$ (not always the case: power counting keeps track of situations where this is a good assumption)

- Fixpansion and truncation at dim-6 controlled by $\kappa^2 \equiv \frac{E_{max}^2}{\Lambda^2} \ll 1$
- **>** Gives interesting range for $~0 \lesssim |c^{(6)}| \lesssim (4\pi)^2$

• Allows results to be consistently presented in $(c,\kappa\Lambda)$ or $(g_*,\kappa\Lambda)$ plane

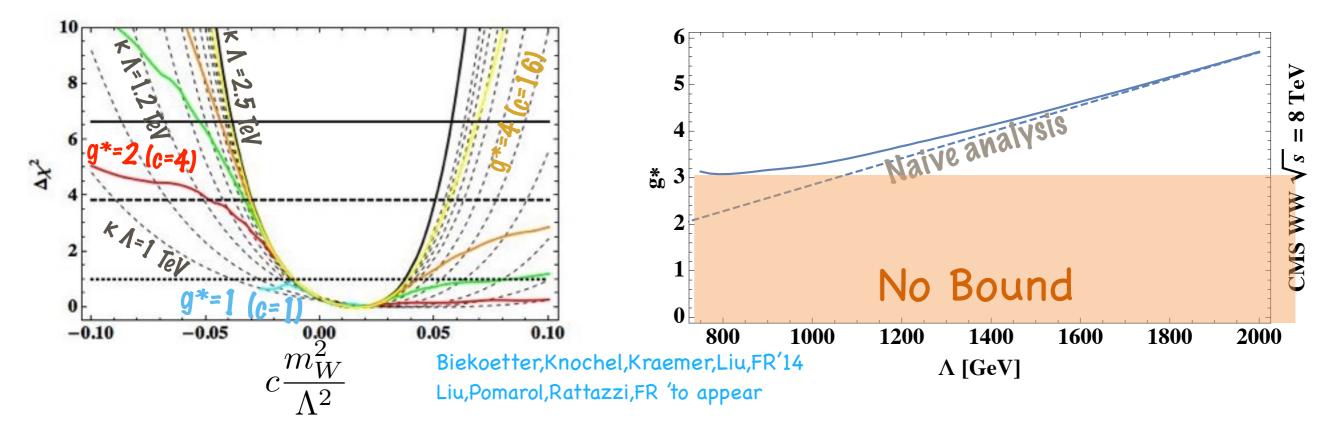
one source of th. error

Why is this relevant?

Results presentable in $(c,\kappa\Lambda)$ or $(g_*,\kappa\Lambda)$ plane

Procedure for analyses with large kinematic range:

- * EFT validity condition can be imposed by repeating analysis with extra cut on $\sqrt{s} < \kappa \Lambda$ for different values of $\kappa \Lambda$ _{k<1} measures how much error to tollerate
- ***** Bounds on c/Λ^2 can be shown for different $c=g^{*2}$ and in $(c,\kappa\Lambda)$ plane



 \rightarrow Contains all information in terms of transparent physical parameters, for transparent physical assumptions



Important Remarks - Signal!

Higher Precision (around measurement)

NLO + terms higher order E/Λ improve characterization of UV model

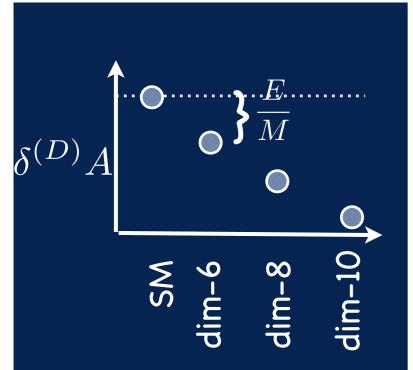
Important Remarks - no signal

$$A \simeq g^2 \left(1 + \hat{c} \frac{g_*^2}{g^2} \frac{E^2}{\Lambda^2} \right)$$

**exceptions later

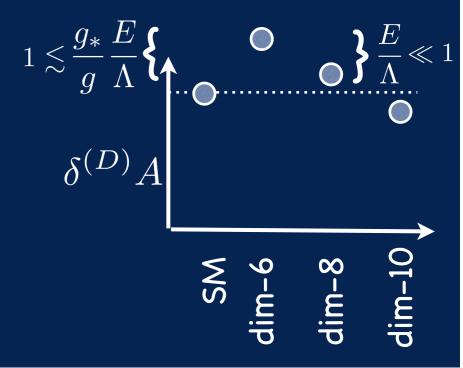


Small Deviations from SM



Interpretation possible for small or large coupling

Large Deviations from SM



Interpretation possible ONLY for strong coupling (EFT expansion still valid)

Exceptions

1 - Symmetries/Selection rules can suppress dim-6 but allow dim-8

 $D_{\lambda}H^{\dagger}D^{\lambda}HG^{a}_{\mu\nu}G^{a,\mu\nu}$

Exemple: If H is a PNGB: $\epsilon |H|^2 G^a_{\mu\nu} G^{a,\mu\nu}$ $H \rightarrow H + \alpha$ $g \xrightarrow{0} 0 \xrightarrow{0} 1$

Azatov, Contino, Panico, Son'15

(See extended discussion in notes)

Exceptions

1 - Symmetries/Selection rules can suppress dim-6 but allow dim-8

Exemple: If H is a PNGB: $\epsilon |H|^2 G^a_{\mu\nu} G^{a,\mu\nu}$ $D_{\lambda}H^{\dagger}D^{\lambda}HG^{a}_{\mu\nu}G^{a,\mu\nu}$ $H \rightarrow H + \alpha$

Azatov, Contino, Panico, Son'15

2 - Accidental zeros at Leading order

For some processes dim-6 just do not contribute, but dim-8 do (Exemple: s-channel neutral gauge boson pair-production)

(See extended discussion in notes)

Exceptions

1 - Symmetries/Selection rules

can suppress dim-6 but allow dim-8

Exemple: If H is a PNGB: $\epsilon |H|^2 G^a_{\mu\nu} G^{a,\mu\nu}$ $D_{\lambda}H^{\dagger}D^{\lambda}HG^{a}_{\mu\nu}G^{a,\mu\nu}$ $H \rightarrow H + \alpha$

Azatov, Contino, Panico, Son'15

2 - Accidental zeros at Leading order

For some processes dim-6 just do not contribute, but dim-8 do (Exemple: s-channel neutral gauge boson pair-production)

3 - Fine tuning

Unexpected, not capturable by power counting Unstable under RGE (opposite to symmetries)

(See extended discussion in notes)

Conclusions

- * EFT necessary to parametrize departures from SM
 - Better precision, stronger constraints, applicable to wider classes of theories, better the expansion!
- Question of EFT validity relies on generic BSM hypotheses to relate value of Wilson coefficients ci⁽⁶⁾ and ci⁽⁸⁾ to physical BSM quantities
- * Simple concrete framework (one scale 1, one coupling g*, symmetries):
 - \blacktriangleright Control over parameters in expansion \rightarrow truncation justified
 - Analyses with different cuts in experiment energy, allow to show constraints in physical (g*,κΛ) or (c,κΛ) plane
 - Regions with BSM>SM (ubiquitous in LHC searches) EFT-allowed in strong coupling limit
- * Dim-8 can generically be neglected unless symmetry structure suppresses dim-6: this interesting cases can be studied case-by-case