

BR subgroup report

slides for Sven's talk

HXSWG meeting CERN, January 14, 2016

Branching Ratios – Alexander Mück – p.1/10

Branching ratios including error estimates:

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

Branching Ratios – Alexander Mück – p.2/10

- Global picture for YR4:
 - setup unchanged for $M_H \sim 125 \text{ GeV}$
 - Prophecy4f for $H \rightarrow$ 4 fermions
 - HDECAY for all other channels (now using $\overline{\mathrm{MS}}$ input masses)
 - Improvements
 - reduced parametric uncertainties (LHCHXSWG-INT-2015-006)
 - improved theory input in HDECAY
- ⇒ updated central BR values only change well within the YR3 error estimates
- \Rightarrow errors shrink considerably

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

Improved theory uncertainties for $M_H \sim 125$ GeV:

full EW NLO corrections now included in HDECAY

- $H \rightarrow b\overline{b}/c\overline{c}/\tau^+\tau^-/\mu^+\mu^-$ THUs: YR3: $\sim 2.0\% \rightarrow$ YR4: $\sim 0.5\%$
- other channels unchanged

$$\begin{array}{ll} H \to gg: & \sim 3\% \\ H \to \gamma\gamma: & \sim 1\% \\ H \to Z\gamma: & \sim 5\% \\ H \to WW/ZZ: & \sim 0.5\% \end{array}$$

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

PU and THU impact on partial width errors:

 $M_H = 125 \; \mathrm{GeV}$

 $\text{YR3} \rightarrow \text{YR4}$

Channel	$\Delta lpha_s$	ΔM_b	ΔM_c	THU
$b\overline{b}$	$\begin{array}{c} -2.3\% \\ +2.3\% \rightarrow +1.4\% \\ +1.4\% \end{array}$	$^{+3.3\%}_{-3.2\%} \rightarrow ^{+1.7\%}_{-1.7\%}$	$+0.0\% \\ -0.0\%$	$^{+2.0\%}_{-2.0\%} \rightarrow ^{+0.5\%}_{-0.5\%}$
$\tau^+\tau^-$	$+0.0\% \\ -0.0\%$	$^{+0.0\%}_{-0.0\%}$	$+0.0\% \\ -0.0\%$	$^{+2.0\%}_{-2.0\%} \rightarrow ^{+0.5\%}_{-0.5\%}$
$\mu^+\mu^-$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$^{+2.0\%}_{-2.0\%} \rightarrow ^{+0.5\%}_{-0.5\%}$
$c\overline{c}$	$\begin{array}{c} -7.1\% \\ +7.0\% \end{array} \rightarrow \begin{array}{c} -1.9\% \\ +1.9\% \end{array}$	$-0.0\% \\ -0.0\%$	$^{+6.2\%}_{-6.1\%} \rightarrow ^{+5.3\%}_{-5.2\%}$	$^{+2.0\%}_{-2.0\%} \rightarrow ^{+0.5\%}_{-0.5\%}$
gg	$^{+4.2\%}_{-4.1\%} \rightarrow ^{+3.0\%}_{-3.0\%}$	-0.1% +0.1%	$+0.0\% \\ -0.0\%$	$+3.0\% \\ -3.0\%$
$\gamma\gamma$	$+0.0\%\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$^{+1.0\%}_{-1.0\%}$
$Z\gamma$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$+0.0\% \\ -0.0\%$	$+5.0\% \\ -5.0\%$
WW	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$^{+0.5\%}_{-0.5\%}$
ZZ	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.0\%$	$+0.0\%\ -0.0\%$	$^{+0.5\%}_{-0.5\%}$

(in YR4 the $\overline{\mathrm{MS}}$ mass m_c (3 GeV) is used as input)

(table is starting point if one wants to include error correlations in BR calculations)

 $\Leftarrow | \xleftarrow{} | \Rightarrow$

Branching Ratios – Alexander Mück – p.5/10

RINGHE HOCHSCHULE AACHEN SMBRS

 $M_H = 125$ GeV: Changes for partial width's central values

- $\Gamma_{H \rightarrow b\bar{b}}$: 1.5% increase
- $\Gamma_{H \to gg}$: 4% decrease
- other channels: per mille level changes
- Γ_{tot} : 0.5% increase

Changes for BR's central values

• BR $(H \rightarrow b\overline{b})$: ~1% increase

(3.2% error in YR3)

- BR $(H \rightarrow gg)$: ~4.5% decrease (10.0% error in YR3)
- other channels: per mille level to 1% changes

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

(> 4.0% error in YR3) Branching Ratios – Alexander Mück – p.6/ 10

 $(\pm 4\% \text{ error in YR3})$

 $(\pm 3\% \text{ in YR3})$

 $(\pm 6\% \text{ in YR3})$

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

Branching Ratios – Alexander Mück – p.7/10

RNTH BRs at large Higgs mass

Strategy for BRs at large Higgs mass:

- use SM prediction without EW corrections
- use HDECAY for all channels
- use new HDECAY version where EW corrections can be switched off
- numbers will be available soon

ISCHULF

Fully differential $H \rightarrow 4l$

• Now two event generators available:

Prophecy4f at NLO EW for all 4I final states

Bredenstein, Denner, Dittmaier, Weber [0708.4123]

http://omnibus.uni-freiburg.de/~sd565/programs/prophecy4f/prophecy4f.html

• Hto4I at NLOPS EW for 4 charged leptons

Boselli, Carloni Calame, Montagna, Nicrosini, Piccinini [1503.07394] http://www.pv.infn.it/hepcomplex/hto41.html

includes multi-photon emission

- interface using LHE format
- complete agreement at NLO EW

complete agreement at NLO EW

Branching Ratios – Alexander Mück – p.10/10