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Abstract

We review the status of calculations in the Standard Model Effective Field
Theory (SMEFT) beyond leading order (LO). Improving the SMEFT beyond LO
allows theoretical errors to be characterized and reduced when considering SMEFT
interpretations of the data, which is essential considering the improving experi-
mental precision at LHC. Next to leading order (NLO) results also allow a more
consistent analysis of measurements with different effective scales in the SMEFT.
Going beyond LO is clearly important in the event that deviations from the SM
are large enough that experimental indications of physics beyond the SM emerge.
We discuss a consistent and well defined approach to LO in the SMEFT, so that
the improvement to NLO is straightforward. We discuss the basic issues involved
in improving calculations to NLO in the SMEFT, and review the advances in this
direction that have been achieved to date.

1 Introduction

Almost all Quantum Field Theories can be regarded as examples of Effective Field The-
ory (EFT), the treatment of which was pioneered in [1–3]. The predictions of the leading
order (LO) semi-classical Lagrangian of any EFT is an approximation, of limited appli-
cability and precision. As exact non-perturbative solutions to QFTs are rarely known,
approximate solutions that expand observables perturbatively in a small coupling con-
stant, or non-perturbatively in a ratio of scales are generally developed.2 Developing
such expansions beyond leading order is straightforward, if the LO EFT is well defined,
and is in general extremely useful. Going beyond LO can also be required for consis-
tent interpretations of the data, if the theoretical error of a LO description exceeds the
experimental error. It is the ability of EFT’s, as consistent field theories, to be system-
atically improved that (largely) explains why they have become the standard approach
to interpreting data sets of constraints on the Standard Model (SM). A great strength of
a serious EFT approach is that vague statements on theoretical errors and inaccuracies

1Note that this document is currently a work in progress. Appearing in acknowledgements does
not imply full or partial endorsement. Further contributions, comments, and (scientific) criticisms are
welcome.

2Formally, a purely LO treatment of a process in an EFT is also intrinsically ambiguous, as the scale
dependence (µ) of the parameters contributing to a process is not defined.
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can be replaced by a more precise quantification of the limitations of a LO analysis, using
next to leading order (NLO) calculations. As a corollary, LO descriptions of deviations
from the SM that cannot be systematically improved, are not EFT analyses, and are
of limited use. In this section, we will discuss extending the EFT approach to physics
beyond the SM to NLO. We will also briefly outline how the standard straightforward
LO formulation is usually defined.

We will restrict our attention to the case of the Standard Model Effective Field Theory
(SMEFT), with a linear realization of ElectroWeak Symmetry Breaking (EWSB). This
means we assume that SU(2)L×U(1)Y is spontaneously broken to U(1)em by the vacuum
expectation value of the Higgs field (v) and that the observed 0+ scalar is embedded in
the Higgs doublet. It is assumed in this approach that to capture the low energy (IR)
physics of an underlying physics sector, it is sufficient to add SU(3) × SU(2)L × U(1)Y
invariant higher dimensional operators, built out of the SM fields, to the renormalizable
SM interactions.3 The Lagrangian is schematically

LSMEFT = LSM + L5 + L6 + L7 + L8 + · · · (1.1)

L5 has one operator suppressed by one power of the cut off scale (Λ) [4]. L6 has 76
parameters that preserve Baryon number [5,6] in the Nf = 1 limit4, and 2499 parameters

in the case Nf = 3 [7]. Four operators suppressed by 1/Λ2 violate Baryon number [4,8].
L7 contains thirty operators that all violate Lepton or Baryon number [9,10] (and also
B − L [10]) for Nf = 1 and L8 [10,11] counts 993 Nf = 1 operators.

We label the Wilson coefficients of the operators in L5 as C5
i , operators in L6 as C6

i etc.,
and have implicitly absorbed the appropriate power of 1/Λ into the definition of the Ci.
When 1/Λ is made explicit, and pulled out of the Wilson coefficient we will use the tilde
superscript as a notation to indicate this, for example C̃i/Λ

2.

The construction of the SMEFT, to all orders, is not based on assumptions on the
size of the Wilson coefficients of higher dimensional operators. Constructing a NLO
SMEFT result means performing a complete NLO calculation in the SMEFT. This
means including all operators at a fixed order in the power counting of the theory5, or
performing a complete one loop calculation for a process, including all of the operators
in L6 that can contribute. We emphasise that the existence of NLO corrections is a
necessary consequence of the SMEFT being a well defined field theory. The numerical
size of the higher order terms depends upon the high energy (UV) scenario dictating the
C̃i and Λ, which is unknown. Restricting to a particular UV case is not an integral part
of a general SMEFT treatment, and it is a strength of a general SMEFT approach that
various cases can be chosen once the general calculation is performed.

Whether or not a NLO treatment of the data is required in the SMEFT is defined by
three considerations:

3It is not guaranteed that this choice is the correct one to capture the low energy phenomenology of
the underlying physics beyond the SM, see the Nonlinear EFT section for an alternative formulation.

4Here Nf counts the number of fermion generations.The distinct use of parameters and operators in
this paragraph is not accidental

5Generally in this document LO in the SMEFT refers to the effects of L6 while NLO in the Lagrangian
expansion refers to the effects of L8
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• What is the cut off scale, and what is the matching pattern of Wilson coefficients
into the SMEFT?

• What is the experimental precision that will be reached in a measurement?

• How will a bound projected into the SMEFT formalism at LO be used?

Considering the first question, it is interesting to consider the cases where 1 TeV .

Λ/

√
C̃i . 3 TeV.6 In these cases, deviations in processes measured at LHC could pos-

sibly be observable. It is also interesting to consider cut off scales of this form, as they
are (roughly) a loop factor above the known 0+ scalar mass. This is an interesting range
of mass scales considering the Hierarchy problem. Finally, model building exercises for
decades have indicated that such mass scales are not robustly ruled out, when consid-

ering ElectroWeak Precision data (EWPD). If the ratio Λ/

√
C̃i lies in this interesting

range, the effect of NLO corrections are not negligible [12–25].

There is no guarantee that Λ/

√
C̃i will be this low. There is no clear and absolute answer

to the second question above, and the answer to the third differs among analyses and
authors. As such, it must be addressed that very significant differences of opinion exist
regarding the need and use of NLO SMEFT analyses.7 An advantage of the SMEFT is
that, putting opinions aside, NLO corrections can just be systematically determined and
used, and theoretical errors can be reduced as required. This effort is well underway,
utilizing the NLO improvement of the straightforward LO approach briefly outlined in
this note.

Directly related to NLO improvements and analysis of the SMEFT we will address the
following points:

• To what extent can experimental limits on dimension 6 operators be affected by
the presence of dimension 8 operators?

• When is it justified to calculate the SMEFT predictions at tree level? In what
circumstances may including 1-loop corrections modify the predictions in an im-
portant way?

As well as addressing the above points, it is necessary to emphasize our main point
very directly. The experimental data must be reported in a manner that allows NLO
theoretical improvements and studies of the data in the future. It is absolutely critical
that the data is reported outside of the attempt at a purely LO formalism – known as
the “Higgs basis” , for this to occur. It is also important to emphasize that there is no
barrier to reporting the data in a LO SMEFT formalism that does not have the intrinsic
problems of “the Higgs basis”. We also discuss how this can be done.

6It is very important to stress that the point of the SMEFT is to also capture the possibility of
deviations from the SM actually being observed, not just to express experimental limits in a compact
notation in terms of Wilson coefficients.

7Our claim is that almost all of these disagreements are due to different implicit UV assumptions
and the data should be reported in a manner that maximizes its potential use in the future, including
its use in NLO analyses.
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2 Basics of the SMEFT

The SMEFT is a different theory than the SM. The SMEFT has local contact operators
suppressed by powers of 1/Λ that are not present in the SM. In the SMEFT a (lepton
number preserving) amplitude can be written as

A =
∞∑

n=N

gnSM A(4)
n +

∞∑

n=N6

n∑

l=1

∞∑

k=1

gnSM

[
1

(
√

2GF Λ2)k

]l
A(4+2 k)
n l k , (2.2)

where gSM is a SM coupling. GF is the Fermi coupling constant and Λ is again the
cut off scale. l is an index that indicates the number of SMEFT operator insertions
leading to the amplitude, and k indicates the inverse mass dimension of the Lagrangian
terms inserted. N is a label for each individual process, that indicates the order of the
coupling dependence for the leading non vanishing term in the SM (e.g. N = 1 for
H → VV etc. but N = 3 for H → γγ). N6 = N for tree initiated processes in the SM.
For processes that first occur at loop level in the SM, N6 = N − 2 when operators in
the SMEFT can mediate such decays directly thought a contact operator, for example,
through a L6 operator for H → γγ . For instance, the Hγγ (tree) vertex is generated by
OHB = H†H Bµν Bµν , by O8

HW = H†Bµν Bµρ Dρ Dν H etc. An example of the Feynman
diagrams leading to A is given in Fig. 1.

An example of how the SMEFT orders a double expansion in the non-perturbative power
counting parameter and the perturbative expansion is as follows. Consider a tree level
2 body decay of a single field. The double expansion of such a process is given as the
following Table 8:

g / dim −→
↓ gA(4)

1 + g g6A(6)
1,1,1 + g g8A(8)

1,1,2

g3A(4)
3 + g3 g6A(6)

3,1,1 + g3 g2
6 A(6)

3,2,1

. . . . . . . . . . . . . . . . . .

(2.3)

The combination of parameters g g6A(6)
1,1,1 defines the LO SMEFT expression for the

process, including the leading insertion of a higher dimensional operator, and is gen-
erally well known. g3 g6A(6)

3,1,1 defines the NLO SMEFT amplitude in the perturbative

expansion, and g g8A(8)
1,1,2 defines the NLO SMEFT amplitude in the non-perturbative

expansion. NLO terms in the double expansion present in the SMEFT are generally
unknown, in almost every process that is of interest phenomenologically. The discussion
here generalizes to cases other than two body decays of a single field directly.

Generalizing analyses in the SM at LO in the SMEFT is essentially a solved problem
in the literature. Although LO analyses are challenging, it is necessary for theorists to
further develop the SMEFT to NLO. NLO analyses are required to consistently map
lower energy measurements in the SMEFT to the cut off µ = Λ, or to consistently
combine data sets measured at different effective scales (µ1 6= µ2). Learning precisely

8Here we have introduced short hand notation where g4+2 k = 1/(
√

2GF Λ2)k, so that g6 denotes a

single O(6) insertion, g8 denotes a single O(8) insertion, g26 denotes two, distinct, O(6) insertions, etc..
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about the underlying theory using EFT methods, and combining data sets consistently
are (usually) core goals of an analysis of deviations in the SMEFT. For these goals to
be reached consistently requires NLO analyses in the SMEFT.

2.1 Power counting

Our use of EFT terminology is standard, but different than some WG documents. For
this reason we define here some of our key concepts such as power counting. Power
counting in EFT’s is subtle. The term “power counting” is also frequently misused.
Our use of this term is consistent with almost all of the historical literature [1–3,26–36].
Power counting in an EFT is a means by which the size of the local operators present
in LSMEFT are estimated. An operator in the SMEFT expansion is schematically of the
form

ψ̄a ψb ∂cHd (H†)e (A)f

Λn . (2.4)

Here detailed Lorentz structure, flavour and group indicies are being suppressed. ψ
stands for a generic fermion field, and A for a generic Gauge field. The mass dimensions
are such that 3(a+b)/2+c+d+e+f−n = 4. This defines a power counting scheme based
on the mass dimensions of the operators. As the SM fields obtain their mass by the vev
(v) the numerator can have an explicit power of v, and an expansion in (v/Λ)m is present
relative to SM interactions. Further, due to the presence of derivatives an expansion in
(E/Λ)m is present, relative to the SM interactions.9 At high orders in the expansion of
LSMEFT both of these ratios are generically present. The most general power counting
for the SMEFT is to suppress all operators simply by a generic power of Λ, dictated
by the mass dimension of the operator. This can always be done. By definition any
remaining coupling dependence, or alternate scales present in the EFT, can always be
absorbed into the Wilson coefficients in the matching procedure. Alternative power
counting schemes can be defined, and can be self consistent, however they are limited in
their applicability.

2.1.1 Pole observables vs tails of distributions

The two expansions discussed above are generically present in the SMEFT. (v/Λ)m

contributions are of interest for data dictated by the presence of a pole, for example, the
Higgs pole. (E/Λ)m contributions are particularly relevant for tails of distributions.

When analyzing data near poles, scaling arguments that apply to the suppression of local
contact (non resonant) four fermion operators in L6 also apply to NLO L8 corrections.
This is fortunate. The very large number of parameters present in L8 and L6 are
primarily present in four fermion operators. In the case of L6 2205 of the 2499 parameters

9Higher derivative terms are systematically traded in favour of other operators without derivatives
for a number of technical reasons in well defined bases (such as the Warsaw basis [6]). However, this
point should be kept in mind if such higher derivative terms are actually systematically retained in an
operator basis.
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present in L6 [7] are due to four fermion operators. NLO power corrections in L8,
higher order in (v/Λ)m, are suppressed compared to L6 by the power counting parameter

v2/Λ2,which varies from ∼ 6% to ∼ 0.6% for Λ/

√
C̃i = 1, 3 TeV respectively.

The suppression of NLO terms that scale as p2/Λ2 can be far less in the tails of dis-
tributions. The SMEFT expansion breaks down when p2/Λ2 ∼ 1, and Pseudo Observ-
able/form factor [19,37–40] methods are required to characterize the data in this case.
Tails of distributions have a very large number of SMEFT parameters contributing due
to non-resonant fermion pair (and higher multi-body) production processes.

It is also worth noting that unlike the case of pole data, NLO corrections to tails of dis-
tributions are complicated in their analysis, as the p2/Λ2 terms are in general not gauge
invariant alone, and need to always be combined with the interference with non-resonant
part of the SM, and SMEFT background processes. The requirement for joint analysis
including SMEFT corrections on the background that results, further complicates the
analysis of non-pole data. These are some of the reasons it is generally more promising
to study pole data, and related distributions, when pursuing deviations from the SM in
the SMEFT formalism.

2.2 Matching

If the underlying theory is known, then the Wilson coefficients would be precisely dic-
tated by matching onto the SMEFT. Functionally the matching procedure is performed
by calculating on-shell amplitudes in the UV theory, and in the SMEFT. The low energy
limit, E/Λ << 1 is taken. The two theories are separately renormalized. The IR poles
cancel between the theories, and the mismatch of the finite terms that remain defines
the Wilson coefficient in the matching condition. Performing matching calculations re-
quires that the UV theory be well defined and specified. The utility of this approach is
that the Wilson coefficients are universal, and can be calculated only once, ideally in a
particularly simple process.

If the value of the Wilson coefficients in broad UV scenarios could be inferred – if a
meta-matching could be done – this would be of significant scientific value. One ex-
ample of an influential classification scheme of some value is the Artz-Einhorn-Wudka
“potentially-tree-generated” (PTG) scenario [41,42]. In this scheme, it is argued that
classes of Wilson coefficients for operators in L6 can be argued to be tree level, or loop
level (suppressed by g2/16 π2), essentially using topological matching arguments. This
classification scheme corresponds only to a subset of weakly coupled and renormalizable
UV physics cases, as the topologies considered are (effectively) limited by Lorentz in-
variance and renormalizability. This scheme does not apply to scenarios where the UV
physics is strongly interacting. Generally such theories are in their confining phase, and
are examples of UV EFT’s where the PTG classification scheme does not apply. For
discussion clarifying this issue see Ref. [33].

One can study the Wilson coefficients using dimensional analysis, by restoring ~ 6= 1 in
the Lagrangian. See the recent discussions on this approach in Refs. [43,44]. Doing so
one cannot unambiguously identify that powers of hypothetical UV couplings present

6



in the C̃i. This is due to the fact that the SM couplings also carry ~ dimensions,
and the UV theory is not known. For this reason, and the fact that the matching
procedure introduces order one constant terms that can be as large as, or dominant over
the coupling dependence, it is generally not useful to treat the C̃i as anything other
than parameters to be fit to and constrained by experiment. This is the recommended
procedure when using the SMEFT at LO or NLO.

2.3 The SMEFT at LO

In this section we briefly review the standard approach to LO analyses in the literature.
The dimension six terms in the SMEFT, in the Warsaw basis [6], are given in Table 1. It
is important to emphasize a great strength of this basis is that it is actually completely
and precisely defined. Any well defined basis can be used, however, we are not aware of
competing bases in the literature that have been completely specified (including flavour
indicies) as the Warsaw basis has been defined.10

Expanding around the vev, the LO modification of the SM interactions comes about in
the SMEFT in a straightforward manner. The following section is largely taken in whole
from Ref. [7] and is not intended to be a complete treatment, but simply an illustrative
discussion of some Lagrangian terms in a standard LO implementation. As the theory
should be canonically normalized, we denote coupling parameters in the canonically
normalized SMEFT with bar superscripts. This use of the bar notation is distinct from
bar superscripts on fermion fields, that have the standard interpretation ψ̄ = ψ†γ0.

2.3.1 SM Lagrangian

We define the SM Lagrangian as

LSM = −1

4
GA
µνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (DµH
†)(DµH) +

∑

ψ=q,u,d,l,e

ψ i /D ψ

− λ
(
H†H − 1

2
v2

)2

−
[
H†jd Yd qj + H̃†juYu qj +H†je Ye lj + h.c.

]
, (2.5)

which implicitly defines our notational conventions.

10A different operator set is referred to as the Warsaw basis in the “Higgs Basis” note. This is at
variance with the initial paper, and essentially all published literature that references this basis. On
the other hand, a very positive aspect of the “Higgs Basis” note is that it actually, for the first time,
defined a version of the “SILH basis” including flavour indicies. This addresses the need for this to
occur, as was pointed out in Ref. [7]. The “Higgs Basis” construction itself is still undefined at LO, as
indicated by the presence of a Lother Lagrangian term.
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1 : X3

QG fABCGAνµ GBρν GCµρ

Q
G̃

fABCG̃Aνµ GBρν GCµρ

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH2 (H†H)2(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GAµνG
Aµν

Q
HG̃

H†H G̃AµνG
Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνB
µν

Q
HB̃

H†H B̃µνB
µν

QHWB H†τ IHW I
µνB

µν

Q
HW̃B

H†τ IH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσ
µνer)τ

IHW I
µν

QeB (l̄pσ
µνer)HBµν

QuG (q̄pσ
µνTAur)H̃ GAµν

QuW (q̄pσ
µνur)τ

IH̃ W I
µν

QuB (q̄pσ
µνur)H̃ Bµν

QdG (q̄pσ
µνTAdr)H GAµν

QdW (q̄pσ
µνdr)τ

IHW I
µν

QdB (q̄pσ
µνdr)H Bµν

7 : ψ2H2D

Q
(1)
Hl (H†i

←→
D µH)(l̄pγ

µlr)

Q
(3)
Hl (H†i

←→
D I

µH)(l̄pτ
Iγµlr)

QHe (H†i
←→
D µH)(ēpγ

µer)

Q
(1)
Hq (H†i

←→
D µH)(q̄pγ

µqr)

Q
(3)
Hq (H†i

←→
D I

µH)(q̄pτ
Iγµqr)

QHu (H†i
←→
D µH)(ūpγ

µur)

QHd (H†i
←→
D µH)(d̄pγ

µdr)

QHud + h.c. i(H̃†DµH)(ūpγ
µdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγ
µlt)

Q(1)
qq (q̄pγµqr)(q̄sγ

µqt)

Q(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt)

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt)

Q
(3)
lq (l̄pγµτ

I lr)(q̄sγ
µτ Iqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγ
µet)

Quu (ūpγµur)(ūsγ
µut)

Qdd (d̄pγµdr)(d̄sγ
µdt)

Qeu (ēpγµer)(ūsγ
µut)

Qed (ēpγµer)(d̄sγ
µdt)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt)

Q
(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγ
µet)

Qlu (l̄pγµlr)(ūsγ
µut)

Qld (l̄pγµlr)(d̄sγ
µdt)

Qqe (q̄pγµqr)(ēsγ
µet)

Q(1)
qu (q̄pγµqr)(ūsγ

µut)

Q(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

Q
(1)
qd (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q
(1)
quqd (q̄jpur)εjk(q̄

k
sdt)

Q
(8)
quqd (q̄jpT

Aur)εjk(q̄
k
sT

Adt)

Q
(1)
lequ (l̄jper)εjk(q̄

k
sut)

Q
(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table 1: The L6 operators built from Standard Model fields which conserve baryon number,
as given in Ref. [6]. The flavour labels of the form p, r, s, t on the Q operators are suppressed
on the left hand side of the tables.
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2.3.2 Higgs mass and self-couplings

The potential in the SMEFT is

V (H) = λ

(
H†H − 1

2
v2

)2

− CH
(
H†H

)3

, (2.6)

yielding the new minimum

〈H†H〉 =
v2

2

(
1 +

3CHv
2

4λ

)
≡ 1

2
v2
T . (2.7)

The scalar field can be written in unitary gauge as

H =
1√
2

(
0[

1 + c
H, kin

]
h+ vT

)
, (2.8)

where

c
H, kin ≡

(
CH2 −

1

4
CHD

)
v2, vT ≡

(
1 +

3CHv
2

8λ

)
v. (2.9)

The coefficient of h in Eq. (2.8) is no longer unity, in order for the Higgs boson kinetic
term to be properly normalized when the dimension-six operators are included. The
kinetic terms

L = (DµH
†)(DµH) + CH2

(
H†H

)
2

(
H†H

)
+ CHD

(
H†DµH

)∗ (
H†DµH

)
, (2.10)

and the potential in Eq. (2.6) yield

L =
1

2

(
∂µh
)2 −

c
H, kin

v2
T

[
h2(∂µh)2 + 2vh(∂µh)2

]
− λv2

T

(
1− 3CHv

2

2λ
+ 2c

H, kin

)
h2

− λvT
(

1− 5CHv
2

2λ
+ 3c

H, kin

)
h3 − 1

4
λ

(
1− 15CHv

2

2λ
+ 4c

H, kin

)
h4

+
3

4
CHvh

5 +
1

8
CHh

6, (2.11)

for the h self-interactions. The Higgs boson mass is

m2
H = 2λv2

T

(
1− 3CHv

2

2λ
+ 2c

H, kin

)
. (2.12)

2.3.3 Yukawa couplings

The Lagrangian terms in the unbroken theory

L = −
[
H†jdr [Yd]rs qjs + H̃†jur [Yu]rs qjs +H†jer [Ye]rs ljs + h.c.

]
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+
[
C∗dH
sr

(
H†H

)
H†jdrqjs + C∗uH

sr

(
H†H

)
H̃†jurqjs + C∗eH

sr

(
H†H

)
H†jerljs + h.c.

]
,

(2.13)

yield the fermion mass matrices

[
Mψ

]
rs

=
vT√

2

([
Yψ
]
rs
− 1

2
v2C∗ψH

sr

)
, ψ = u, d, e (2.14)

in the broken theory. The coupling matrices of the h boson to the fermions L =
−h uY q + . . . are

[
Yψ
]
rs

=
1√
2

[
Yψ
]
rs

[
1 + c

H, kin

]
− 3

2
√

2
v2C∗ψH

sr

=
1

vT

[
Mψ

]
rs

[
1 + c

H, kin

]
− v2

√
2
C∗ψH

sr
, ψ = u, d, e (2.15)

and are not simply proportional to the fermion mass matrices, as is the case in the SM.

2.3.4 Gauge boson masses and couplings

The relevant dimension-six Lagrangian terms are

L(6) = CHGH
†HGA

µνG
Aµν + CHWH

†HW I
µνW

Iµν + CHBH
†HBµνB

µν

+ CHWBH
†τ IHW I

µνB
µν + CGf

ABCGAν
µ GBρ

ν GCµ
ρ + CW ε

IJKW Iν
µ W Jρ

ν WKµ
ρ . (2.16)

The gauge fields need to be redefined, so that the kinetic terms are properly normalized
and diagonal. The first step is to redefine the gauge fields

GA
µ = GAµ

(
1 + CHGv

2
T

)
, W I

µ =WI
µ

(
1 + CHWv

2
T

)
, Bµ = Bµ

(
1 + CHBv

2
T

)
. (2.17)

The modified coupling constants are

g3 = g3

(
1 + CHG v

2
T

)
, g2 = g2

(
1 + CHW v2

T

)
, g1 = g1

(
1 + CHB v

2
T

)
, (2.18)

so that the products g3G
A
µ = g3GAµ , etc. are unchanged. The mass eigenstate basis is

given by [45]

[
W3

µ

Bµ

]
=

[
1 −1

2
v2
T CHWB

−1
2
v2
T CHWB 1

] [
cos θ sin θ

− sin θ cos θ

] [
Zµ
Aµ

]
, (2.19)

where the rotation angle is

tan θ =
g1

g2

+
v2
T

2
CHWB

[
1− g1

2

g2
2

]
. (2.20)

The W and Z masses are

M2
W =

g2
2v2
T

4
,

10



M2
Z =

v2
T

4
(g1

2 + g2
2) +

1

8
v4
TCHD(g1

2 + g2
2) +

1

2
v4
Tg1g2CHWB. (2.21)

The covariant derivative is

Dµ = ∂µ + i
g2√

2

[
W+

µ T
+ +W−µ T−

]
+ igZ

[
T3 − s2Q

]
Zµ + i eQAµ, (2.22)

where Q = T3 + Y , and the effective couplings are given by

e =
g1g2√
g2

2 + g1
2

[
1− g1g2

g2
2 + g1

2v
2
TCHWB

]
= g2 sin θ − 1

2
cos θ g2 v

2
T CHWB,

gZ =

√
g2

2 + g1
2 +

g1g2√
g2

2 + g1
2
v2
TCHWB =

e

sin θ cos θ

[
1 +

g1
2 + g2

2

2g1g2

v2
TCHWB

]
,

s2 = sin2 θ =
g1

2

g2
2 + g1

2 +
g1g2(g2

2 − g1
2)

(g1
2 + g2

2)2 v2
TCHWB. (2.23)

2.3.5 h→ WW and h→ ZZ

The relevant CP -even Lagrangian terms are

L = (DµH)†(DµH)− 1

4

(
W I
µνW

Iµν +BµνB
µν
)
,

+ CHW QHW + CHB QHB + CHWBQHWB + CHDQHD, (2.24)

which lead to the interactions

L =
1

4
g2

2vTh
[
(W1

µ)2 + (W2
µ)2
] [

1 + c
H, kin

]
+ CHWvTh

[
(W1

µν)
2 + (W2

µν)
2
]

(2.25)

for the W , and

L =
1

4
(g2

2 + g1
2)vTh(Zµ)2

[
1 + c

H, kin + v2
TCHD

]
+

1

2
g1g2v

3
Th(Zµ)2CHWB

+ vTh(Zµν)2

(
g2

2CHW + g1
2CHB + g1g2CHWB

g2
2 + g1

2

)
(2.26)

for the Z.

2.3.6 TGC parameters

The effect on the off-shell Triple gauge coupling parameter is given by

(−LTGC) /ḡVWW = iḡV1
(
W+

µνW−µ −W−µνW+µ
)
Vν + iκ̄V +W+

µW−ν Vµν , (2.27)
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+ i
λ̄V

M̄2
W

VµνW+ρ
ν W−ρµ

where V = {Z,A} and the shifts compared to the SM are [46]

δgA1 = −δκA = −v
2
T

2

cθ̄
sθ̄
CHWB, δgZ1 = −δκZ =

v2
T

2

sθ̄
cθ̄
CHWB, (2.28)

and

δλA = 6sθ̄CW
M2

W

gAWW

, δλZ = 6cθ̄CW
M2

W

gZWW

. (2.29)

Here gAWW = ē and gZWW = ḡ2 cθ̄.

2.4 Input parameters

The parameters vT , ḡ1, ḡ2, ē in the Lagrangian terms in the previous section (and related
quantities with bar superscripts) have to be assigned numerical values consistent with
some input parameter set (IPS). This is sometimes known as a “finite renormalization”,
as we discuss below. This is distinct from simply rotating to the mass eigenstate fields
in the canonically normalized SMEFT, which is discussed in the previous section.

The relationship to the IPS is in general different in the SMEFT and the SM, as the
theories are different. An operator basis can be related to any IPS, and is not limited
in its relationship to a particular IPS, or a LO implementation. Once an IPS is chosen,
relationships between observables are derivable in a well defined formalism at LO and
at NLO. Of course, if one were to make some relationships to a particular IPS the same
in the SM and the SMEFT, with algebraic manipulations11 that were only defined at
LO, this would make such a construction an example of a “phenomenological effective
Lagrangian” that was then limited to LO. If the algebraic manipulations were not the
same for all possible IPS sets that could be chosen, this would tie such a construction
to a specific IPS. Such a construction would not properly be referred to as equivalent
to a well defined operator basis, such as the Warsaw basis, and such a design feature is
exactly what would make such a proposal more difficult to improve to NLO.12 As our
purpose is to discuss the NLO improvement of the SMEFT, we first illustrate how a
straightforward LO implementation is related to the IPS αew, GF ,MZ .

GF is defined as the following parameter measured in µ decay, µ− → e−+ ν̄e+νµ. Define
the local effective interaction for muon decay as

LGF = −4GF√
2

(
ν̄µ γ

µPLµ
) (
ē γµPLνe

)
. (2.30)

11In particular a series of field redefinitions and EOM manipulations whose sole purpose is to obscure
the difference between the SM and the SMEFT at LO with respect to certain measurements.

12Such a construction in the SMEFT is in fact a gauge dependent parameterization of some terms in
the phenomenological effective Lagrangian, and tied to a specific IPS at a fixed order in perturbation
theory. The “Higgs Basis” is an example of such a construction.
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In the SMEFT,13

−4GF√
2

= − 2

v2
T

+

(
C ll
µeeµ

+ C ll
eµµe

)
− 2

(
C

(3)
Hl
ee

+ C
(3)
Hl
µµ

)
. (2.31)

The parameter αew is measured in the Thompson (p2 → 0) limit and discused in Section
2.5.1, and MZ is defined in the resonance pole scale of LEP measurements.

Relating to the IPS αew, GF ,MZ at LO in the U(3)5 case of the SMEFT, one finds
straightforwardly the following results [17,18]. For the development of this approach see
Refs. [45,47,48]. Here our notational conventions are that shifts due to the SMEFT are
denoted as δX = (X)SMEFT −XSM for a parameter X. Measured input observables, or
parameters directly defined by combinations of input observables are denoted with hat
superscripts. The shifts in the commonly appearing Lagrangian parameters MZ , MW ,
GF , s2

θ in the Warsaw basis at LO are given by

δM2
Z ≡

1

2
√

2

m̂2
Z

ĜF

CHD +
21/4√π

√
α̂ m̂Z

Ĝ
3/2
F

CHWB, (2.32)

δM2
W = −m̂2

W

(
δs2

θ̂

s2
θ̂

+
cθ̂

sθ̂
√

2ĜF

CHWB +
√

2δGF

)
, (2.33)

δGF =
1√

2 ĜF

(√
2C

(3)
Hl −

Cll√
2

)
, (2.34)

δs2
θ = − sθ̂ cθ̂

2
√

2 ĜF (1− 2s2
θ̂
)

[
sθ̂ cθ̂ (CHD + 4C

(3)
Hl − 2Cll) + 2CHWB

]
. (2.35)

These shifts lead to modifications of the W ,Z couplings with the normalization

LZ,eff = gZ,eff

(
JZ`µ Zµ + JZνµ Zµ + JZuµ Zµ + JZdµ Zµ

)
, (2.36)

where gZ,eff = − 2 21/4
√
ĜF m̂Z , (JZxµ )pr = x̄p γµ

[
(ḡxV )preff − (ḡxA)preff γ5

]
xr for x =

{u, d, `, ν}. In general, these currents are matricies in flavour space. When we restrict
our attention to the case of a minimal linear minimal flavor violation (MFV) [49,50] sce-
nario (JZxµ )pr ' (JZxµ )δpr. In the Warsaw basis, the effective axial and vector couplings
are modified from the SM values by a shift defined as

δ(gxV,A)pr = (ḡxV,A)effpr − (gxV,A)SMpr , (2.37)

where

δ(g`V )pr = δḡZ (g`V )SMpr −
1

4
√

2ĜF

(
CHe
pr

+ C
(1)
Hl
pr

+ C
(3)
Hl
pr

)
− δs2

θ, (2.38)

δ(g`A)pr = δḡZ (g`A)SMpr +
1

4
√

2 ĜF

(
CHe
pr
− C(1)

Hl
pr

− C(3)
Hl
pr

)
, (2.39)

δ(gνV )pr = δḡZ (gνV )SMpr −
1

4
√

2 ĜF

(
C

(1)
Hl
pr

− C(3)
Hl
pr

)
, (2.40)

13e and µ are generation indices 1 and 2, and are not summed over.

13



δ(gνA)pr = δḡZ (gνA)SMpr −
1

4
√

2 ĜF

(
C

(1)
Hl
pr

− C(3)
Hl
pr

)
, (2.41)

δ(guV )pr = δḡZ (guV )SMpr +
1

4
√

2 ĜF

(
−C(1)

Hq
pr

+ C
(3)
Hq
pr

− CHu
pr

)
+

2

3
δs2

θ, (2.42)

δ(guA)pr = δḡZ (guA)SMpr −
1

4
√

2 ĜF

(
C

(1)
Hq
pr

− C
(3)
Hq
pr

− CHu
pr

)
, (2.43)

δ(gdV )pr = δḡZ (gdV )SMpr −
1

4
√

2 ĜF

(
C

(1)
Hq
pr

+ C
(3)
Hq
pr

+ CHd
pr

)
− 1

3
δs2

θ, (2.44)

δ(gdA)pr = δḡZ (gdA)SMpr +
1

4
√

2 ĜF

(
−C(1)

Hq
pr

− C
(3)
Hq
pr

+ CHd
pr

)
, (2.45)

where

δḡZ = −δGF√
2
− δM2

Z

2m̂2
Z

+
sθ̂ cθ̂√
2ĜF

CHWB, (2.46)

and similarly the W couplings are defined as

δ(g
W±,`
V )rr = δ(g

W±,`
A )rr =

1

2
√

2ĜF

(
C

(3)
Hl
rr

+
1

2

cθ̂
sθ̂
CHWB

)
+

1

4

δs2
θ

s2
θ̂

, (2.47)

δ(g
W±,q
V )rr = δ(g

W±,q
A )rr =

1

2
√

2ĜF

(
C

(3)
Hq
rr

+
1

2

cθ̂
sθ̂
CHWB

)
+

1

4

δs2
θ

s2
θ̂

. (2.48)

Here our chosen normalization is (gxV )SM = T3/2−Qx s2
θ, (g

x
A)SM = T3/2 where T3 = 1/2

for ui, νi and T3 = −1/2 for di, `i and Qx = {−1, 2/3,−1/3} for x = {`, u, d}. The set
of δX parameters are not an operator basis, they simply parameterize some terms in
the phenomenological effective Lagrangian, as a particular IPS is chosen. The operator
basis is given in Table I.

2.4.1 TGC parameters

As another straightforward example, relating the TGC parameters to the same set of
inputs one finds in the Warsaw basis [46]

δg1
Z =

δs2
θ

2

(
1

c2
θ̂

+
1

s2
θ̂

)
+

1

2
√

2GF

(cotθ̂ + tanθ̂)CHWB, (2.49)

δg1
γ = 0, (2.50)

δκZ =
δs2

θ

2

(
1

c2
θ̂

+
1

s2
θ̂

)
+

1

2
√

2GF

(cotθ̂− tanθ̂)CHWB, (2.51)

δκγ =
cotθ̂√
2GF

CHWB, (2.52)
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δλZ = δλγ = 6 sθ̂ c
2
θ̂

M̂2
Z√

4π
√
α̂ew

CW , (2.53)

Note that some TGC parameters are clearly not physical parameters. They correspond
to off-shell verticies that are not trivially related to asymptotic S matrix elements.
In general, Lagrangian parameters are not physical14, but as they are usually closely
related to S matrix elements, or the properties of asymptotic states in the field theory,
this distinction is not critical to emphasise. When considering SMEFT modifications
of the SM, this distinction can have a more important role. For more discussion on
resolving related issues, see Ref. [51].

The differences between a standard LO treatment, as sketched above, and more overly
complicated proposals are easy to determine by inspection. Introducing layers of com-
plications beyond the straightforward LO implementation is not necessary and is best
avoided. The reason this is true is such complications can make it much more challeng-
ing, or even formally impossible, to improve an approach beyond LO. If the SMEFT is
never improved beyond LO this introduces theoretical errors in a SMEFT analysis of the
data which are not necessarily small. We discuss this in more detail in the next section.

2.5 The SMEFT beyond leading order, theoretical errors

In the SM, when a particular process is calculated, a common practice is that a theoret-
ical error is assigned. For example, for parametric and theoretical uncertainties within
the SM, see Tab. 1 of Ref. [52]. It can be subtle to assign such an error [53] due to
the neglect of missing higher order perturbative terms in the SM. If an expansion in a
ratio of the mass scales is used to define a prediction in the SM15 higher order “non-
perturbative” corrections are also present, and a further theoretical error to characterise
neglected local contact operators is generally introduced.

Unknown NLO corrections in the SMEFT can (and should) be treated in analogy to
the treatment of theoretical errors in the SM. Introducing some theoretical error for the
SMEFT is essential in LO analyses. This is an additional source of theoretical error when
the data is interpreted in the SMEFT, see Refs. [17–19] for recent detailed discussion on
theory errors in the SMEFT.

To properly characterize the perturbative error, it is essential to calculate at least to
one loop order in the SMEFT, including the leading insertion of operators in L6. Until
such calculations are performed, conservative theoretical errors should be applied to
theoretical relations in the SMEFT. Further, the introduction of a “non-perturbative”
error, due to L8 when bounding L6 should be done. In Eqn.2.3, the g3 g2

6 A(6)
3,2,1 terms can

be used as estimators of missing higher order non-perturbative terms in the SMEFT.
This approach is not particularly novel, but is simply the obvious extension of the widely
accepted approach to assigning theoretical error in the SM to the SMEFT. Early works
calculating and articulating the need of such corrections to consistently interpret the data
in the SMEFT include Refs. [12–16]. Generally, at low Λ the neglect of L8 dominates,
while as Λ gets larger, the neglect of perturbative corrections begins to dominate.

14This is still the case when mass eigenstate fields are used.
15For example, in the case of the heavy mt limit when calcucating gg → h.
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An excellent example of the importance of theory errors is provided by another effective
field theory, NRQED, as discussed in Refs. [54–60]. The Hydrogen hyperfine splitting
is measured to fourteen digits, but only computed to seven digits. This introduces a
theoretical error when using this measurement. Comparatively, the Positronium hyper-
fine splitting is measured and computed to eight digits. It would simply be a mistake
to give the H hyperfine splitting a weight 106 larger than the Ps hyperfine splitting in
a global fit to the fundamental constants, and to totally ignore theory errors. A careful
consideration of NLO effects can help in avoiding similar errors when using the SMEFT
formalism.

2.5.1 Theory errors in a LO formalism on the IPS

As a specific example, any LO approach does not take into account that the scales
characterizing the measurements of the input parameters αew, GF ,MZ differ. Consider
the error introduced due to the neglect of this NLO effect in the SMEFT, compared to
the errors quoted on αew in the SM. This parameter is measured at low energies in the
p2 → 0 limit.16 The value of this input parameter is given in Table 2. In the SMEFT,
the running of αew is modified compared to the SM as given in Ref. [63]. As a simple
approximation of the error introduced in the SMEFT, one finds that the neglected NLO
SMEFT correction to αew is then

(∆αew)SMEFT

(∆αew)SM
' −250

(
1TeV

Λ

)2

C̃HB − 80

(
1TeV

Λ

)2

C̃HW , (2.54)

running from p2 ∼ 1 GeV2 to mh.
17 Here (∆αew)SM is the SM error quoted in the

Table. Depending on C̃HB and C̃HW and Λ, which are unknown, the neglected NLO
SMEFT effects can lead to an error on this input parameter far larger than in the SM.
This should be completely unsurprising. Neglected NLO effects in the SMEFT in this
case include corrections of order g2

1,2v
2
T/(16π2) Λ2. The theoretical errors due to such

neglected effects can obviously compete with the SM theoretical errors, introduced in a
QED calculation out to tenth order in the SM. Similarly, neglected NLO corrections on
the other input parameters modify their theoretical error.

If one adopted a formalism that claims to make the relationship to some input parameters
the same in the SM and in the SMEFT (at LO), one might be tempted to not seriously
consider the effect of NLO corrections, such as given in this example. This could lead
to incorrect interpretations of the data. Being able to define and reduce such errors is
a reason that a straightforward approach to the SMEFT at LO, that can be directly
improved to NLO, is of significant value.

16αew is frequently extracted in the Thompson limit p2 → 0 when probing some Coulomb potential
of a charged particle, for example in a measurement of g − 2 for the electron or muon. Recently,
extractions with a competitive error budget have emerged where αew is extracted from the measured
ratio of ~/Matom via the recoil velocity for a stable atom, such as Rb87 [61] or Cs [62]. The important
point is to realize that this input parameter differs in the SM and in the SMEFT at NLO.

17This is only an approximation, as formally all of the SM states with masses m2 � p2 should be
integrated out in sequence when running down from the high scale. This significantly complicates
the analysis, but the effect of the SMEFT modification of the running, illustrated with this simple
expression, is still present.
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Parameter Input Value Ref.
m̂Z 91.1875± 0.0021 [64–66]

ĜF 1.1663787(6)× 10−5 [65,66]
α̂ew 1/137.035999074(94) [61,65–67]

Table 2: Current best estimates of αew, GF ,MZ .

2.5.2 Approximating unknown SMEFT theory errors

A reasonable approximation of a theoretical error to introduce for an observable i when
fitting to the leading parameters in L6, is given by [18,17]

∆i
SMEFT (Λ) '

∑

j

xij C̃
8
ij

v4
T

Λ4 +
∑

j

(gijSM)2

16π2 C̃6
ij yij ln

[
Λ2

v2
T

]
v2
T

Λ2 . (2.55)

Non log dependence in the second term is also present, but is suppressed for a simplifying
approximation. Here xij, yij label the observable dependence and are O(1). One can
further define

x′i

√
N i

8 =
∑

j

√
x2
ij (C̃8

ij)
2, y′i

√
N i

6 =
∑

j

√
y2
ij (C̃6

ij)
2 , (2.56)

as the product of O(1) numbers that characterize the multiplicity of the operators that
contribute to a process (N6,8) and the typical numerical dependence x′i, y

′
i. The square

root is because errors are assumed to add in quadrature. As an alternative, a Bayesian
uniform prior for the Ci could be used.

Although the number of operators is large, the relevant number of operators that con-
tribute in a process is far less then the full operator set; in known examples N6,8 ∼ O(10).

This error is multiplicative and the absolute error is obtained as ∆i
SMEFT (Λ) times the

SM prediction for an observable.

For cut off scales and Wilson coefficients in the range 1 TeV . Λ/

√
C̃i . 3 TeV and

order one numbers for xi, yi, N6,8 the value of ∆i
SMEFT (Λ) is in the range of few O(%)

to O(0.1%) [17–19]. It is widely considered to be the case that the precision expected
in LHC analyses can be expected to approach a few percent in well measured channels,
see Ref. [68,69]. NLO corrections and the corresponding theoretical errors should be
considered when the precision of an experimental analysis descends below O(10%) to be
conservative. This level of experimental precision was already reached by the LEP ex-
periments so projecting consistently the constraints derived from the LEP program into
LHC analyses, and encoded in the LO SMEFT parameters, requires a proper treatment
of theoretical errors [17–19].
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2.5.3 More on theoretical uncertainty

The need to include theoretical errors when perturbatively expanding the SMEFT is tied
to the fact that different truncations of such expansions can be constructed. Suppose
that a given quantity Q(a) is given in perturbation theory by the following expansion:

Q = a+ g
[
a2 + f1(a)

]
+ g2

[
a3 + f2(a)

]
+O(g3) = ā+ g f1(a) +O(g2), (2.57)

where ā = a/(1 − ga). Suppose that only the f1 term is actually known. It could be
decided that ā is the effective expansion parameter (or that in the full expression we
change variable a→ ā). This is equivalent, in the truncated expansion, to introducing

Q = ā+ g f1(a) = ā+ g f1(ā), (2.58)

which gives ∆Q = g2 f ′1(a), the difference in the two results due to neglected higher order
terms is an estimate of the associated theoretical uncertainty. A fit to observables defined
in a perturbative expansion must always include an estimate of the missing higher order
terms [70], which specifies a theoretical uncertainty. Various ways exist to estimate
this uncertainty. Once can compute the same observable with different “options”, e.g.
linearization or quadratization of the squared matrix element, resummation or expansion
of the (gauge invariant) fermion part in the wave function factor for the external legs,
variation of the renormalization scale, GF renormalization scheme or α -scheme, etc.

A conservative estimate of the associated theoretical uncertainty is obtained by taking
the envelope over all “options”; the interpretation of the envelope is a log-normal distri-
bution (this is the solution preferred in the experimental community) or a flat Bayesian
prior [71,53] (a solution preferred in a large part of the theoretical community).

These general considerations apply to fits in the SMEFT, where missing higher order
terms include, in most cases, all NLO perturbative corrections, and all NLO higher
dimensional operators. A fit performed at LO in the SMEFT that does not include any
estimate of the missing higher order terms, and never specifies a theoretical error, is
not a serious effort. In particular, in EWPD the modifications of the W mass, the ρ

parameter and the effective weak-mixing angle are loop-induced quantities and a study
of their SM deviations require an analysis at NLO in the SMEFT.

This is another reason why it is important to preserve the original data, not just the
interpretation results, as the estimate of the missing higher order terms can change over
time, modifying the lessons drawn from the data and projected into the SMEFT.

2.6 Effects of NLO SMEFT power corrections

No complete operator basis of L8 has ever been encoded in a Monte-Carlo program and
used to fit the data. It is a remarkable achievement that in recent years a full reduction
of the operator basis to describe L6 was determined (for the first time) in 2010 [6].
The rapid complete characterization of a fully reduced L7 and L8 bases in recent years
now allows more precise error estimates to be made due to neglected L8 corrections. In
principle, it is now possible to characterize a theoretical error by varying the complete
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set of C8 parameters in a “reasonable” range when a C6 parameter bound is extracted.
In practice, this has never been accomplished in the literature. Rough error estimates
as detailed previously should be used until more complete error analyses are available.

2.7 NLO SMEFT loop corrections

Note that including loop corrections in the SMEFT context is more crucial than for
a pure SM calculation. One loop corrections can introduce a dependence on Wilson
coefficients that do not contribute at tree level to a particular process, and some of these
Wilson coefficients are very poorly bounded. This is different from the SM where all of
the Lagrangian terms are extremely well known. We will refer to the introduction of
such dependence as “non-factorizable” corrections.

Loop corrections also introduce a perturbative rescaling of the dependence on an oper-
ator’s Wilson coefficient, if the operator contributed at LO to a process. These later
corrections can be naively interpreted to only modify an unknown parameter by a per-
turbative correction, and of limited interest. However such corrections are crucial to
perform data analyses based on measurements performed at different scales, which is
required due to the large number of operators present in the SMEFT.

Improving the SMEFT to one loop requires a renormalization scheme be defined, a
systematic renormalization of the SMEFT be carried out on the new parameters in L6,
and loop corrections be performed in a particular chosen gauge. We now discuss each
of these steps in the NLO program in more detail.

2.8 SMEFT: renormalization in practice

In this Section we describe a general renormalization procedure in the SMEFT. The
results presented have been developed in Refs. [15,25], based on the conventional for-
malism widely used in the SM [72–75]. To perform renormalization in an EFT it is
appropriate to use a dimensionless regulator, see Refs. [28] for a review discussion. We
work with dimensional regularization and define

∆UV =
2

4− d − γ − lnπ − ln
µ2

R

µ2 , (2.59)

where d is space-time dimension, the loop measure is µ4−d dnq and µR is the renormal-
ization scale; γ is the Euler-Mascheroni constant. Counterterms for SM parameters and
fields are defined by

Zi = 1 +
g2

16 π2

(
dZ

(4)
i + g6 dZ

(6)
i

)
∆UV . (2.60)

With field/parameter counterterms we can make UV finite the self-energies and the
corresponding Dyson resummed propagators. However, these counterterm subtractions
are not enough to make UV finite the Green’s functions with more than two legs (at
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O(gN6g6)). A mixing matrix among Wilson coefficients is needed:

Ci =
∑

j

Z
W

ij C
ren
j , Z

W

ij = δij +
g2

16 π2 dZ
W

ij ∆UV . (2.61)

For example, in this way we can renormalize the (on-shell) S -matrix for H(P ) →
Aµ(p1)Aν(p2) and H(P ) → Aµ(p1)Zν(p2) which have only one (transverse) Lorentz
structure. By on-shell S -matrix for an arbitrary process (involving unstable particles)
we mean the corresponding (amputated) Green’s function supplied with LSZ factors and
sources, computed at the (complex) poles of the external lines [76–78]. For processes
that involve stable particles this can be straightforwardly transformed into a physical
observable.

The connection of the HVV,V = Z,W (on-shell) S -matrix with the off shell vertex
H → VV and the full process pp → 4ψ is more complicated and is discussed in some
detail in Sect. 3 of Ref. [19]. The “on-shell” S -matrix for HVV, being built with the the
residue of the H−V−V poles in pp → 4ψ is gauge invariant by construction (it can be
proved by using Nielsen identities [79]) and represents one of the building blocks for the
full process: in other words, it is a pseudo-observable [37,38,19]. Technically speaking
the “on-shell” limit for external legs should be understood “to the complex poles” (for
a modification of the LSZ reduction formulas for unstable particles, see Ref. [80]) but,
as well known, at one loop we can use on-shell masses (for unstable particles) without
breaking the gauge parameter independence of the result. Residues of complex poles are
what matters, as far as renormalization is concerned.

The H(P ) → Zµ(p1)Zν(p2) (on-shell) matrix contains a part of the amplitude propor-
tional to gµν (referred to as DHZZ below) and a part of the amplitude proportional to pµ2 p

ν
1

(referred to as PHZZ below). Both of these terms get renormalized through a mixing.

Consider now the H(P ) → W−
µ(p1)W+

ν(p2) (on-shll) matrix: it has the same Lorentz
decomposition of H → ZZ and it is UV finite in the dim = 4 part. The DHWW part at
dim = 6 is renormalized through a mixing; however, there are no Wilson coefficients in
PHWW that are not also present in PHZZ , so that the UV finiteness of this term is related
by gauge symmetry to the renormalization of PHZZ . This is the first part of the arguments
used in Refs. [15,25] in proving closure of NLO SMEFT under renormalization.

The (on-shell) decays H(P ) → b(p1)b(p2) and Z(P ) → ψ̄(p1)ψ(p2) are more involved
to improve to NLO in the SMEFT. The SM contribution to these amplitudes are ren-
dered finite by the SM counterterms, however renormalizing the contributions due to L6

requires an extensive treatment of this operator mixing.

Some structure present in the SM is not preserved when extending an analysis into the
SMEFT. Manifestly, processes that first appear at one loop in the SM can occur at
tree level in the SMEFT, due to the presence of local contact operators. However, some
symmetries of the SM are preserved. For example, consider the universality of the electric
charge. In pure QED there is a Ward identity [81] telling us that e can be renormalized
in terms of vacuum polarization (which is a way to understand the universality of the
coupling), and Ward-Slavnov-Taylor (WST) identities [81–83] allow us to generalize the
argument to the full spontaneously broken SM symmetry group. The previous statement
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means that the contribution from vertices (at zero momentum transfer) in the full SM
exactly cancel those from (fermion) wave function renormalization factors. Therefore,
by directly computing the vertex A ψ̄ ψ (at q2 = 0) and the Zψ wave function factor in
the SMEFT, one can directly prove (or check) that the WST identity is extended to the
SMEFT at L6. This is expected as the corresponding identities are the consequence of
symmetries. However, this is technically non-trivial even after the previous steps in the
renormalization program discussed above. Once (non-trivial) finiteness of this vertex is
established, the finiteness of e+e− → ψ̄ ψ (including the four-point functions in the non
resonant part) follows. This is the second part in proving closure of the NLO SMEFT
under renormalization, using the arguments of Refs. [15,25].

At NLO one first has to render all SM and SMEFT parameters finite. Considering the
arguments above, and the complete renormalization results of all the operators in L6

reported in Refs. [7,16,63,84] in the Warsaw basis, this step in the NLO program has
been accomplished. This result has not been established in any other basis to date.

2.9 Beyond one loop

The absorption of UV divergences into local counterterms is, to some extent, the easy
step; finite renormalization, and the imposition of the appropriate renormalization con-
ditions to fix the finite terms in an amplitude in general requires more attention. This
is particularly the case beyond one loop order in the SMEFT. For example, beyond one
loop one should not use on-shell masses as renormalization conditions, but only complex
poles for all unstable particles, see Refs. [37,85]. Some examples where the concept of an
on-shell mass can be employed are as follows. Suppose that we renormalize a physical
(pseudo-)observable F ,

F = FB +
g2

16π2

[
F

(4)
1L (m2) + g6 F

(6)
1L (m2)

]
+O(g4) , (2.62)

where m is some renormalized mass, FB is the Born term and F1L is one loop. Consider
two cases: a) two-loop corrections are not included and b) m appears at one and two
loops in F1L and F2L but does not show up in the Born term FB. In these cases we
can use the concept of an on-shell mass performing a finite mass renormalization at one
loop. If m0 is the bare mass for the field V we write

m2
0 = M2

OS

{
1 +

g2

16π2 Re ΣVV ; fin |s=M2
OS

}
= M2

OS + g2 ∆M2 , (2.63)

where MOS is the on-shell mass and Σ is extracted from the required one-particle irre-
ducible Green’s function; Eq.(2.63) is still meaningful (no dependence on gauge param-
eters) and will be used inside the result.

2.10 Input parameter choices

Several choices can be made for implementing a renormalization scheme to calculate to
NLO in the SMEFT. Any well defined scheme can be used, but various schemes offer
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different advantages and disadvantages on a technical level. The detailed fixing of poles
and residues that make up precise renormalization conditions require a lengthy discus-
sion. For detailed reviews in the case of the SM, see Refs. [86,87]. Below we summarize
the results of the finite renormalization in the relationship to the input observables.

It is necessary to stress again that if one were to construct a complicated proposal that
is tied to one particular IPS, for example the α scheme only at LO, this would be in
stark contrast to the well defined Warsaw basis, which can be related to any IPS, at LO
or NLO.

2.10.1 Using a ‘GF -scheme’ with GF , MW , MZ

In the ‘GF -scheme’, one uses {GF , MW , MZ} to fix terms in the Lagrangian. In this
case, we write the following equation for the g finite renormalization

gren = gexp +
g2

exp

16 π2

(
dZ(4)

g + g6 dZ(6)
g

)
, (2.64)

where gexp will be expressed in terms of the Fermi coupling constant GF . Furthermore,
c
θ

= MW/MZ . The µ -lifetime can be written in the form

1

τµ
=

M5
µ

192π3

g4

32M4

(
1 + δµ

)
. (2.65)

The radiative corrections are δµ = δW
µ + δG where δG is the sum of vertices, boxes etc

and δW
µ is due to the W self-energy. The renormalization equation becomes

GF√
2

=
g2

8M2

{
1 +

g2

16 π2

[
δG +

1

M2 ΣWW(0)
]}

, (2.66)

where we expand the solution for g

g2
ren = 4

√
2GF M

2
W ; OS

{
1 +

GFM
2
W ; OS

2
√

2 π2

[
δG +

1

M2 ΣWW ; fin(0)
]}

. (2.67)

Note that the non universal part of the corrections is given by

δG = δ
(4)
G + g6 δ

(6)
G δ

(4)
G = 6 +

7− 4 s2
θ

2 s2
θ

ln c2
θ
, (2.68)

but the contribution of L6 to muon decay at NLO is not available yet and has not be
included in the calculation. It is worth noting that Eq.(2.66) defines the finite renormal-
ization in the {GF , MW , MZ} IPS.
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2.10.2 The ‘α scheme’, using α,GF,MZ

This scheme uses the fine structure constant α and is based on using {α , GF , MZ} as
the IPS. The new finite-renormalization equation is

g2 s2
θ

= 4πα
[
1− α

4 π

ΠAA(0)

s2
θ

]
, (2.69)

where α = αQED(0) and ΠAA defines the vacuum polarization. Therefore, in this scheme,
the finite counterterms are

g2
ren = g2

A

[
1 +

α

4π
dZg

]
, cren

θ
= ĉ

θ

[
1 +

α

4π
dZc

θ

]
, Mren = MZ ; OS ĉ2

θ

[
1 +

α

8π
dZMW

]
,

(2.70)
where the parameters ĉ

θ
and gA are defined by

g2
A =

4π α

ŝ2
θ

ŝ2
θ

=
1

2

[
1−

√
1− 4

π α√
2GF M

2
Z ; OS

]
. (2.71)

The reason for introducing this scheme is that the S,T and U parameters (see Ref. [88])
have been originally given in the {α , GF , MZ} scheme, and these input parameters
are very well measured. When calculating processes involving photons final states, this
scheme can be transparent to adopt. For other processes, the {GF , MW , MZ} scheme
can be more appropriate, and is in wider use in the SM, in higher order calculations.
In the α -scheme, after requiring that M2

Z ; OS is a zero of the real part of the inverse Z
propagator, we are left with one finite counterterm, dZg. The latter is fixed by using
GF and requiring that

1√
2
GF =

g2

8M2

{
1 +

g2

16 π2

[
δG +

1

M2 ∆WW(0)−
(
dZW + dZMW

)
∆UV

]}
, (2.72)

where we use the following relations for UV and finite renormalization,

g = gren

(
1 +

g2
ren

16 π2 dZg ∆UV

)
gren = gA

(
1 +

α

8π
dZg

)
. (2.73)

Note that SM EW calculations available in literature generally use GF for the pure weak
part or evolve α(0)→ α(M) and use α(M) as the expansion parameter at the scale M .
For a comprehensive discussion see Sect. 5.3 of Ref. [89].

When α is used in the analysis of “high” energy data it is afflicted with hadronic uncer-
tainties entering already at the one loop level and arising because it must be “run up”
from low energy, crossing the hadronic resonance region. The Fermi coupling constant,
obtained from the muon lifetime, does not suffer from this disadvantage (even in the full
SM one loop hadronic effects are mass suppressed) [90].

2.11 Background field gauge

Any well defined gauge can be used in a calculation, see Ref. [91] for an excellent review
on gauge fixing. There can be some advantage to organising a calculation in a manner
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that enforces relationships between counter terms due to gauge invariance. A technique
that accomplishes this is known as the Background Field (BF) method [92,93]. The
idea is that fields are split into classical and quantum components and a gauge fixing
term is added that maintains the gauge invariance of the classical background fields,
while breaking the gauge invariance of the quantum fields. Due to the resulting Ward
identities, one finds the relations among the SM counterterms [86]

ZAZe = 1, ZH = Zφ±
= Zφ0

, ZWZg2 = 1 , (2.74)

where A, e are the photon and corresponding electric coupling e, H is the SM Higgs
field, and φ0, φ± are the Goldstone bosons. W is the SM W boson with gauge coupling
g2. The gauge fixing in the BF method can be imposed as in Ref. [86,94]. Use of the
background field method can make extending the WST relations between counterterms
manifest and transparent, even when including the effects of L6.

Extending any gauge fixing procedure to the case of the SMEFT is subtle, due to the
order by order redefinition of the fields that are gauged due to terms in LSMEFT . This
remains the case when using the background field method. For example, although naively
unexpected, terms in L6 can, and must, source ghost interactions due to the redefinition
of the SM fields order by order in the power counting of the SMEFT. For some discussion
on these subtleties see Refs. [23,24]. Optimally resolving the technical complications that
result, when using the background field method in the SMEFT, is an unsolved problem.

These subtleties are some of the reasons it is difficult to directly modifying computer
programs that have been developed for automatic NLO calculations in the SM, to the
case of the SMEFT. The essential challenge is again that the SMEFT is a different
theory than the SM. The development of NLO SMEFT Monte-Carlo tools is still very
much a work in progress.

3 Known results in the SMEFT to NLO

Despite all of the challenges to advancing SMEFT results to NLO, progress in this
area is rapid and steady. In this section we briefly sumarize some of these theoretical
developments.

3.0.1 Renormalization results

The complete renormalization of the Warsaw basis was reported in Refs. [7,16,63,84]. In
the approach outlined in Section 2.8, results for the Warsaw basis operator renormal-
ization were reported in Refs. [15,25]. Use of SMEFT renormalization results (including
a subset of NLO finite terms) to leverage EWPD to bound operators not contributing
at tree level was reported in Ref. [95]. Partial results for renormalizing some alternate
operator sets in the so called “SILH basis” were given in Refs. [96,97]. A recent study
of RGE effects on the oblique parameters, in a subset of UV models, was reported in
Ref. [21].
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3.0.2 Advances in one loop matching techniques

Recently, the covariant derivative expansion discussed in Refs. [98–100] has re-emerged in
Refs. [101–103] as a powerful technique to perform matching calculations to underlying
UV theories at one loop. The basic idea at work is that, the contribution to the effective
action that results when integrating out a heavy field X at one loop is schematically
given by

∆S ∝ iTr log
[
D2 +m2

X + U(x)
]

(3.75)

where mX is the mass of the X field integrated out, D2 = DµD
µ, Dµ is the covari-

ant derivative, and U(x) depends on the SM field content. The covariant derivative
expansion allows this functional trace to be directly evaluated, while keeping gauge co-
variance manifest. This simplifies and systematizes one loop matching calculations in
the SMEFT, in many simple UV physics cases.18

3.0.3 Full nonperturbative NLO results

As discussed previously Refs. [9–11,105,106] have developed the theoretical technology
(essentially advanced use of Hilbert series techniques) to characterize the number of
independent operators present at each order in the SMEFT expansion. This has lead to
the complete characterization of the operator sets in L7 and L8 in these works.

3.0.4 Perturbative NLO results in the SMEFT

Full results to NLO in the SMEFT have started to appear in the literature. The first
pioneering calculations of this form were for the process µ → e γ in Ref. [107] and for
the process Γ(H → γ γ) in Refs. [23–25]. In [24] the full NLO perturbative SMEFT
result for this decay with no assumption in the underlying UV scenario was reported.
Ref. [25] also reported NLO results for Γ(H → Z γ), H → Z Z?, H → W W? under
the assumption of a PTG scenario and presented results to NLO for the W mass and
other EWPD parameters. Recently Ref. [22] also reported NLO perturbative results for
H → bb and H → τ

−
τ

+ in the general SMEFT, including finite terms, in the large mt

limit. NLO QCD results for a set of higher dimensional operators contributing to the
Higgs pair production process were given in Ref. [108].

3.1 NLO theory errors and bounds on parameters in L6

Until deviations from the SM are observed, studies of the SMEFT are studies of con-
straints. Nevertheless, in a situation where no new physics effects are observed, the

18It is worth noting, that some questions remain about the effect of mixing between the heavy and
light field content in this approach [104].
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experimental results cannot be expressed trivially into the limits

C̃6
i

Λ2 < δexpi (Mcut). (3.76)

First of all, several SMEFT operators generally contribute to any one observable. The
value of one operator has basically no meaning in the general SMEFT case. A complete
(sub-)set of operators in the SMEFT is present unless symmetries, or knowledge of the
UV theory, allows a reduction. Global constraint analyses in the SMEFT are a very
active area of research. NLO SMEFT analyses have one very important point to add to
such efforts, which is the characterization of the SMEFT theoretical error, when fitting
to a coefficient in L6 at LO.

Generally, as SMEFT theoretical errors are only increasing the theoretical uncertainty,
including an appropriate SMEFT theoretical error reduces the degree of constraint on
parameters in L6. In particular, it has been shown that claims of general model indepen-
dent bounds at the per-mille level, on individual operators due to the LEP experiments,
do not hold, when considering SMEFT theoretical errors [17,18]. These bounds are re-
laxed to the percent level by such considerations. This is clearly the case in general, and
the relaxing of these bounds does not correspond to the SMEFT expansion breaking
down. If the SMEFT expansion were to break down, the bounds would not be relaxed
only by an order of magnitude, they would not be present at all.

The reason bounds are relaxed in a consistent SMEFT approach is very easy to illustrate
[17,18]. Naively incorporating a per-mille constraint in EWPD on a combination of
dimension six Wilson coefficients, denoted c6, corresponds to c6 v̄

2
T/Λ

2 . 10−3, which
gives c6 . 0.1 for Λ ∼ 2.5 TeV. Such a naive bound neglects the effects of the large
number of dimension eight operators in the SMEFT; so that schematically c6 +0.01 c8 .
0.1 for TeV cut off scales. Bounds of this form are difficult to consider as precise
numerical limits on the inferred Wilson coefficients. It is now known that there are 993
Nf = 1 operators in the L8 SMEFT, with Wilson coefficients that are not all related
to the specific combination of Wilson coefficients denoted c6 in the above expression.
Generally the SMEFT does remain predictive, and only a small subset of the L8 operators
contribute to a particular observable. It is actually extremely conservative to only argue
that LEP based constraints are relaxed to the percent level from the per-mille level, due
to theoretical errors introduced due to the neglect of these effects in the SMEFT.

Per-mille constraint claims based on LEP analyses that completely neglect theoretical
errors in the SMEFT, are not strong statements. The neglect of higher order terms
in the SMEFT must be quantified with some theory error metric. We have advanced a
number of examples in this document as to how such a theory error metric can be defined.
Alternative schemes to define theory errors could also be defined, but some theory error
is essential in a LO analysis. If a LO formalism makes it particularly difficult (or easy)
to define such a theory error, then this is a serious consideration to take into account
when choosing an approach to the LO SMEFT.
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3.2 A study of constraints

As a particular example, we discuss the impact of NLO corrections on inferred LO
bounds, in the case of Γ(H → γ γ), using the results of Refs. [23,24]. We consider the
general SMEFT case, consider unknown C̃i ∼ 1 and vary the unknown parameters over
0.8 ≤ Λ ≤ 3 in TeV units. Note that v̄2

T/(0.8 TeV)2 ∼ 0.1. Taking κγ from Ref. [109] to

be 0.93+0.36
−0.17, and neglecting light fermion (mf < mH) effects for simplicity, one finds the

1σ range

−0.02 ≤
(
C̃1,NP

γ γ +
C̃NP
i fi

16π2

)
v̄2
T

Λ2 ≤ 0.02 . (3.77)

Here, the tilde superscript denotes that the scale 1/Λ2 has been factored out of a Wilson
coefficient. The fi terms correspond to the “nonfactorizable” terms, and C̃1,NP

γ γ corre-
sponds to the one loop improvement of the Wilson coefficient that gives this decay at
tree level – C̃0,NP

γ γ . The difference in the mapping of this constraint to the coefficient of

C̃0,NP
γ γ at tree level, and at one loop, can now be characterized.

To determine this correction we determine the percentage change on the inferred value of
the bounds of C̃0,NP

γ γ , while shifting the quoted upper and lower experimental bounds by
the NLO SMEFT perturbative correction. The envelope of the two percentage variations
on the bounds is quoted in the form [, ], for values of Λ varying from [0.8, 3] TeV. For one
specific choice of signs for Ci, we find the following characteristic results. The net impact
of one-loop corrections (added in quadrature) due to higher dimensional operators on
the bound of the tree level Wilson coefficient is

∆quad C̃
0,NP
γ γ ∼ [29, 4] % . (3.78)

Similarly, CMS reports κγ = 0.98+0.17
−0.16 [110], which gives

∆quad C̃
0,NP
γ γ ∼ [52, 7] % . (3.79)

It is possible that these corrections could add up in a manner that is not in quadrature,
as this depends on the unknown C̃i values. The impact of the one-loop corrections listed
above is on current experimental bounds of Γ(H → γγ), following from our conservative
treatment of unknown UV effects. As the experimental precision of the measurement
of Γ(H → γγ) increases, the impact of the neglected corrections directly scales up.
Repeating the exercise above, with a chosen projected RunII value κγ = 1±0.045 which
is consistent with projected future bounds (CMS - scenario II [69,68])

(∆quad C̃
0,NP
γ γ )proj : RunII ∼ [167, 21] % . (3.80)

High luminosity LHC runs are further quoted to have a sensitivity between 2% and 5%
in κγ [111]. Choosing a value κγ = 1± 0.03 for this case, one finds

(∆quad C̃
0,NP
γ γ )proj : HILHC ∼ [250, 31] % . (3.81)

It is clear that neglected one loop corrections can have an important effect on the pro-
jection of an experimental bound into the LO SMEFT formalism, when measurements
become sufficiently precise and the cut off scale is not too high.
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3.3 A study of SM-deviations

Here the reference process is the off-shell gg → H production. It is important to go off-
shell because the correct use of the SMEFT proves that scaling couplings on a resonance
pole is not the same thing as scaling them off of a resonance pole, which has important
consequences in bounding the Higgs intrinsic width, see Refs. [112–114].

In the κ approach, which was developed out of Refs. [115–117], and formalized in
Ref. [118], one write the amplitude as

Agg =
∑

q=t,b

κ
gg

q Agg

q + κ
gg

c , (3.82)

Agg

t being the SM t -loop etc. The contact term (which is the LO SMEFT) is given by

κ
gg

c . Furthermore κ
gg

q = 1 + ∆ κ
gg

q Next we compute the following ratio

R = σ
(

κ
gg

q , κ
gg

c

)
/σSM − 1 [%] . (3.83)

In LO SMEFT κc is non-zero and κq = 1. One measures a deviation and gets a value for
κc. However, at NLO ∆κq is non zero and one gets a degeneracy: the interpretation in
terms of κ

LO

c or in terms of {κNLO

c ,∆κ
NLO

q } could be rather different (we show an example
in Fig. 4). Going interpretational we consider

A
gg

SMEFT =
g g3

π2

∑

q=t,b

κ
gg

q Agg

q + 2 gS g6
s

M2
W

C̃H g +
g g3 g6
π2

∑

q=t,b

Anfc ; gg
q C̃qg , (3.84)

where g3 is the SU(3) coupling constant. Using Eq.(3.84) we adopt the Warsaw basis
and eventually work in the (PTG) scenario [41,42]. The following options are available:
LO SMEFT: κq = 1 and C̃H g is scaled by 1/16 π2 being “loop-generated” (LG); NLO
PTG-SMEFT: κq 6= 1 but only PTG operators inserted in loops (non-factorizable terms

absent), C̃H g scaled as above; NLO full-SMEFT: κq 6= 1 LG/PTG operators inserted in
loops (non-factorizable terms present), LG coefficients scaled as above. Again we note
the PTG classification scheme is not valid for all possible UV.

It is worth noting the difference between Eq.(3.82) and Eq.(3.84), showing that the
original κ -framework can be made consistent at the price of adding “non-factorizable”
sub-amplitudes. At NLO, ∆κ = g

6
ρ and

g−1
6

=
√

2GF Λ2 4π αs = g3 , (3.85)

ρ
gg

t = C̃H W + C̃tH + 2 C̃H 2 −
1

2
C̃H D ρ

gg

b = C̃H W − C̃bH + 2 C̃H 2 −
1

2
C̃H D .

(3.86)

Relaxing the PTG assumption introduces non-factorizable sub-amplitudes proportional
to C̃tH , C̃bH with a mixing among C̃H g , C̃tg , C̃bg . Meanwhile, renormalization has made
one-loop SMEFT finite, e.g. in the GF -scheme, with a residual µR -dependence.

We allow each Wilson coefficient to vary in some interval In = [−n , +n] and fix a
value for Λ. Next we generate points from In for the Wilson coefficients with uniform
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probability and calculate R. Finally, we calculate the R probability distribution function
(pdf), as shown in Figs. 2,3.

As another example, a comparison between the LO pdf and NLO pdf for H → γγ using
the approach of this section, and the results in [25], is shown in Fig. 4.

4 Summary Comments

The takeaway lessons are as follows.

• Overall, the neglect of NLO corrections, considering the precision of RunI mea-
surements, is (retrospectively) justified. However, considering projections for the
precision to be reached in RunII analyses, LO results for interpretations of the
data in the SMEFT are challenged by consistency concerns, if the cut off scale is
in the few TeV range.

• NLO results are starting to become available in the SMEFT. These results allow the
consistent interpretation of the data combining measurements at different scales,
and can robustly accommodate the precision projected to be achieved in RunII
analyses, even for lower cut off scales.

• NLO results allow the kappa-framework [118] to be extended. NLO results more
consistently include kinematic deviations from the SM, and define higher order
calculations in relation to a measured observable, in a well defined field theory. A
properly formulated SMEFT goes beyond LO and includes EW corrections.

• The assignment of a theoretical error for LO SMEFT analyses is essential if the

cut off scale is assumed to be in the “interesting range” 1 TeV . Λ/

√
C̃i . 3 TeV.

• Absorbing the effects of L8 corrections and/or or absorbing logarithmic NLO per-
turbative corrections into an “effective” parameter to attempt to incorporate NLO
corrections is not recommended. Such a redefinition cannot simultaneously be
made in different measurements sensitive to a LO SMEFT parameter, generally
measured at different scales, unless theoretical errors are introduced. Correlating
different measurements is necessary if the SMEFT is to be used in a predictive
fashion for constraints on LHC measurements.

• It is not recommended that LEP constraints are interpreted to mean that effective
SMEFT parameters in L6, or combinations of such parameters, should be set to
zero in LHC analyses. Arguments leading to claims of strong bounds to justify
such a step rely on LO SMEFT analyses, without any theoretical error assigned.

• In general, we recommend that the experimental collaborations restrict the bulk of
their efforts to defining and reporting clean measurements that can be interpreted
in any (actual) basis, and at LO or NLO in the SMEFT. By this we mean that
the focus for data reporting should be on real observables, fiducial cross sections
and/or pseudo-observables. If a LO interpretation of that data in the SMEFT
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is reported, there is no barrier to using the straightforward LO formalism of the
Warsaw basis, that is in common use in the theoretical community.

Most importantly, it is not recommended to use LO results (subject to large undeter-
mined NLO corrections and uncertainties) when they are formulated in a framework
where it is not known how to define the NLO extension, or if this is even possible. At
the very least, the data must also be reported in a manner that ensures a NLO treatment
of the data is always possible in the future, bypassing any ill defined LO formalism.
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t

∑
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W±/φ± W±/φ±/H/φ0
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t W±

Figure 1: Diagrams contributing to the amplitude for H → γ γ in the Rξ -gauge: SM (first
row), LO SMEFT (second row), and NLO SMEFT. Black circles denote the insertion of one
L6 operator.

∑
•

implies summing over all insertions in the diagram (vertex by vertex). For

triangles with internal charge flow (t,W±, φ
±,X±) only the clockwise orientation is shown.

Non-equivalent diagrams obtained by the exchange of the two photon lines are not shown.
Higgs and photon wave-function factors are not included. The Fadeev-Popov ghost fields are
denoted by X.
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Figure 2: Probability distribution function for the off-shell process gg → H. Support is
Ci ∈ [−1 , +1] with a uniform prior, and we have set Λ = 3 TeV.
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