

General plan for the YR4

- Last meeting called on Jan 8th to check the status of the ongoing activities https://indico.cern.ch/event/476326/
- VBF
 - H+2j NNLO QCD total cross section/mass scan
 - Zaro et al. (VBFNNLO)
 - H+2j NNLO QCD + NLO EWK fiducial/differential cross sections
 - Zanderighi, Cacciari, Salam et al. (QCD), Dittmaier et al. (EWK HAWK)
 - H+3j NLO QCD additional jet distributions
 - Jäger et al (POWHEG), Platzer, Figy et al (HERWIG, aka HJets++)
 - ggH+3j NLO QCD central jet distributions for veto purpose
 - Luisoni et al (GoSAM)
- VH
 - NNLO QCD + NLO EWK total/fiducial/differential cross sections
 - Tramontano et al. + Harlander et al. (QCD HV@NNLO), Dittmaier et al (EWK HAWK)
 - NNLO QCD differential cross sections
 - Campbell, Ellis, Williams
 - NLO QCD differential cross sections
 - Frixione et al (aMC@NLO), Luisoni et al (POWHEG), ATLAS+CMS (aMC@NLO+POWHEG)
 - ggZH differential cross sections
 - Vryonidou et al. (Madgraph), ATLAS+CMS (aMC@NLO+POWHEG)
 - NNLOPS differential cross sections
 - Re, Zanderighi et al (POWHEG)

Features of VBF QCD corrections

 Compute QCD corrections in the structure function approach: VBF = DIS²

- Contributions which do not obey factorisations estimated to be negligible (<10% of NNLO correction)
- Include interferences at LO (≤0.5%)

VBF: SM cross sections at NNLO QCD + NLO EW

The plan:

Update of total and fiducial state-of-the-art SM cross sections for $\sqrt{s}=7,8,13,14\,\mathrm{TeV}$ and $M_{\mathrm{H}}=120.0,120.1,...125.0,125.09,...130.0\,\mathrm{GeV}$ for SM

Cuts for the fiducial XS:

$$p_{T,j} > 20 \,\text{GeV}, \quad |y_j| < 5, \quad |y_{j_1} - y_{j_2}| > 3, \quad m_{jj} > 130 \,\text{GeV}$$

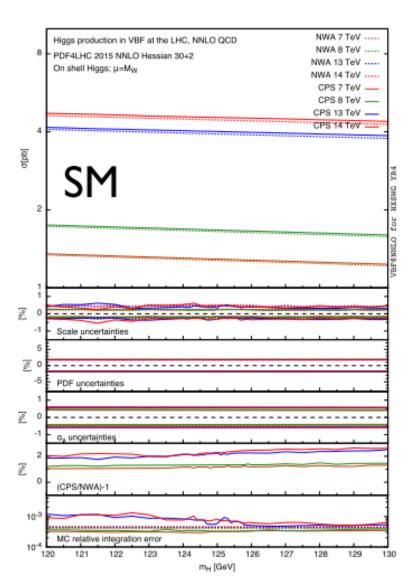
Note: Cut on m_{jj} quite loose to maximize available phase space \hookrightarrow effects of harder cuts can be read from distributions

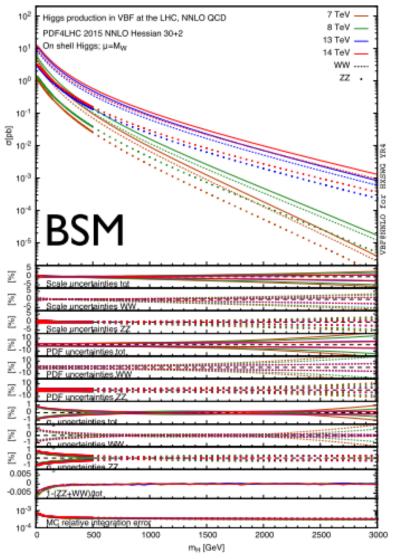
Scale choice: $\mu_{\rm R} = \mu_{\rm F} = M_{\rm W}$ (dyn. scale better?)

State-of-the-art XS:

$$\sigma^{\rm VBF} = \sigma^{\rm DIS}_{\rm NNLOQCD} (1 + \delta_{\rm EW}) + \sigma_{\gamma}$$

 $\sigma_{
m NNLOQCD}^{
m DIS}$: based on Cacciari et al., arXiv:1506.02660 (+ Bolzoni et al., arXiv:1003.4451 for total XS)


 $\delta_{\rm EW},\,\sigma_{\gamma}$: calculated with HAWK (Denner et al.)


VBF@NNLO

Bolzoni, Maltoni, Moch, Zaro, arXiv:1003.4451 & arXiv:1109.3717

- Input parameters as in LHCHXSWG-INT-2015-006
- PDF4LHC NNLO, Hessian error estimate, 30+2 sets (PDF+ α_s)
- $\mu_F = \mu_R = m_W$; independent variations of a factor 2
- Mass scan:
 - SM Higgs case: m_H ∈ [120 GeV, 130 GeV]
 - σ computed with H on shell and in the CPS
 - BSM Higgs case: m_H ∈ [10 GeV, 3000 GeV]
 - σ computed with H on shell
 - WW and ZZ separate contributions (no LO interference)
- \sqrt{s} =7,8,13,14 GeV

Results

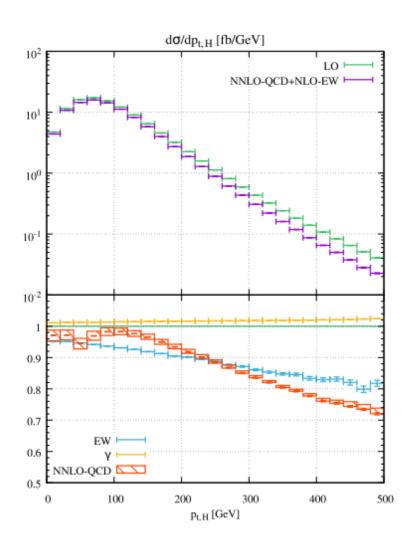
All numbers and uncertainties included in the YR4

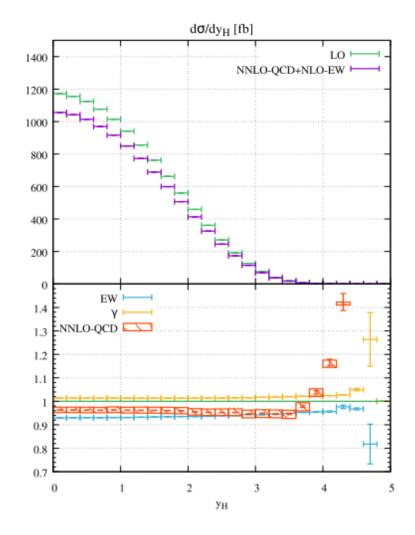
NNLO QCD results by Cacciari et al.

Integrated VBF XS: (Full scan over \sqrt{s} and $M_{\rm H}$ values \rightarrow appendix of YR4)

Total XS:

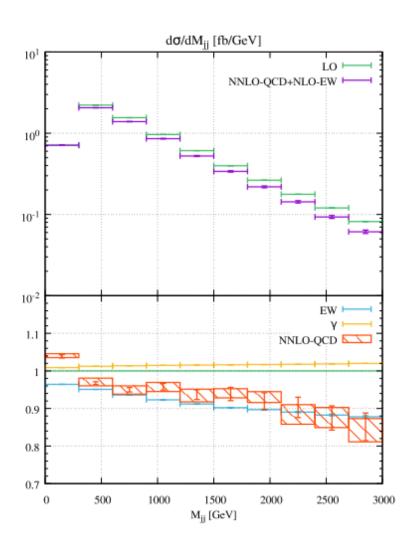
$\sqrt{s} [{\rm GeV}]$	$\sigma^{ m VBF}$ [fb]	$\Delta_{\rm scale}$ [%]	$\Delta_{\mathrm{PDF} \oplus \alpha_{\mathrm{S}}}$ [%]	$\sigma_{ m NNLOQCD}^{ m DIS}$ [fb]	$\delta_{\rm EW} [\%]$	σ_{γ} [fb]	$\sigma_{s ext{-chan}}$ [fb]
7	1241.4(1)	$^{+0.19}_{-0.21}$	± 2.2	1281.1(1)	-4.4	17.1	584.5(3)
8	1601.2(1)	$^{+0.25}_{-0.24}$	± 2.2	1655.8(1)	-4.6	22.1	710.4(3)
13	3781.7(1)	$^{+0.43}_{-0.33}$	± 2.1	3939.2(1)	-5.3	51.9	1378.1(6)
14	4277.7(2)	$^{+0.45}_{-0.34}$	± 2.1	4460.9(2)	-5.4	58.5	1515.9(6)

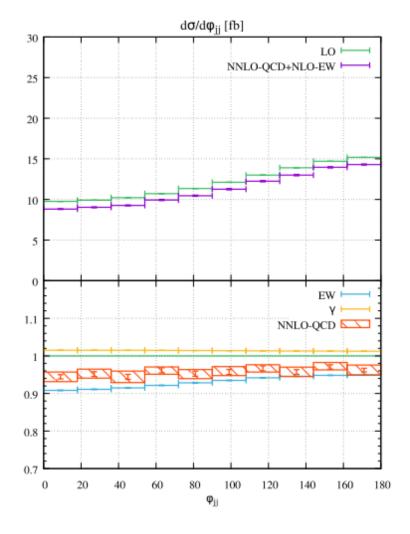

Fiducial XS:


$\sqrt{s} [{\rm GeV}]$	$\sigma^{ m VBF}$ [fb]	Δ_{scale} [%]	$\Delta_{\mathrm{PDF} \oplus \alpha_{\mathrm{s}}}$ [%]	$\sigma_{ m NNLOQCD}^{ m DIS}$ [fb]	$\delta_{\rm EW} [\%]$	σ_{γ} [fb]	$\sigma_{s ext{-chan}}$ [fb]
7	602.4(5)	$^{+1.3}_{-1.6}$	± 2.3	630.8(5)	-6.1	9.9	8.2
8	795.9(6)	$^{+1.3}_{-1.5}$	± 2.3	834.8(7)	-6.2	13.1	11.1
13	1975.4(9)	$^{+1.3}_{-1.2}$	± 2.2	2084.2(10)	-6.8	32.3	29.0
14	2236.6(26)	$^{+1.5}_{-1.3}$	± 2.1	2362.2(28)	-6.9	36.7	33.1

- contribution σ_{γ} from $q\gamma$ channels $\sim 1.5\%$ with large uncertainty \hookrightarrow does NOT decrease with tighter VBF cuts!
- s-channel contribution $\sigma_{s\text{-chan}}$ not included in σ^{VBF} , but given for reference \hookrightarrow does decrease with tighter VBF cuts!

NNLO QCD results by Cacciari et al.


Differential VBF XS: (still preliminary)



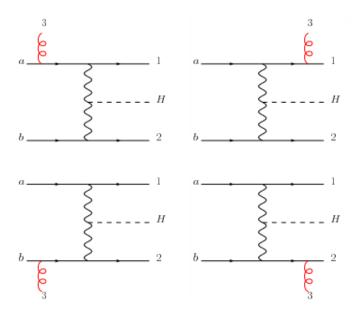
NNLO QCD results by Cacciari et al.

Differential VBF XS: (still preliminary)

powerful tool for background suppression: central jet veto

central jet veto (CJV):

remove events with extra jet(s) in central-rapidity region


$$p_T^{
m veto} > 20$$
 GeV, $\eta_{
m jet}^{
m min} < \eta_{
m jet}^{
m veto} < \eta_{
m jet}^{
m max}$

little effect on VBF signal, but strong suppression of backgrounds

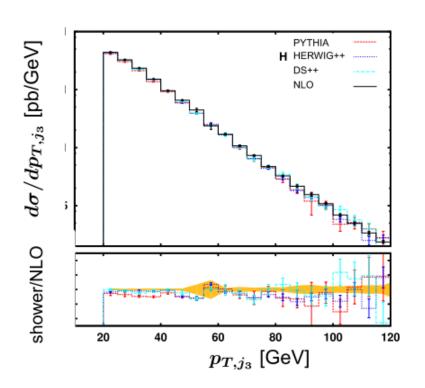
- \rightarrow improvement of S/B by ca. factor of 4
- Need to ensure precise description of additional jet for both signal and backgrounds
 - Comparisons ongoing

pp o Hjjj via VBF

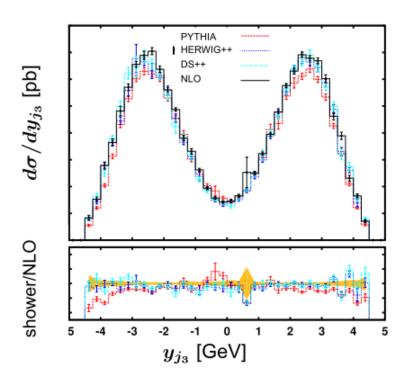
$$\mathcal{M}_B(Hjjj) \leftrightarrow \mathcal{M}_R(Hjj)$$

Figy, Hankele, Zeppenfeld (2007):

NLO-QCD in VBF approximation


(no color exchange between upper/lower quark lines, no VH-type contributions)

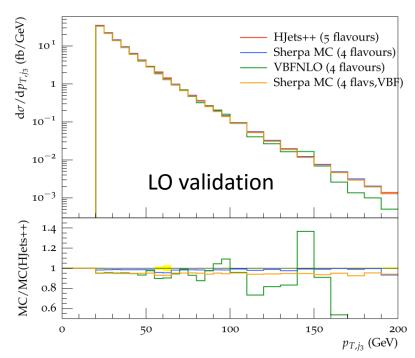
Campanario, Figy, Plätzer, Sjödahl (2013):

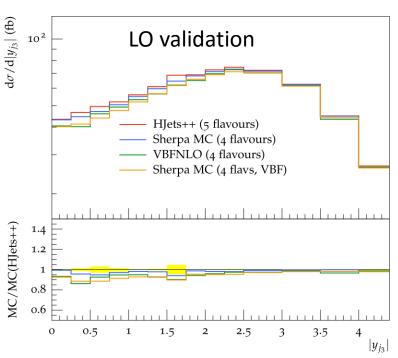

full NLO-QCD calculation

(good agreement with approximative calculation)

pp o Hjjj via VBF and parton shower @ NLO QCD

Schissler, Zeppenfeld, B.J. (2014)

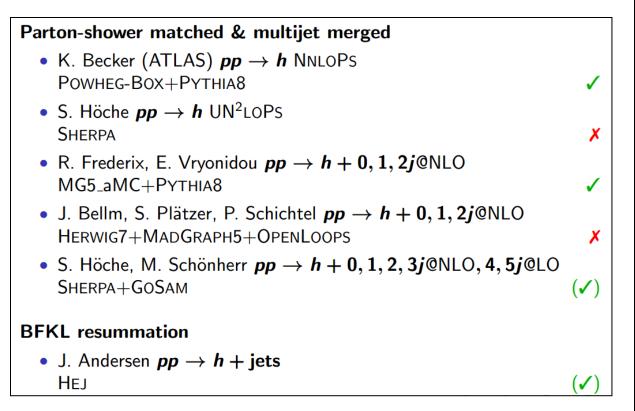

VBF Hjjj matrix elements at NLO combined with parton shower \rightarrow description of 3rd jet well under control

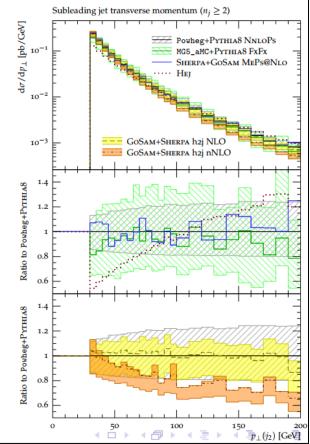

pp o Hjjj via VBF and parton shower @ NLO QCD

- Alternative calculations at NLO (currently LO validation performed)
 - Herwig, also known as HJets++
 - VBFNLO
 - SHERPA (full and t-channels only)

Setup

- CM energy: 13 TeV, PDF: CTEQ10nlo_nf4, anti-kt R=0.4 jets
- Required ≥3 jets with $p_T > 20$ GeV and $|y_{iet}| < 5$
- Events cuts: rapidity gap $|\Delta y_{j1,j2}| > 3$ and $m_{j1,j2} > 130$ GeV




ggH contamination in VBF

 Interesting studies performed for H+2j in the context of Les Houches H+jets studies, presented by Marek yesterday [*]

Joint ggF + VH/VBF meeting being planned to follow up on VBF specific

needs (3rd jet kinematics for central jet veto)

[*] http://indico.cern.ch/event/407347/session/3/contribution/26/attachments/1210940/1766591/LH15-hjets.pdf

Residual issues / wishlist

1) Central Jet Veto

- CJV definition used by experimental collaboration may not be trivial (third jet information as input for MVA)
- third jet in VBF described at LO in MC sample currently used by experimental collaborations
- compare third jet kinematics of VBF Hjj NLO with VBF Hjjj NLO. Differences covered by scale uncertainties?

2) VBF NNLO reweighting

- Experiments interested in profiting of higher order calculations (NNLO QCD + NLO EWK) to reweight available MC samples
 - · Usually 1D reweighting performed
 - Discussions ongoing to choose the most appropriate variable and phase space

3) Consistent combination of POWHEG VBF H+2j and VBF H+3j not yet possible

VH: SM cross sections at NNLO QCD + NLO EW

The plan:

Update of total and fiducial state-of-the-art SM cross sections with W/Z decays for $\sqrt{s}=7,8,13,14\,\mathrm{TeV}$ and $M_{\mathrm{H}}=120.0,120.1,...125.0,125.09,...130.0\,\mathrm{GeV}$

Cuts for the fiducial XS:

$$p_{T,\ell} > 15 \,\text{GeV}, \quad |y_{\ell}| < 2.5, \quad \text{for } Z \to \ell\ell$$
: $75 \,\text{GeV} < M_{\ell\ell} < 105 \,\text{GeV}$

State-of-the-art XS:

$$\sigma^{\text{VH}} = \sigma_{\text{NNLOQCD}}^{\text{DY}} (1 + \delta_{\text{EW}}) + \sigma_{\text{NNLOQCD}}^{\text{non-DY}} + \sigma_{\text{gg}} + \sigma_{\gamma}$$

 $\sigma_{\text{NNLOQCD}}^{\text{iii}}$: total XS: vh@nnlo (Harlander et al.)

diff. XS: Ferrera et al., arXiv:1107.1164, arXiv:1405.4827, MCFM (Campbell et al.), arXiv:1601.00658

 $\sigma_{\rm gg}$: total NLO XS: Altenkamp et al., arXiv:1211.5015,

diff. XS: NLO unknown, LO available from POWHEG and Madgraph (recipe: *K*-factor from total XS, but keep LO relative uncertainties)

 $\delta_{\rm EW},\,\sigma_{\gamma}$: calculated with HAWK (Denner et al.)

VH NLO tools comparisons

- Quantify the level of agreement of available codes
- Define phase space for Z(II)H, ggZ(II)H W(Iv), Z(vv)H, use same distributions for the 3 channels, provide Rivet analysis to easily combine results

区(II)H(bb)

- Z p_T bins: inclusive, [0-100 GeV], (100 GeV-200 GeV], >200 GeV
- leptons: |η| <2.5, p_T > 15 GeV
- m_{II} in range [75-105 GeV]

Z(vv)H(bb)

Z p_T bins: inclusive, [0-150 GeV], (150 GeV-250 GeV], >250 GeV

W(lv)H(bb)

- W p_T bins: inclusive, [0-150 GeV], (150 GeV-250 GeV], >250 GeV
- leptons: |n|<2.5, p_T > 15 GeV

Additional jet counting

Additional jets count if p_T > 20 GeV and |n| < 4.5

Proposed plots (histograms) for Yellow Report 4

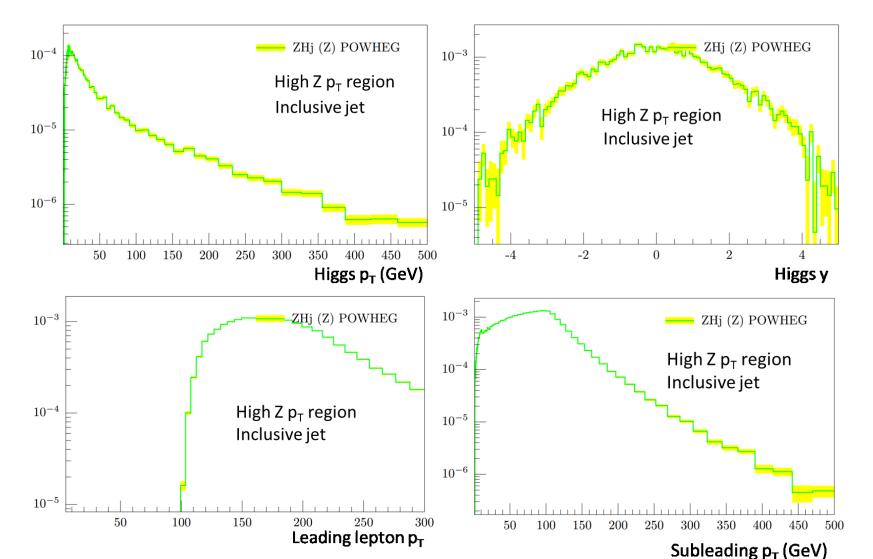
100 bins each

- 0 < pT_H < 500 (a)
- -5 < y H < 5 (b)
- 0 < pT_lepton < 500 (c)
- 0 < pT nu/nubar < 500 (d)
- -5 < y_lepton < 5 (e)

For the other 5 plots above (a-e) we are going to produce 4 sets of plots:

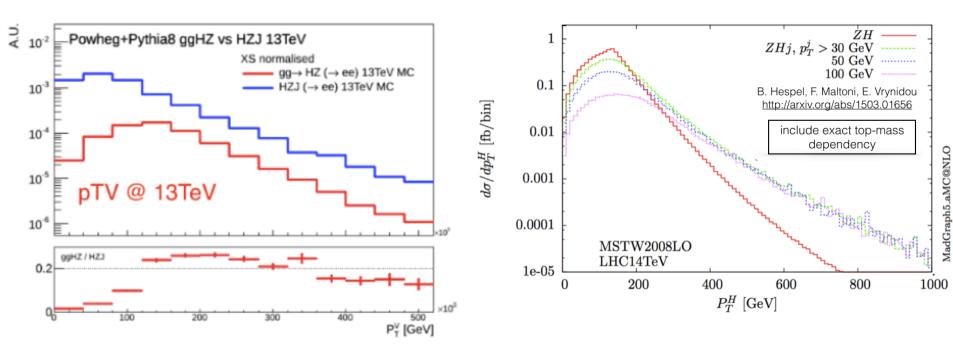
- · one set inclusive over pT_W/Z and
- one set for each of the 3 pT_W/Z bins reported on the wiki page.

The plot below (1) can be produced for the inclusive case only

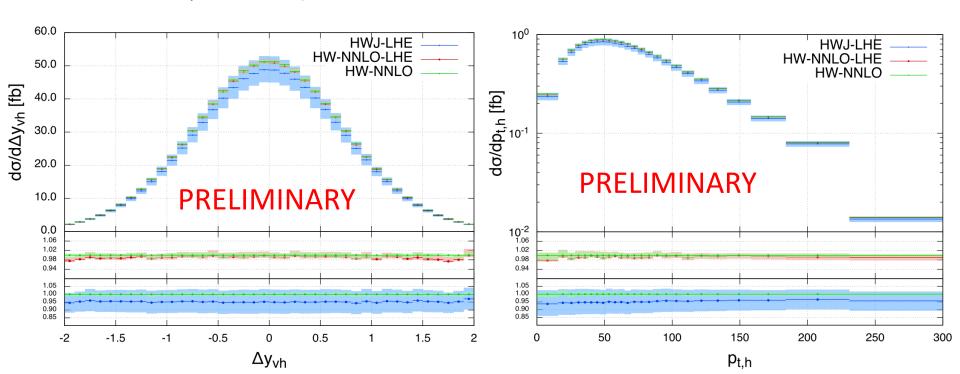

• 0 < pT_W/Z < 500 (1)

VH NLO tools comparisons

- Groups/collaboration expressing interest
 - NLO QCD differential cross sections
 - Frixione et al (aMC@NLO+Pythia/Herwig), Luisoni et al (POWHEG+Pythia6)
 - ggZH differential cross sections
 - Vryonidou et al. (Madgraph)
- Effort originally driven by theorists
 - But both ATLAS and CMS collaborations are interested to compare their setup and distributions


VH NLO tools comparisons

Preliminary results provided by POWHEG+Pythia6 (no hadronization)


The ggZH process

- gg- initiated ZH processes start to contribute at NNLO
 - Large cross section increase (x4) from 8 TeV to 13 TeV
 - gg/qq increasing in the VH(bb) searching region (V $p_T > 150$ GeV)
 - Large inclusive NLO k-factor ~2 computed
 - LO MC tools provided by POWHEG and Madgraph (also merged with 1j)
 - Direct comparison important to asses the level of agreement between the 2 codes

NNLO+PS for HW production

- Work in progress (Zanderighi et al., plots thanks to W. Astill and W. Bizon)
- Method used based on MiNLO+POWHEG :
 - Underlying MiNLO simulation from Luisoni, Nason, Oleari, Tramontano, '13
 - NNLO from Ferrera, Grazzini, Tramontano, '11-'13
 - The approach is similar to the NNLOPS for Higgs and Drell-Yan case
 - Number of reweightings reduced from the original 5d (details not yet publicly available)
- Preliminary validation plots: Higgs pt , rapidity difference WH
 - Label "-LHE" stands for hard partonic events (after MiNLO and after MiNLO+NNLO reweighting, but before parton shower)

Residual issues / wishlist

- 1) As for VBF case, experiments interested in profiting of higher order calculations (NNLO QCD + NLO EWK) to reweight available MC samples
 - In run1, a 1D reweighting was performed on the boson pT (in 2 jet bins) since this variable is used to categorize events in the analyses
 - Other variables like ∆Rbb being discussed and considered
 - Long term awaited solution is NNLOPS VH, embedding multidimensional reweighting to NNLO QCD and smaller uncertainties
- 2) Alternative recipes being discussed for the ggZH uncertainty after inclusive NLO k-factor reweighting
 - More conservative (likely too much): assign full ggZH correction
 - More aggressive: assign absolute LO scale variations instead of relative ones (might need to reweight differentially)

Conclusions

- Quite rich program of comparisons ongoing for both VBF and VH, targeting the YR4 deadlines
 - Most of the activities are in advanced state
 - Some coordination with ggF subgroup will be started for the comparison of ggH process in VBF phase space
 - We are thankful to the various groups for the tremendous effort
- YR4 text in good shape, we will add results as they will be provided
- Few residual issues to be discussed in the next weeks

Backup