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André David, Michael Duehrssen-Debling, Adam Falkowski, Sabine Kraml, Kerstin Tack-
mann, . . .

Disclaimer: this is an incomplete vision of the note (meant only to illustrate the status
of the work). Still, any comment/feedback is very welcome.

1



Contents

1 Introduction 3

2 Two-body decay modes 4
2.1 h→ ff̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 h→ γγ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Three-body decay modes 7
3.1 h→ ff̄γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Four-fermion decay modes 8
4.1 h→ 4f neutral currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 h→ 4f charged currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 h→ 4f complete decomposition . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Physical PO for h→ 4` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Physical PO for h→ 2`2ν . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 PO in Higgs electroweak production: generalities 15
5.1 Amplitude decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.1 Vector boson fusion Higgs production . . . . . . . . . . . . . . . . . 16
5.1.2 Associated vector boson plus Higgs production . . . . . . . . . . . . 18

6 PO in Higgs electroweak production: phenomenology 19
6.1 Vector Boson Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Associated vector boson plus Higgs production . . . . . . . . . . . . . . . . 22
6.3 Validity of the momentum expansion . . . . . . . . . . . . . . . . . . . . . 24

7 Parameter counting and symmetry limits 25
7.1 Yukawa modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Higgs EW decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 EW production processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 Conclusion 27

References 29

2



1 Introduction

The idea of PO has been formalized the first time in the context of electroweak observables
around the Z pole [1]. A generalization of this concept to describe possible deformations
from the SM in Higgs production and decay processes has been discussed in Refs. [2–7].
The basic idea is to identify a set of quantities that are

I. experimentally accessible,

II. well-defined from the point of view of QFT,

and capture all relevant New Physics (NP) effects (or all relevant deformations from the
SM) without loosing information and with minimum theoretical bias. The last point
implies that changes in the underlying NP model should not require any new processing
of raw experimental data. In the same spirit, the PO should be independent from the
theoretical precision (e.g. LO, NLO, ...) at which NP effects are computed. Finally, the
PO are obtained after removing (via a proper deconvolution) the effect of the soft SM
radiation (both QED and QCD radiation), that is assumed to be free from NP effects.
In the case of observables around the Z pole, the Γ(Z → ff̄) partial decay rates provide
good examples of PO.

The independence from NP models can not be fulfilled in complete generality. How-
ever, it can be fulfilled under very general assumptions. As far as Higgs physics is con-
cerned, the general requirement of Higgs PO is to

III. capture all relevant NP effects in the limit of no new (non-SM) particles below or
close to the Higgs mass.

Under this additional hypothesis, the PO provide a bridge between the fiducial cross-
section measurements and the determination of NP couplings in explicit NP frameworks.

On a more theoretical footing, the Higgs PO are defined from a general decomposition
of on-shell amplitudes involving the Higgs boson –based on analyticity, unitarity, and
crossing symmetry– and a momentum expansion following from the dynamical assumption
of no new light particles (hence no unknown physical poles in the amplitudes) in the
kinematical regime where the decomposition is assumed to be valid. These conditions
ensure the generality of this approach and the possibility to match it to a wide class of
explicit NP model, including the determination of Wilson coefficients in the context of
Effective Field Theories.

The old κ framework [8] satisfied the conditions I and II, but not the condition III,
since the framework was not general enough to describe modifications in (n > 2)-body
Higgs decays resulting in non-SM kinematics. Similarly, the old κ framework could not
describe modifications of the Higgs-cross sections that cannot be reabsorbed into a simple
overall re-scaling with respect to the SM.

Similarly to the case of electroweak observables, it is convenient to introduce two
complementary sets of Higgs PO:
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• a set of physical PO, namely a set of (idealized) partial decay rates and asymmetries;

• a set of effective-couplings PO, parameterizing the on-shell production and decay
amplitudes.

The two sets are in one-to-one correspondence: by construction, the effective-couplings PO
are directly related to the physical PO after properly working out the decay kinematics.
From the practical point of view, in the LHC Higgs analysis, effective-couplings PO are first
extracted and from these physical PO are obtained providing a more intuitive presentation
of the measurement as will be discussed below.

2 Two-body decay modes

In the case of two-body Higgs decays into on-shell SM particles, namely h → ff̄ and
h → γγ, the natural physical PO for each mode are the partial decay widths, and
possibly the polarization asymmetry if the spin of the final state is accessible.

In the h → ff̄ case the main issue to be addressed is the optimal definition of the
partial decay width taking into account the final state QED and QCD radiation.

In the h → γγ case the point to be addressed is the extrapolation to real photons of
electromagnetic showers with non-vanishing invariant mass.

2.1 h→ ff̄

For each fermion species we can decompose the on-shell h → ff̄ amplitude in terms of
two effective couplings (yfS,P ), defined by

A(h→ ff̄) = − i√
2

(
yfS f̄f + iyfP f̄γ5f

)
. (1)

These couplings are real in the limit where we neglect re-scattering effects, that is an
excellent approximation (also beyond the SM if we assume no new light states), for all
the accessible h → ff̄ channels. If h is a CP-even state (as in the SM), then yfP is a
CP-violating coupling.

In order to match our notation with the κ framework [8], we define the two effective
couplings PO of the h→ ff̄ decays as follows:

κf =
Re(yfS)

Re(yf,SM
S )

, λCP
f =

Re(yfP )

Re(yf,SM
S )

. (2)

Here yf,SM
S is the SM effective coupling that provides the best SM prediction in the κf → 1

and λCP
f → 0 limit.
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The measurement of Γ(h→ ff̄)(incl) determines the combination |κf |2 + |λCP
f |2, while

the λCP
f /κf ratio can be determined only if the lepton polarization is experimentally

accessible. With this notation, the inclusive decay rates, computed assuming a pure
bremsstrahlung spectrum can be written as

Γ(h→ ff̄)(incl) =
[
κ2
f + (λCP

f )2
]

Γ(h→ ff̄)
(SM)
(incl) , (3)

where fermion-mass effects, of per-mil level even for the b quark, have been neglected.
In experiments Γ(h → ff̄)(incl) cannot be directly accessed, given tight cuts on the ff̄
invariant mass to suppress the background: Γ(h → ff̄)(incl) is extrapolated from the
experimentally accessible Γ(h→ ff̄)(cut) assuming a pure bremsstrahlung spectrum, both
as far as QED and as far as QCD (for the qq̄ channels only) radiation is concerned.

The SM decay width is given by

Γ(h→ ff̄)
(SM)
(incl) = N f

c

|yf,SM
eff |2

16π
m2
H , (4)

where the color factor N f
c is 3 for quarks and 1 for leptons. Using the best SM prediction of

the branching ratios in these channels [8], formH = 125.0 GeV and Γtot
H = 4.07×10−3 GeV,

we extract the values of the |yf,SM
eff | couplings in Eq. (4):

b̄b τ̄ τ
B(h→ f̄f) 5.77× 10−1 6.32× 10−2

|yf,SM
eff | 1.77× 10−2 1.02× 10−2

,

c̄c µ̄µ
B(h→ f̄f) 2.91× 10−2 2.19× 10−4

|yf,SM
eff | 3.98× 10−3 5.99× 10−4

,

As anticipated, the physical PO sensitive to λCP
f /κf necessarily involve a determination

(direct or indirect) of the fermion spins. Denoting by ~kf the 3-momentum of the fermion
f in the Higgs center of mass frame, and with {~sf , ~sf̄} the two fermion spins, we can
define the following CP-odd asymmetry [9]

ACP
f =

1

|~kf |
〈~kf · (~sf × ~sf̄ )〉 = −

λCP
f κf

κ2
f + (λCP

f )2
(5)

As pointed out in Ref. [10], in the h → τ+τ− → Xτ+Xτ− decay chains asymmetries
proportional to ACP

f are accessible through the measurement of the angular distribution
of the τ± decay products.

Note that, by construction, the effective couplings PO depend on the SM normaliza-
tion. This imply an intrinsic theoretical uncertainty in their determination related to the
theory error on the SM reference value. On the other hand, the physical PO are inde-
pendent of any reference to the SM. Indeed the (conventional) SM normalization of κf
cancels in Eq. (3).
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2.2 h→ γγ

The general decomposition for the h→ γγ amplitude is

A [h→ γ(q, ε)γ(q′, ε′)] = i
2

vF
ε′µεν

[
εγγ(g

µν q·q′ − qµq′ν) + εCP
γγ ε

µνρσqρq
′
σ

]
, (6)

from which we identify the two effective couplings εγγ and εCP
γγ that, similarly to yfS,P ,

can be assumed to be real in the limit where we assume no new light states and small
deviations from the SM limit. We define the effective couplings PO for this channels as

κγγ =
Re(εγγ)

Re(εSM
γγ )

, λCP
γγ =

Re(εCP
γγ )

Re(εSM
γγ )

, (7)

where εγγSM is the value of the PO which reproduces the best SM prediction of the decay
width. By construction, the SM expectation for the two PO is κSM

γγ = 1 and (λCP
γγ )SM = 0.

If the photon polarization is not accessible, the only physical PO for this channel is
Γ(h → γγ). Starting from realistic observables, where the electromagnetic showers have
non-vanishing invariant mass, Γ(h → γγ) is defined as the extrapolation to the limit of
zero invariant mass for the electromagnetic showers. The relation between Γ(h → γγ)
and the two effective couplings PO is

Γ(h→ γγ) =
[
κ2
γγ + (λCP

γγ )2
]

Γ(h→ γγ)(SM) , (8)

where

Γ(h→ γγ)(SM) =
|εSM,eff
γγ |2

16π

m3
H

v2
F

. (9)

Using the SM prediction for the branching ratios in two photons [8], for vF = 246.22 GeV,
mH = 125.0 GeV and Γtot

H = 4.07× 10−3 GeV, we obtain

B(h→ γγ)SM = 2.28× 10−3 → εγγSM = 3.8× 10−3 . (10)

This value corresponds to the 1-loop contribution in the SM, which also fixes the relative
sign. Similarly to the ff̄ case, the SM normalization cancels in the definition of the
physical PO.

The physical PO linear in the CP-violating coupling λCP
γγ necessarily involves the mea-

surement of the photon polarization and is therefore hardly accessible at the LHC (at
lest in a direct way). Denoting by ~q1,2 the 3-momenta of the two photons in the center
of mass frame, and with ~ε1,2 the corresponding polarization vectors, we can define [to be
checked]:

ACP
γγ =

1

mh

〈(~q1 − ~q2) · (~ε1 × ~ε2)〉 =
λCP
γγ κγγ

κ2
γγ + (λCP

γγ )2
. (11)
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3 Three-body decay modes

The guiding principle for the definition of PO in multi-body channels is the decomposition
of the decay amplitudes in terms of contributions associated to a specific single-particle
pole structure. In the absence of new light states, such poles are generated only by the
exchange of the SM electroweak bosons (γ, Z, and W ) or by hadronic resonances (whose
contribution appears only beyond the tree level and is largely suppressed). Since positions
and residues on the poles are gauge-invariant quantities, this decomposition satisfies the
general requirements for the definitions of PO.

3.1 h→ ff̄γ

The general form factor decomposition for these channels is

A
[
h→ f(p1)f̄(p2)γ(q, ε)

]
= i

2

vF

∑
f=fL,fR

(f̄γµf)εν ×

×
[
F fγ
T (p2)(p·q gµν − qµpν) + F fγ

CP (p2)εµνρσqρpσ

]
, (12)

where p = p1 + p2. The form factors can be further decomposed as

F fγ
T (p2) = εZγ

gfZ
PZ(p2)

+ εγγ
eQf

p2
+ ∆SM

fγ (p2) , (13)

F fγ
CP (p2) = εCP

Zγ

gfZ
PZ(p2)

+ εCP
γγ

eQf

p2
. (14)

Here gfZ are the effective PO describing on-shell Z → ff̄ decays1 and PZ(q2) = q2−m2
Z +

imZΓZ . In other words, we decompose the form factors identifying the physical poles
associated to the Z and γ propagators.

The term ∆SM
fγ (p2) denotes the remnant of the SM h → ff̄γ loop function that is

regular both in the limit p2 → 0 and in the limit p2 → m2
Z . This part of the amplitude

is largely subdominant (being not enhanced by a physical single-particle pole) and can-
not receive non-standard contributions from operators of dimension up to 6 in the EFT
approach to Higgs physics. For this reason it is fixed to its SM value.

In this channel we thus have four effective couplings PO, related to the four εX terms
in Eqs. (13) and (14), two of which are accessible also in h→ 2γ. Similarly to the h→ 2γ
case, it is convenient to define the PO normalizing them the corresponding reference SM
values of the amplitudes. We thus define

κZγ =
Re(εZγ)

Re(εSM
Zγ )

, λCP
Zγ =

Re(εCP
Zγ )

Re(εSM
Zγ )

, (15)

1We have absorbed a factor g/ cos(θW ) with respect to the definition of the effective Z couplings
adopted at LEP-1 (and employed in the so-called Higgs Basis Lagrangian), see Eq. (24).
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where the numerical value of the SM contribution εSM
Zγ is obtained from the best SM

prediction for the h→ Zγ decay width.
The simplest physical PO that can be extracted from this channel is Γ(h→ Zγ), where

both the Z boson and the photon are on-shell. By construction, this can be written as

Γ(h→ Zγ) =
[
κ2
Zγ + (λCP

Zγ )2
]

Γ(h→ Zγ)(SM) , (16)

where

Γ(h→ Zγ)(SM) =
|εSM,eff
Zγ |2

8π

m3
H

v2

(
1− m2

Z

m2
H

)3

. (17)

The SM prediction for this decay rate [8] provides the value of εZγSM:

B(h→ Zγ)(SM) = 1.54× 10−3 → εSM
Zγ = 6.9× 10−3 . (18)

The independent physical PO linear in the coupling λCP
Zγ is the following CP-odd

asymmetry at the Z peak [to be checked]:

ACP
Zγ =

1

|~p||~q|
〈~p · (~q × ~εγ)〉

∣∣∣∣
(p2=m2

Z)

=
λCP
ZγκZγ

κ2
Zγ + (λCP

Zγ )2
, (19)

where all 3-momenta are defined in the Higgs center of mass frame.
This channel is also sensitive to Γ(h → γγ) and ACP

γγ via the effective couplings κγγ
(or εγγ) and λCP

γγ (or εCP
γγ ). Determining such couplings from a fit to the from factors in

the low p2 region, one can indirectly determine Γ(h→ γγ) and ACP
γγ by means of Eq. (8)

and Eq. (11), respectively.

4 Four-fermion decay modes

Similarly to the three-body modes, also in this case the guiding principle for the definition
of PO is the decomposition of the decay amplitudes in terms of contributions associated to
a specific pole structure. Such decomposition for the h→ 4f channels has been presented
in Ref. [3]. The effective coupling PO that appear in these channels consist of four sets:

• 3 flavor-universal charged-current PO: {κWW , εWW , ε
CP
WW};

• 7 flavor-universal neutral-current PO, 4 of which are appearing already in h → γγ
and h → ff̄γ : {κγγ, λCP

γγ , κZγ, λ
CP
Zγ}, and another 3 which are specific for h → 4f :

{κZZ , εZZ , εCP
ZZ};

• the set of flavor non-universal charged-current PO: {εWf};

• the set of flavor non-universal neutral-current PO: {εZf}.
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While the number of flavor-universal PO is fixed, the number of flavor non-universal
PO depend on the fermion species we are interested in. For instance, looking only
at light leptons (` = e, µ), we have 4 flavor non-universal PO contributing to h →
4` modes (εZf , with f = eL, eR, µL, µR) and 4 PO contributing to h → 2`2ν modes
(εWeL , εWµL , εZνe , εZνµ). The definition of these PO is done at the amplitude level, sep-
arating neutral-current and charged-current contributions to the h → 4f processes, as
discussed below.

Starting from each of the effective couplings PO we can define a corresponding physical
PO. In particular, Γ(h → ZZ) is defined as the (ideal) rate extracted from the full
Γ(h → 4f), extrapolating the result in the limit κZZ 6= 0 and all the other effective
couplings set to zero. Similarly Γ(h → Zff̄) is defined from the extrapolation in the
limit εZf 6= 0 and all the other effective couplings set to zero (see extended discussion
below).

4.1 h→ 4f neutral currents

Let us consider the case of two different (light) fermion species: h→ ff̄ + f ′f̄ ′. Neglect-
ing helicity-violating terms (yielding contributions suppressed by light fermion masses in
the rates), we can decompose the neutral-current contribution to the amplitude in the
following way

An.c.
[
h→ f(p1)f̄(p2)f ′(p3)f̄ ′(p4)

]
= i

2m2
Z

vF

∑
f=fL,fR

∑
f ′=f ′L,f

′
R

(f̄γµf)(f̄ ′γνf
′)T µνn.c.(q1, q2)

T µνn.c.(q1, q2) =

[
F ff ′

L (q2
1, q

2
2)gµν + F ff ′

T (q2
1, q

2
2)
q1·q2 g

µν − q2
µq1

ν

m2
Z

+ F ff ′

CP (q2
1, q

2
2)
εµνρσq2ρq1σ

m2
Z

]
,

(20)

where q1 = p1 + p2 and q2 = p3 + p4. The form factor FL describes the interaction with
the longitudinal part of the current, as in the SM, the FT term describes the interaction
with the transverse part, while FCP describes the CP-violating part of the interaction (if
the Higgs is assumed to be a CP-even state).

We can further expand the form factors in full generality around the poles, providing
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the definition of the neutral-current PO [3]:

F ff ′

L (q2
1, q

2
2) = κZZ

gfZg
f ′

Z

PZ(q2
1)PZ(q2

2)
+
εZf
m2
Z

gf
′

Z

PZ(q2
2)

+
εZf ′

m2
Z

gfZ
PZ(q2

1)
+ ∆SM

L (q2
1, q

2
2) , (21)

F ff ′

T (q2
1, q

2
2) = εZZ

gfZg
f ′

Z

PZ(q2
1)PZ(q2

2)
+ εZγ

(
eQf ′g

f
Z

q2
2PZ(q2

1)
+

eQfg
f ′

Z

q2
1PZ(q2

2)

)
+ εγγ

e2QfQf ′

q2
1q

2
2

+∆SM
T (q2

1, q
2
2), (22)

F ff ′

CP (q2
1, q

2
2) = εCP

ZZ

gfZg
f ′

Z

PZ(q2
1)PZ(q2

2)
+ εCP

Zγ

(
eQf ′g

f
Z

q2
2PZ(q2

1)
+

eQfg
f ′

Z

q2
1PZ(q2

2)

)
+ εCP

γγ

e2QfQf ′

q2
1q

2
2

.(23)

Here gfZ are Z-pole PO extracted from Z decays at LEP-I, the translation to the notation
used at LEP being very simple

gfZ =
2mZ

vF
gLEP
f , and (gfZ)SM =

2mZ

vF
(T f3 −Qfs

2
θW

) . (24)

As anticipated, all the parameters but εZf and gfZ are flavor universal, i.e. they do not

depend on the fermion species. In fact, flavor non-universal effects in gfZ have been very
tightly constrained at LEP, however, sizeable effects in εZf are possible and should be
tested at the LHC. In the limit where we neglect re-scattering effects, both κZZ and εX
are real. The functions ∆SM

L,T (q2
1, q

2
2) denote subleading non-local contributions that are

regular both in the limit q2
1,2 → 0 and in the limit q2

1,2 → m2
Z . As in the 3-body decay

case, this part of the amplitude is largely subdominant and not affected by operators with
dimension up to 6, therefore it is fixed it to its SM value.

4.2 h→ 4f charged currents

Let us consider the h → `ν̄` ¯̀′ν`′ process.2 Employing the same assumptions used in the
neutral current case, we can decompose the amplitude in the following way:

Ac.c.
[
h→ `(p1)ν̄`(p2)ν`′(p3)¯̀′(p4)

]
= i

2m2
W

vF
(¯̀
Lγµν`L)(ν̄`′Lγν`

′
L)T µνc.c.(q1, q2)

T µνc.c.(q1, q2) =

[
G``′

L (q2
1, q

2
2)gµν +G``′

T (q2
1, q

2
2)
q1·q2 g

µν − q2
µq1

ν

m2
W

+G``′

CP (q2
1, q

2
2)
εµνρσq2ρq1σ

m2
W

]
,

(25)

2 The analysis of a process involving quarks is equivalent, with the only difference that the εWf

coefficients are in this case non-diagonal matrices in flavor space, as the gWud effective couplings.
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where q1 = p1 + p2 and q2 = p3 + p4. The decomposition of the form factors, that allows
us to define the charged-current PO, is [3]

G``′

L (q2
1, q

2
2) = κWW

(g`W )∗g`
′
W

PW (q2
1)PW (q2

2)
+

(εW`)
∗

m2
W

g`
′
W

PW (q2
2)

+
εW`′

m2
W

(g`W )∗

PW (q2
1)
, (26)

G``′

T (q2
1, q

2
2) = εWW

(g`W )∗g`
′
W

PW (q2
1)PW (q2

2)
, (27)

G``′

CP (q2
1, q

2
2) = εCP

WW

(g`W )∗g`
′
W

PW (q2
1)PW (q2

2)
, (28)

where PW (q2) is the W propagator defined analogously to PZ(q2) and gfW are the effective
couplings describing on-shell W decays (we have absorbed a factor of g compared to
standard notations). In the SM

(gikW )SM =
g√
2
Vik , (29)

where V is the CKM mixing matrix.3 In absence of rescattering effects, the Hermiticity of
the underlying effective Lagrangian implies that κWW , εWW and εCP

WW are real couplings,
while εW` can be complex.

4.3 h→ 4f complete decomposition

The complete decomposition of a generic h→ 4f amplitude is obtained combining neutral-
and charged-current contributions depending on the nature of the fermions involved. For
instance h → 2e2µ and h → `¯̀qq̄ decays are determined by a single neutral current
amplitude, while the case of two identical lepton pairs is obtained from Eq. (20) taking
into account the proper (anti-)symmetrization of the amplitude:

A
[
h→ `(p1)¯̀(p2)`(p3)¯̀(p4)

]
= An.c.

[
h→ f(p1)f̄(p2)f ′(p3)f̄ ′(p4)

]
f=f ′=`

− An.c.
[
h→ f(p1)f̄(p4)f ′(p3)f̄ ′(p2)

]
f=f ′=`

. (30)

The h → e±µ∓νν̄ decays receive contributions from a single charged-current amplitude,
while in the h→ `¯̀νν̄ case we have to sum charged and neutral-current contributions:

A
[
h→ `(p1)¯̀(p2)ν(p3)ν̄(p4)

]
= An.c.

[
h→ `(p1)¯̀(p2)ν(p3)ν̄(p4)

]
− Ac.c.

[
h→ `(p1)ν̄(p4)ν(p3)¯̀(p2)

]
. (31)

3More precisely, (gikW )SM = g√
2
Vik if i and k refers to left-handed quarks, otherwise (gikW )SM = 0.
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4.4 Physical PO for h→ 4`

To define the idealised physical PO we start with the quadratic terms for each of the form
factors in Eqs. (21-23), and compute their contribution to the double differential decay
rate for h→ e+e−µ+µ− (for κZZ , εZZ and εCP

ZZ) and for h→ Z`+`− (for the contact terms
εZ`).

Decay channel h→ e+e−µ+µ−

We choose this particular decay channel for the (conventional) definition of the physical
PO because it depends on all the PO relevant for h → 4` and because it does not
contain interference between the two fermion currents as in Eq. (30). The independent
contributions of the three form factors to the decay rate are:

dΓLL

dm1dm2

=
λpβ10

2304π5

m4
Zm

3
h

v2
F

m1m2

∑
f,f ′

∣∣∣F ff ′

L

∣∣∣2 ,

dΓTT

dm1dm2

=
λpβ4

1152π5

m3
h

v2
F

m3
1m

3
2

∑
f,f ′

∣∣∣F ff ′

T

∣∣∣2 ,

dΓCP

dm1dm2

=
λpβ2

1152π5

m3
h

v2
F

m3
1m

3
2

∑
f,f ′

∣∣∣F ff ′

CP

∣∣∣2 ,

(32)

where f = eL, eR, f ′ = µL, µR, m1(2) ≡
√
q2

1(2) and

λp =

√
1 +

(
m2

1 −m2
2

m2
h

)2

− 2
m2

1 +m2
2

m2
h

, βN = 1 +
m4

1 +Nm2
1m

2
2 +m4

2

m4
h

− 2
m2

1 +m2
2

m2
h

.

(33)

Inside the each term of the type
∑

f,f ′

∣∣∣F ff ′

i

∣∣∣2, we extract only the quadratic terms in each

PO. By integrating in m1 and m2 we obtain the partial decay rates as given by each PO
separately (in the limit where the others are negligible):

Γ(h→ 2e2µ)[κZZ ] = 4.929× 10−2(|gZeL|2 + |gZeR |2)(|gZµL|2 + |gZµR |2) |κZZ |2 MeV

Γ(h→ 2e2µ)[εZZ ] = 4.458× 10−3(|gZeL|2 + |gZeR |2)(|gZµL|2 + |gZµR |2) |εZZ |2 MeV

Γ(h→ 2e2µ)[εCP
ZZ ] = 1.884× 10−3(|gZeL|2 + |gZeR |2)(|gZµL|2 + |gZµR |2) |εCP

ZZ |2 MeV

(34)

The numerical coefficients in Eq. (34) have been obtained neglecting QED corrections.
The latter must be included at the simulation level by appropriate QED showering pro-
grams, such as PHOTOS [11]. As shown in Ref. [12]: the impact of such corrections is
negligible after integrating over the full phase space, hence in the overall normalization
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of the partial rates in Eq. (34), while they can provide sizable distortions of the spectra
in specific phase-space regions.

Since each effective coupling PO correspond to a well-defined pole contribution to the
amplitude (with one or two poles of the Z boson), and a well-defined Lorentz and flavor
structure, we can associate to the those partial rates a well-defined physical meaning. In
particular, we define the following physical PO for the h→ 4` decays:

Γ(h→ ZLZL) ≡ Γ(h→ 2e2µ)[κZZ ]

B(Z → 2e)B(Z → 2µ)
= 0.209 |κZZ |2 MeV

Γ(h→ ZTZT ) ≡ Γ(h→ 2e2µ)[εZZ ]

B(Z → 2e)B(Z → 2µ)
= 0.0189 |εZZ |2 MeV

ΓCPV(h→ ZTZT ) ≡ Γ(h→ 2e2µ)[εCP
ZZ ]

B(Z → 2e)B(Z → 2µ)
= 0.00799 |εCP

ZZ |2 MeV

(35)

where, due to the double pole structure of the amplitude, we have removed the (physical)
branching ratios of the Z → e+e− and Z → µ+µ− decays. Here

B(Z → 2`) =
Γ0

ΓZ
R`
(

(g`LZ )2 + (g`RZ )2
)
' 0.4856

(
(g`LZ )2 + (g`RZ )2

)
, (36)

where Γ0 = mZ
24π

, ΓZ is the total decay width and R` =
(
1 + 3

4π
α(mZ)

)
describes final state

QED radiation.

Decay channel h→ Z`+`−

The idealised physical PO related to the contact terms can be defined directly from the
on-shell decay h → Z`+`−, where ` = eL, eR, µL, µR and the Z boson is assumed to be
on-shell (narrow width approximation). We compute this decay rate, neglecting QED
corrections and light lepton masses, in presence of the contact terms εZ` only. The Dalitz
double differential rate in s12 ≡ (p`+ + p`−)2 and s23 ≡ (p`− + pZ)2 is

dΓ

ds12ds23

=
1

(2π)3

1

32m2
h

4|εZ`|2

v2

(
s12 +

(s23 −m2
Z)(m2

h − s12 − s23)

m2
Z

)
, (37)

The allowed kinematical region is 0 < s12 < (mh −mZ)2 and, for any given value of s12,
smin

23 < s23 < sMax
23 with

s
min(Max)
23 = (E∗2 + E∗Z)2 −

(
E∗2 ±

√
(E∗Z)2 −m2

Z

)2

, (38)

where E∗2 =
√
s12/2 and E∗Z =

m2
h−s12−m

2
Z

2
√
s12

. The total decay width defines the relation

between the physical PO and the effective couplings PO as:

Γ(h→ Z`+`−) = 0.0366|εZ`|2 MeV . (39)
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Together with the physical PO already defined for h → γγ and h → Zγ, we have thus
established a complete mapping between the effective couplings PO and the physical PO
appearing in h→ 4` decays.

4.5 Physical PO for h→ 2`2ν

Physical observables for charged-current processes can be defined in a very similar way as
the neutral-current ones. In particular, we use the h→ e+νeµ

−ν̄µ process for the physical
PO corresponding to kWW , εWW , and εCP

WW , and h→ W+`ν̄` for the contact terms.

Decay channel h→ e+νeµ
−ν̄µ

Integrating the differential distributions analogous to Eq. (32) we obtain the expression
of the total decay rate in this channel, in the limit where only one PO is turned on:

Γ(h→ eµ2ν)[κWW ] = 2.20× 10−4|gWeL|2|gWµL|2 |κWW |2 MeV

Γ(h→ eµ2ν)[εWW ] = 4.27× 10−5|gWeL|2|gWµL|2 |εWW |2 MeV

Γ(h→ eµ2ν)[εCP
WW ] = 1.77× 10−5|gWeL|2|gWµL|2 |εCP

WW |2 MeV

(40)

As in the neutral channel, the physical PO are defined from these quantities by factorizing
the W branching ratios:

Γ(h→ WLWL) ≡ Γ(h→ eµ2ν)[κWW ]

B(W → eν̄e)B(W → µν̄µ)
= 0.841 |κWW |2 MeV

Γ(h→ WTWT ) ≡ Γ(h→ eµ2ν)[εWW ]

B(W → eν̄e)B(W → µν̄µ)
= 0.163 |εWW |2 MeV

ΓCPV(h→ WTWT ) ≡ Γ(h→ eµ2ν)[εCP
WW ]

B(W → eν̄e)B(W → µν̄µ)
= 0.0677 |εCP

WW |2 MeV .

(41)

The W branching ratios are given by

B(W → `ν̄`) =
Γ0

ΓW
(gW`L)2 ' 0.511(gW`L)2 , (42)

where Γ0 = mW
24π

, ΓW is the total decay width.

Decay channel h→ W+`ν̄`

Also in this case the physical PO corresponding to the charged-current contact terms are
defined in complete analogy to the neutral-current case, starting from the 3-body decay
h → W+`ν̄`. The total decay width computed in the limit where only the contact term
PO is switched on defines the relation between the physical PO and the effective couplings
PO as:

Γ(h→ W+`ν̄`) = 0.143|εW`|2 MeV . (43)
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PO Physical PO Relation to the eff. coupl.

κf , λ
CP
f Γ(h→ ff̄) = Γ(h→ ff̄)(SM)[(κf )

2 + (λCP
f )2]

κγγ, λ
CP
γγ Γ(h→ γγ) = Γ(h→ γγ)(SM)[(κγγ)

2 + (λCP
γγ )2]

κZγ, λ
CP
Zγ Γ(h→ Zγ) = Γ(h→ Zγ)(SM)[(κZγ)

2 + (λCP
Zγ )2]

κZZ Γ(h→ ZLZL) = (0.209 MeV)× |κZZ |2

εZZ Γ(h→ ZTZT ) = (1.9× 10−2 MeV)× |εZZ |2

εCP
ZZ ΓCPV(h→ ZTZT ) = (8.0× 10−3 MeV)× |εCP

ZZ |2

εZf Γ(h→ Zff̄) = (3.7× 10−2 MeV)×N f
c |εZf |2

κWW Γ(h→ WLWL) = (0.84 MeV)× |κWW |2

εWW Γ(h→ WTWT ) = (0.16 MeV)× |εWW |2

εCP
WW ΓCPV(h→ WTWT ) = (6.8× 10−2 MeV)× |εCP

WW |2

εWf Γ(h→ Wff̄ ′) = (0.14 MeV)×N f
c |εWf |2

Table 1: Summary of the effective coupling PO and the corresponding physical PO. The
parameter N f

c is 1 for leptons and 3 for quarks. In the case of the charged-current contact
term, f ′ is the SU(2)L partner of the fermion f .

5 PO in Higgs electroweak production: generalities

The PO decomposition of h→ 4f amplitude discussed above can naturally be generalized
to describe electroweak Higgs-production processes, namely Higgs-production via vector-
boson fusion (VBF) and Higgs-production in association with a massive SM gauge boson
(VH).

The interest of such production processes is twofold. On the one hand, they are closely
connected to the h→ 4`, 2`2ν decay processes by crossing symmetry, and by the exchange
of lepton currents into quark currents. As a result, some of the Higgs PO necessary to
describe the h→ 4`, 2`2ν decay kinematics appear also in the description of the VBF and
VH cross sections (independently of the Higgs decay mode). This facts opens the possibil-
ity of combined analyses of production cross sections and differential decay distributions,
with a significant reduction on the experimental error on the extraction of the PO. On the
other hand, the production cross sections allow to explore different kinematical regimes
compared to the decays. By construction, the momentum transfer appearing in the Higgs
decay amplitudes is limited by the Higgs mass, while such limitation is not present in the
production amplitudes. The higher energies probed in the production processes provide
an increased sensitivity to new physics effects. This fact also allows to test the momentum
expansion that is intrinsic in the PO decomposition, as well as in any effective field theory
approach to physics beyond the SM.
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Despite the similarities at the fundamental level, the phenomenological description of
VBF and VH in terms of PO is significantly more challenging compared to that of Higgs
decays. On the one hand, QCD corrections plays a non-negligible role in the production
processes. Although technically challenging, this fact does not represent a conceptual
problem for the PO approach: the leading QCD corrections factorize in VBF and VH,
similarly to the factorization of QED corrections in h→ 4`. This implies that NLO QCD
corrections can be incorporated in general terms with suitable modifications of the existing
Montecarlo tools. On the other hand, the relation between the kinematical variables at the
basis of the PO decomposition (i.e. the momentum transfer of the partonic currents, q2)
and the kinematical variables accessible in pp collisions is not straightforward, especially
in the VBF case. This problem finds a natural solution in the VBF case due to strong
correlation between q2 and the pT of the VBF tagged jets.

5.1 Amplitude decomposition

Neglecting the light fermion masses, the electroweak production processes VH and VBF
or, more precisely, the electroweak partonic amplitudes f1f2 → h+f3f4, can be completely
described by the three-point correlation function of the Higgs boson and two (color-less)
fermion currents

〈0|T
{
Jµf (x), Jνf ′(y), h(0)

}
|0〉 , (44)

where all the states involved are on-shell. The same correlation function controls also
the four-fermion Higgs decays discussed above. In the h → 4`, 2`2ν case both currents
are leptonic and all fermions are in the final state. In case of VH associate production
one of the currents describes the initial state quarks, while the other describes the decay
products of the (nearly on-shell) vector boson. Finally, in VBF production the currents
are not in the s-channel as in the previous cases, but in the t-channel. Strictly speaking,
in VH and VBF the quark states are not on-shell; however, their off-shellness of order
ΛQCD can be safely neglected compared to the electroweak scale characterizing the process
(both within and beyond the SM).

As in the h → 4f case, we can expand the correlation function in Eq. (44) around
the known physical poles due to the propagation of intermediate SM electroweak gauge
bosons. The PO are then defined by the residues on the poles and by the non-resonant
terms in this expansion. By construction, terms corresponding to a double pole structure
are independent from the nature of the fermion current involved. As a result, the corre-
sponding PO are universal and can be extracted from any of the above mention processes,
both in production and in decays [7].

5.1.1 Vector boson fusion Higgs production

Higgs production via vector boson fusion (VBF) receives contribution both from neutral-
and charged-current channels. Also, depending on the specific partonic process, there
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could be two different ways to construct the two currents, and these two terms interfere
with each other. For example, for uu → uuh one has the interference between two
neutral-current processes, while in ud → udh the interference is between neutral and
charged currents. In this case it is clear that one should sum the two amplitudes with the
proper symmetrization, as done in the case of h→ 4e.

We now proceed describing how each of these amplitudes can be parametrized in terms
of PO. Let us start with the neutral-current one. The amplitude for the on-shell process
qi(p1)qj(p2)→ qi(p3)qj(p4)h(k) can be parametrized by

An.c(qi(p1)qj(p2)→ qi(p3)qj(p4)h(k)) = i
2m2

Z

v
q̄i(p3)γµqi(p1)q̄j(p4)γνqj(p2)T µνn.c.(q1, q2),

(45)
where q1 = p1− p3, q2 = p2− p4 and T µνn.c.(q1, q2) is the same tensor structure appearing in
h→ 4f decays. Indeed, proceeding as in Eq. (20), using Lorentz invariance we decompose
this tensor structure in term of three from factors:

T µνn.c.(q1, q2) =

[
F
qiqj
L (q2

1, q
2
2)gµν + F

qiqj
T (q2

1, q
2
2)
q1·q2 g

µν − q2
µq1

ν

m2
Z

+ F
qiqj
CP (q2

1, q
2
2)
εµνρσq2ρq1σ

m2
Z

]
.

(46)
Similarly, the charged-current contribution to the amplitude for the on-shell process
ui(p1)dj(p2)→ dk(p3)ul(p4)h(k) can be parametrized by

Ac.c(ui(p1)dj(p2)→ dk(p3)ul(p4)h(k)) = i
2m2

W

v
d̄k(p3)γµui(p1)ūl(p4)γνdj(p2)T µνc.c.(q1, q2),

(47)
where, again, T µνc.c.(q1, q2) is the same tensor structure appearing in the charged-current
h→ 4f decays:

T µνc.c.(q1, q2) =

[
Gijkl
L (q2

1, q
2
2)gµν +Gijkl

T (q2
1, q

2
2)
q1·q2 g

µν − q2
µq1

ν

m2
W

+Gijkl
CP (q2

1, q
2
2)
εµνρσq2ρq1σ

m2
W

]
(48)

The amplitudes for the processes with initial anti-quarks can easily be obtained from the
above ones.

The next step is to perform a momentum expansion of the form factors around the
physical poles due to the propagation of SM electroweak gauge bosons (γ, Z and W±),
and to define the PO (i.e. the set {κi, εi}) from the residues of such poles. We stop this
expansion neglecting terms which can be generated only by local operators with dimension
higher than six. A discussion about limitations and consistency checks of this procedure
will be presented later on. The decomposition of the form factors closely follows the
procedure already introduced for the decay amplitudes and will not be repeated here. We
report explicitly only expression of the longitudinal form factors, where the contact terms
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not accessible in the leptonic decays appear:

F
qiqj
L (q2

1, q
2
2) = κZZ

gqiZ g
qj
Z

PZ(q2
1)PZ(q2

2)
+
εZqi
m2
Z

g
qj
Z

PZ(q2
2)

+
εZqj
m2
Z

gqiZ
PZ(q2

1)
+ ∆SM

L,n.c.(q
2
1, q

2
2) ,

Gijkl
L (q2

1, q
2
2) = κWW

gikWg
jl
W

PW (q2
1)PW (q2

2)
+
εWik

m2
W

gjlW
PW (q2

2)
+
εWjl

m2
W

gikW
PW (q2

1)
+ ∆SM

L,c.c(q
2
1, q

2
2) .

(49)

Here PV (q2) = q2−m2
V + imV ΓV , while gfZ and gikW are the PO characterizing the on-shell

couplings of Z and W boson to a pair of fermions, see eqs.(24) and (29). : within the
SM gfZ = g

cθW
(T f3 −Qfs

2
θW

) and gikW = g√
2
Vik, where V is the CKM mixing matrix. The

functions ∆SM
L,n.c.(c.c.)(q

2
1, q

2
2) denote non-local contributions generated at the one-loop level

(and encoding multi-particle cuts) that cannot be re-absorbed in the definition of κi and
εi. At the level of precision we are working, taking into account also the high-luminosity
phase of the LHC, these contributions can be safely fixed to their SM values.

As anticipated, the crossing symmetry between h → 4f and 2f → h 2f amplitudes
ensures that the PO are the same in production and decay (if the same fermions species
are involved). The amplitudes are explored in different kinematical regimes in the two
type of processes (in particular the momentum-transfers, q2

1,2, are space-like in VBF and
time-like in h→ 4f). However, this does not affect the definition of the PO. This implies
that the fermion-independent PO associated to a double pole structure, such as κZZ and
κWW in Eq. (49), are expected to be measured with higher accuracy in h → 4` and
h → 2`2ν rather than in VBF. On the contrary, VBF is particularly useful to constrain
the fermion-dependent contact terms εZqi and εWuidj , that appear only in the longitudinal
form factors.

5.1.2 Associated vector boson plus Higgs production

The VH production process denote the production of a Higgs boson with a nearly on-
shell massive vector boson (W or Z). For simplicity, in the following we will assume that
the vector boson is on-shell and that the interference with the VBF amplitude can be
neglected. However, we stress that the PO formalism clearly allow to describe both these
effects (off-shell V and interference with VBF in case of V → q̄q decay) simply applying
the general decomposition of neutral- and charged-current amplitudes as outlined above.

Similarly to VBF, Lorentz invariance allows us to decompose the amplitudes for the on-
shell processes qi(p1)q̄i(p2) → h(p)Z(k) and ui(p1)d̄j(p2) → h(p)W+(k) in three possible
tensor structures: a longitudinal one, a transverse one, and a CP-odd one,

A(qi(p1)q̄i(p2)→ h(p)Z(k)) = i
2m2

Z

v
q̄i(p2)γνqi(p1)εZ∗µ (k)×

×
[
F qiZ
L (q2)gµν + F qiZ

T (q2)
−(q · k)gµν + qµkν

m2
Z

+ F qiZ
CP (q2)

εµναβqαkβ
m2
Z

]
,

(50)
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A(ui(p1)d̄j(p2)→ h(p)W+(k)) = i
2m2

W

v
d̄j(p2)γνui(p1)εW∗µ (k)×

×
[
G
qijW
L (q2)gµν +G

qijW
T (q2)

−(q · k)gµν + qµkν

m2
W

+G
qijW
CP (q2)

εµναβqαkβ
m2
W

]
,

(51)

where q = p1 + p2 = k + p. In the limit where we neglect the off-shellness of the final-
sate V , the form factors can only depend on q2. Already from this decomposition of the
amplitude it is clear the importance of providing measurements of the differential cross-
section as a function of q2, as well as differential measurements in terms of the angular
variables that allow to disentangle the different tensor structures.

Performing the momentum expansion of the form factors around the physical poles,
and defining the PO as in Higgs decays and VBF, we find

F qiZ
L (q2) = κZZ

gZqi
PZ(q2)

+
εZqi
m2
Z

G
qijW
L (q2) = κWW

(g
uidj
W )∗

PW (q2)
+

ε∗Wuidj

m2
W

F qiZ
T (q2) = εZZ

gZqi
PZ(q2)

+ εZγ
eQq
q2

G
qijW
T (q2) = εWW

(g
uidj
W )∗

PW (q2)

F qiZ
CP (q2) = εCP

ZZ

gZqi
PZ(q2)

− εCP
Zγ

eQq
q2

G
qijW
CP (q2) = εCP

WW
(g
uidj
W )∗

PW (q2)

(52)

where we have omitted the indication of the (tiny) non-local terms, fixed to their corre-
sponding SM values. As in the VBF case, only the longitudinal form factors FL and GL

contains PO not accessible in decays, namely the quark contact terms εZqi and εWuidj .

6 PO in Higgs electroweak production: phenomenol-

ogy

6.1 Vector Boson Fusion

At the parton level (i.e. in the qq → hqq hard scattering) the ideal observable relevant to
extract the momentum dependence of the factor factors would be the double differential
cross section d2σ/dq2

1dq
2
2, where q1 = p1− p3 and q2 = p2− p4 are the momenta of the two

fermion currents entering the process (here p1, p2 (p3, p4) are the momenta of the initial
(final) state quarks). The q2

i are also the key variables to test and control the momentum
expansion at the basis of the PO decomposition.

A fist nontrivial task is to choose the proper pairing of the incoming and outgoing
quarks, given we are experimentally blind to their flavor. For partonic processes receiving
two interfering contributions when the final-state quarks are exchanged, such as uu→ huu
or ud→ hud, the definition of q1,2 is even less transparent since a univocal pairing of the
momenta can not be assigned, in general, even if one knew the flavor of all partons.
This problem can be simply overcome at a practical level by making use of the VBF
kinematics, in particular the fact that the two jets are always very forward. This implies
one can always pair the momenta of the jet going, for example, on the +z direction with
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the initial parton going in the same direction, and viceversa. The same argument can
be used to argue that the interference between different amplitudes (e.g. neutral current
and charged current) is negligible in VBF. In order to check this, we have performed a
leading order parton level simulation of the VBF Higgs production (pp → hjj) using
MadGraph5 aMC@NLO [13] (version 2.2.3) at 13 TeV c.m. energy. We have imposed
the basic set of cuts,

pT,j1,2 > 30 GeV, |ηj1,2 | < 4.5, and mj1j2 > 500 GeV. (53)

In Fig. 1, we show the distribution in the opening angle of the incoming and outgoing
quark momenta for the two different pairings. The left plot is for the SM, while the right
plot is for a specific NP benchmark point. Shown in blue is the pairing based on the
leading color connection using the color flow variable while in red is the opposite pairing.
The plot shows that the momenta of the color connected quarks tend to form a small
opening angle and the overlap between the two curves, i.e. where the interference effects
might be sizable, is negligible. This implies that in the experimental analysis the pairing
should be done based on this variable. Importantly, the same conclusions can be drawn
in the presence of new physics contributions to the contact terms.

There is a potential caveat to the above argument: the color flow approximation
ignores the interference terms that are higher order in 1/NC . Let us consider a process
with two interfering amplitudes with the final state quarks exchanged, for example in
uu → uuh. The differential cross section receives three contributions proportional to
|F ff ′

L (t13, t24)|2, |F ff ′

L (t13, t24)F ff ′

L (t14, t23)| and |F ff ′

L (t14, t23)|2, where tij = (pi − pj)
2 =

−2EiEj(1 − cos θij). For the validity of the momentum expansion it is important that
the momentum transfers (tij) remain smaller than the hypothesized scale of new physics.
On the other hand, imposing the VBF cuts, the interference terms turns out to depend
on one small and one large momentum transfer. However, thanks to the pole structure
of the form factors, these interference effects turns out to give a very small contribution.
Therefore, we can safely state that the momentum transfers marked with the leading color
flow are reliable control variables of the momentum expansion validity.

In some realistic experimental analyses, after reconstructing the momenta of the two
VBF tagged jets and the Higgs boson, one can compute the relevant momentum transfers
q1 and q2, adopting the pairing based on the opening angle. However, for some interesting
Higgs decays modes, such as h→ 2`2ν, it is not possible to reconstruct the Higgs boson
momentum. In this case, a good approximation of the momentum transfer is the jet
pT . This can be understood by explicitly computing the momentum transfer q2

1,2 in the
limit |pT | � Ejet and for a Higgs produced close to threshold. Let us consider the
partonic momenta in c.o.m. frame for the process: p1 = (E,~0, E), p2 = (E,~0,−E),
p3 = (E ′1, ~pT1,

√
E ′21 − p2

T1) and p4 = (E ′2, ~pT2,
√
E ′22 − p2

T2). Conservation of energy for
the whole process dictates 2E = E ′1 + E ′2 + Eh, where E2

h is the Higgs energy, usually of
order mh if the Higgs is not strongly boosted. In this case E − E ′i = ∆Ei � E since the
process is symmetric for 1↔ 2. For each leg, energy and momentum conservation (along
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Figure 1: Leading order parton level simulation of the Higgs VBF production at 13 TeV
pp c.m. energy. Show in blue is the distribution in the opening angle of the color connected
incoming and outgoing quarks ](~p3, ~p1), while in red is the distribution for the opposite pairing,
∠(~p3, ~p2). The left plot is for the SM, while the plot on the right is for a specific NP benchmark.
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Figure 2: Leading order parton level simulation of the Higgs VBF production at 13 TeV pp
c.m. energy. Shown here is the density histogram in two variables; the outgoing quark pT and
the momentum transfer

√
−q2 with the initial “color-connected” quark. The left plot is for the

SM, while the plot on the right is for a specific NP benchmark.
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the z axis) give{
qzi = E −

√
E ′2i − p2

Ti

q0
i = E − E ′i

→

{
q0
i − qzi =

√
E ′2i − p2

T i − E ′i ≈ −
p2Ti
2E′i

q0
i + qzi ≈ 2∆Ei +

p2Ti
2E′i

. (54)

Putting together these two relations one gets

q2
i = (q0

i )
2−p2

T i− (qzi )
2 = −p2

T i+ (q0
i − qzi )(q0

i + qzi ) ≈ −p2
T i−

p2
T i∆Ei
2E ′i

+O(p4
Ti/E

′2) . (55)

We can thus conclude that, for a Higgs produced near threshold (∆Ei � E ′), q2 ≈ −p2
T .

To illustrate the above conclusion, in Fig. 2 we show a density histogram in two
variables: the outgoing quark pT and the momentum transfer

√
−q2 obtained from the

correct color flow pairing (the left and the right plots are for the SM and for a specific
NP benchmark, respectively). The plots indicate the strong correlation of the jet pT with
the momentum transfer

√
−q2 associated with the correct color pairing. We stress that

this conclusion holds both within and beyond the SM.
Given the strong q2 ↔ p2

T correlation, we strongly encourage the experimental col-
laborations to report the unfolded measurement of the double differential distributions
in the two VBF tagged jet pT ’s: F̃ (pTj1 , pTj2). This measurable distribution is closely
related to the form factor entering the amplitude decomposition, FL(q2

1, q
2
2), and encode

(in a model-independent way) the dynamical information about the high-energy behavior
of the process. Moreover, the extraction of the PO in VBF must be done preserving
the validity of the momentum expansion: the latter can be checked and enforced setting
appropriate upper cuts on the pT distribution. As an example, in Fig. 3, we show the
prediction in the SM (left plot) and in the specific NP benchmark (right plot) of the
normalized pT -ordered double differential distribution.

6.2 Associated vector boson plus Higgs production

Higgs production in association with a W or Z boson are respectively the third and
fourh Higgs production processes in the SM, by total cross section. Combined with VBF
studies, they offer other important handles to disentangle the various Higgs PO. Due
the lower cross section, this process is mainly studied in the highest-rate Higgs decay
channels, such as h→ bb̄ and WW ∗. The drawback of these channels is the background,
which is overwhelming in the bb̄ case and of the same order as the signal in the WW ∗

channels. Nonetheless, kinematical cuts, such as the Higgs pT in the bb̄ case, and the use
of multivariate analysis allow the experiments to precisely extract the the signal rates
from these measurements.

An important improvement for future studies of these channels with the much higher
luminosity which will be available, is to study differential distributions in some specific
kinematical variables. In Section 5.1.2 we showed that the invariant mass of the V h
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Figure 3: Double differential distribution in the two VBF-tagged jet pT for VBF Higgs pro-
duction at 13 TeV LHC. The distribution is normalized such that the total sum of events in all
bins is 1. (Left) Prediction in the SM. (Right) Prediction for NP in εWuL = 0.05.
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system is the most important observable in this process, since the form factors directly
depend on it. In those channels where the V h invariant mass can not be reconstructed
due to the presence of neutrinos, another observable which shows some correlation with
the q2 is the pT of the vector boson, or equivalently of the Higgs, as can be seen in the
Fig. 4. Even though this correlation is not as good as the one between the jet pT and the
momentum transfer in the VBF channel, a measurement of the vector boson (or Higgs) pT
spectrum, i.e. of some form factor F̃ V h(pTV ) would still offer important information on the

underlying structure of the form factors appearing in Eq. (52), F qiZ
L (q2) or G

qijW
L (q2). The

invariant mass of the V h system is given by m2
V h = q2 = (pV +ph)

2 = m2
V +m2

h+ 2pV ·ph.
Going in the c.m. frame, we have pV = (EV , ~pT , pz) and ph = (Eh,−~pT ,−pz), where
Ei =

√
m2
i + p2

T + p2
z (i = V, h). Computing m2

V h explicitly:

m2
V h = m2

V +m2
h + 2p2

T + 2p2
z + 2

√
m2
V + p2

T + p2
z

√
m2
h + p2

T + p2
z

|pT |→∞−→ 4p2
T . (56)

For pz = 0 this equation gives the minimum q2 for a given pT , which can be seen as the
left edge of the distributions in the Fig. 4. This is already a valuable information, for
example the boosted Higgs regime used in some bb̄ analysis implies a lower cut on the
q2: a bin with pT > 300 GeV implies

√
q2 & 630 GeV, which could be a problem for the

validity of the momentum expansion.
In the Wh process, if the W decays leptonically its pT can not be reconstructed

independently of the Higgs decay channel. One could think that the pT of the charged
lepton from the W decay would be correlated with the Wh invariant mass, but we checked
that there is no significant correlation between the two observables.

6.3 Validity of the momentum expansion

In VBF, in order to control the momentum expansion at the basis of the PO composition,
it is necessary to set an upper cut on the leading VBF-tagged jet pT . The momentum
expansion of the form factors in Eq. (49) makes sense only if the higher order terms in
q2

1,2 are suppressed. This leads to a consistency condition,

εXf q
2
max . m2

Z g
f
X , (57)

where q2
max is the largest momentum transfer in the process. A priori we don’t know

which is the size of the εXf or, equivalently, the effective scale of new physics. However, a
posteriori we can verify by means of Eq. (57) if we are allowed to truncate the momentum
expansion to the first non-trivial terms. In practice, setting a cut-off on pT we implicitly
define a value of qmax. Extracting the εXf for pjT < (pjT )max ≈ qmax we can check if Eq. (57)
is satisfied. Ideally, the experimental collaborations should perform the extraction of the
εXf for different values of (pjT )max optimizing the range according to the results obtained.

A further simple check to assess the validity of the momentum expansion is obtained
comparing the fit performed including the full quadratic dependence of the distributions,

24



as function on the PO, with the fit in which such distributions are linearized in δκX ≡
κX − κSM

X and εX . The idea behind this procedure is that the quadratic corrections to
physical observable in δκX and εX are formally of the same order as the interference of
the first neglected term in Eq. (49) with the leading SM contribution. If the two fits
provide similar results, one can conclude that the terms neglected in PO decomposition
are indeed subleasing. If the the fits yields significantly different results, the difference
can be used as an estimate of the uncertainty due to the neglected higher-order terms in
the momentum expansion.

• To be continued....

7 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes and productions cross sections [this
section is still to be checked/completed]

7.1 Yukawa modes

Regarding h → ff̄ decay modes, as discussed in Sec. 2.1 the amplitude is fully charac-
terised by two independent PO; κf and λCP

f . Considering only the decay channels relevant
for LHC, the full set of 8 parameters is:

κb, κc, κτ , κµ, λ
CP
b , λCP

c , λCP
τ , λCP

µ . (58)

Assuming in addition CP conservation, λCP
f = 0 for each f , the number of PO is reduced

to 4.

7.2 Higgs EW decays

As far as EW decays are concerned, we focus our attention only on leptonic channels. The
neutral current processes h → e+e−µ+µ−, h → e+e−e+e− and h → µ+µ−µ+µ−, together
with the photon channels h → γγ and h → `+`−γ, can be described in terms of 11 real
parameters:

κZZ , κZγ, κγγ, εZZ , ε
CP
ZZ , ε

CP
Zγ , ε

CP
γγ , εZeL , εZeR , εZµL , εZµR (59)

(of which only the subset {κγγ, κZγ, εCPγγ , εCPZγ , } is necessary to describe h → γγ and
h → `+`−γ). The charged-current process h → ν̄eeµ̄νµ needs 7 further independent real
parameters to be completely specified:

κWW , εWW , ε
CP
WW (real) + εWeL , εWµL (complex) . (60)
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Finally, the mixed processes h→ e+e−νν̄ and h→ µ+µ−νν̄ can be described by a subset
of the coefficients already introduced plus 2 further real contact interactions coefficients:

εZνe , εZνµ . (61)

This brings the total number of (real) parameters to 20.
A first simple restriction in the number of parameters is obtained by assuming flavor

universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coefficients are independent of
the generations:

εZeL = εZµL , εZeR = εZµR , εZνe = εZνµ , εWeL = εWµL . (62)

Since the last coefficients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h → 2e2µ, h → 4e and h → 4µ
modes.

The assumption that CP is a good approximate symmetry of the BSM sector and that
the Higgs is a CP-even state, allows us to set to zero six independent (real) coefficients:

εCPZZ = εCPZγ = εCPγγ = εCPWW = ImεWeL = ImεWµL = 0 . (63)

Assuming, at the same time, flavor universality, the number of free real parameters reduces
to 10.

7.3 EW production processes

The additional set of PO appearing in EW production process, compared to h → 4`
decays, is represented by the contact terms for the light quarks. In a four-flavor scheme,
in absence of any symmetry assumption, the number of independent parameters for the
neutral currents contact terms is 16 (εZqij , where q = uL, uR, dL, dR, and i, j = 1, 2):
8 real parameters for flavor diagonal terms and 4 complex flavour-violating parameters.
Similarly, there are 16 independent parameters in charged currents, namely the 8 complex
terms εWuiLd

j
L

and εWuiRd
j
R

. However, we can strongly reduce the number of independent

PO under neglecting the terms that violates the U(1)f flavour symmetry acting on each

of the light fermion species, uR, dR, sR, cR, q
(d)
L , and q

(s)
L , where q

(d,s)
L denotes the two

quark doublets in the basis where down quarks are diagonal. This symmetry is an exact
symmetry of the SM in the limit where we neglect light quark masses. Enforcing it at the
PO level is equivalent to neglecting terms that do not interfere with SM amplitudes in
the limit of vanishing light quark masses. Under this (rather conservative) assumption,
the number of independent neutral currents contact terms reduces to 8 real parameters,

εZuR , εZcR , εZdR , εZsR , εZdL , εZsL , εZuL , εZcL , (64)
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and only 2 complex parameters are in the charged-current case:

εWuiLd
j
L
≡ VijεWujL

, εWuiRd
j
R

= 0 . (65)

A further interesting reduction of the number of parameters occurs under the assump-
tion of an U(2)3 symmetry acting on the first two generations, namely the maximal flavor
symmetry compatible with the SM gauge group. The independent parameters in this case
reduces to six:

εZuL , εZuR , εZdL , εZdR , εWuL , (66)

where εWuL is complex, or five if we further neglect CP-violating contributions (in such
case εWuL is real). We employ this set of assumptions (U(2)3 flavor symmetry and CP
conservation) in the phenomenological analysis of VBF and VH processes discussed in
the rest of the paper. The last symmetry hypothesis that can be enforced is custodial
symmetry, that implies the relation

εWuL =
cW√

2
(εZuL − εZdL) , (67)

reducing the number of independent PO to four in the U(2)3 case (independently of any
assumption about CP).

8 Conclusion
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Higgs (EW) decay amplitudes

Amplitudes Flavor + CP Flavor Non Univ. CPV

h→ γγ, 2eγ, 2µγ κZZ , κZγ, κγγ, εZZ εZµL , εZµR εCPZZ , ε
CP
Zγ , ε

CP
γγ4e, 4µ, 2e2µ εZeL , εZeR

h→ 2e2ν, 2µ2ν, eνµν
κWW , εWW εZνµ , Re(εWµL) εCPWW , Im(εWeL)

εZνe , Re(εWeL) Im(εWµL)

Higgs (EW) production amplitudes

Amplitudes Flavor + CP Flavor Non Univ. CPV

VBF neutral curr. [ κZZ , κZγ, εZZ ] εZcL , εZcR
[
εCPZZ , ε

CP
Zγ

]
and Zh εZuL , εZuR , εZdL , εZdR εZsL , εZsR

VBF charged curr. [ κWW , εWW ] Re(εWcL) Im(εWuL)
and Wh Re(εWuL) Im(εWcL)

EW production and decay modes, with custodial symmetry

Amplitudes Flavor + CP Flavor Non Univ. CPV

production & decays κZZ , κZγ, εZZ εCPZZ , ε
CP
Zγ

VBF and VH only εZuL , εZuR , εZdL , εZdR
εZcL , εZcR
εZsL , εZsR

decays only κγγ, εZeL , εZeR , Re(εWeL) εZµL , εZµR εCPγγ
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