Sally Dawson, Christoph Englert, Maxime Gouzevitch, Roberto Salerno, Magdalena Slawinska

on behalf of the HH xGroup

hh: Status of YR4 and plans beyond

LHCHXSWG-INT-2015-003

General Assembly Meeting of LHC Higgs Cross Section Working Group

15.01.2016

hh Searches

non-resonant hh production (e.g. ATLAS run I) [ATLAS, PRD 92, 092004 (2015)]

Analysis	$\gamma\gamma bb$	$\gamma\gamma WW^*$	bb au au	bbbb	Combined
		Uppe	r limit on the cross sec	etion [pb]	
Expected	1.0	6.7	1.3	0.62	0.47
Observed	2.2	11	1.6	0.62	0.69
		Upper limit on the	e cross section relative	to the SM prediction	
Expected	100	680	130	63	48
Observed	220	1150	160	63	70

resonant hh production

hh x-Subgroup Taks

- recommendations for precise SM gluon fusion hh production cross sections and differential distributions
- recommendations for SM cross sections for additional subdominant production modes
- recommendations for new physics searches in the hh final state

non-resonant: EFT

resonant: simple and transparent

Total SM Cross Sections: Gluon Fusion

• finite top mass effects crucial already at LO

[Glover, van der Bij `88] [Plehn, Spira, Zerwas `96] [Djouadi et al `99] ...

Total SM Cross Sections: Gluon Fusion

- finite top mass effects crucial already at LO
 - [Glover, van der Bij `88] [Plehn, Spira, Zerwas `96] [Djouadi et al `99] ...
- QCD corrections dominated by soft radiation: use $m_t \to \infty$
 - [Dawson, Dittmaier, Spira `98] [de Florian, Mazzitelli `13]

recent developments

• NNLO+NNLL in $m_t \to \infty$ limit (normalised to exact LO)

[de Florian, Mazzitelli `13, `15]

 m_t expansion of NNLO cross section

[Grigo, Hoff, Melnikov, Steinhauser `13]

exact m_t for real emission & LO reweighted virtuals

[Frederix et al `14] [Maltoni, Vryonidou, Zaro `14]

progress towards full m_t dependence at NLO

→ Stephen Jones' talk

Total SM Cross Sections: Gluon Fusion

• currently we can only estimate NLO m_t uncertainties by comparing different approximations

Example

NLO QCD reweighted by exact LO

[Dawson, Dittmaier, Spira `98] [de Florian, Mazzitelli `13]

$m_h (GeV)$	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$
125	$6.415^{+20\%}_{-16.8\%}$	$9.318^{+19.5\%}_{-16.4\%}$	$31.81^{+18.2\%}_{-15.0\%}$	$37.79^{+18\%}_{-14.8\%}$

exact m_t for real emission & virtual reweighting at NLO by LO

[Frederix et al `14] [Maltoni, Vryonidou, Zaro `14]

$m_h (GeV)$	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$
125	$6.12^{+17.7\%}_{-15.8\%} \pm 4.0\%$	$8.87^{+17.3\%}_{-15.4\%} \pm 3.6\%$	$29.76^{+15.5\%}_{-13.4\%} \pm 2.7\%$	$35.31^{+15.1\%}_{-13.4\%} \pm 2.6\%$

Recommendation:

assign 10% uncertainty to unknown m_t effects: largest uncertainty

Gluon Fusion: QCD and Scales

[de Florian, Mazzitelli `13, `15]

Gluon Fusion: SM Cross Section

Recommended values https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGHH

$m_h = 124.5 \; GeV$	$\sigma_{NNLL}(fb)$	Scale Unc. (%)	PDF Unc. (%)	$PDF + \alpha_s \text{ Unc. } (\%)$
$\sqrt{s} = 7 \text{ TeV}$	7.77	+4.0 - 5.7	±3.4	±4.4
$\sqrt{s} = 8 \text{ TeV}$	11.3	+4.1 - 5.7	± 3.0	± 4.0
$\sqrt{s} = 13 \text{ TeV}$	38.2	+4.3 - 6.0	± 2.1	± 3.1
$\sqrt{s} = 14 \text{ TeV}$	45.3	+4.4 - 6.0	± 2.1	± 3.0
$\sqrt{s} = 100 \text{ TeV}$	1760	+5.0 - 6.7	± 1.7	± 2.7
$m_h = 125 \; GeV$	$\sigma_{NNLL}(fb)$	Scale Unc. (%)	PDF Unc. (%)	PDF+ α_s Unc. (%)
$\sqrt{s} = 7 \text{ TeV}$	7.72	+4.0 - 5.7	± 3.4	± 4.4
$\sqrt{s} = 8 \text{ TeV}$	11.2	+4.1 - 5.7	± 3.1	± 4.0
$\sqrt{s} = 13 \text{ TeV}$	38.0	+4.3 - 6.0	± 2.1	± 3.1
$\sqrt{s} = 14 \text{ TeV}$	45.1	+4.4 - 6.0	± 2.1	± 3.0
$\sqrt{s} = 100 \text{ TeV}$	1749	+5.1 - 6.6	± 1.7	± 2.7
$m_h = 125.09 \; GeV$	$\sigma_{NNLL}(fb)$	Scale Unc. (%)	PDF Unc. (%)	PDF+ α_s Unc. (%)
$\sqrt{s} = 7 \text{ TeV}$	7.71	+4.0 - 5.7	± 3.4	± 4.4
$\sqrt{s} = 8 \text{ TeV}$	11.2	+4.1 - 5.7	± 3.1	± 4.0
$\sqrt{s} = 13 \text{ TeV}$	37.9	+4.3 - 6.0	± 2.1	± 3.1
$\sqrt{s} = 14 \text{ TeV}$	45.0	+4.4 - 6.0	± 2.1	± 3.0
$\sqrt{s} = 100 \text{ TeV}$	1748	+5.0 - 6.5	± 1.7	± 2.6
$m_h = 125.5 \; GeV$	$\sigma_{NNLL}(fb)$	Scale Unc. (%)	PDF Unc. (%)	PDF+ α_s Unc. (%)
$\sqrt{s} = 7 \text{ TeV}$	7.66	+4.0 - 5.7	±3.4	± 4.4

 $\mu_0 = M_{hh}/2$ (+ conservative ±10% top mass uncertainty)

Gluon Fusion: K Factors

$$K \equiv \frac{\sigma_{NNLL}}{\sigma_{NLO}}$$

$$K' \equiv \frac{\sigma_{NNLL}}{\sigma_{LO}}$$

$$m_t \to \infty$$

$$\mu_0 = M_{hh}/2$$

	$\sqrt{s} = 7 \ TeV$	$\sqrt{s} = 8 \ TeV$	$\sqrt{s} = 13 \ TeV$	$\sqrt{s} = 14 \ TeV$	$\sqrt{s} = 100 \ TeV$
K	1.203	1.200	1.193	1.192	1.195
K'	2.299	2.296	2.301	2.304	2.472

$$\mu_0 = M_{hh}$$

	$\sqrt{s} = 7 \ TeV$	$\sqrt{s} = 8 \ TeV$	$\sqrt{s} = 13 \ TeV$	$\sqrt{s} = 14 \ TeV$	$\sqrt{s} = 100 \ TeV$
K	1.426	1.413	1.378	1.373	1.305
K'	2.987	2.949	2.847	2.835	2.699

Gluon Fusion: Differential Distributions

- based on Born-improved HEFT NLO approximation using merged MG5 + Pythia 8
 - full $m_t < \infty$ for reals
 - $m_t < \infty$ reweighting based on LO of $m_t \to \infty$ virtuals
- differential uncertainties from scale and pdfs is O(30%)

Gluon Fusion: Differential Distributions

- based on Born-improved HEFT NLO approximation using merged MG5 + Pythia 8
 - full $m_t < \infty$ for reals
 - $m_t < \infty$ reweighting based on LO of $m_t \to \infty$ virtuals
- differential uncertainties from scale and pdfs is O(30%)

• comparison with MLM-matched Herwig calculation: hh system stable in comparison, shower systematics remain

Recommendation: under discussion

Other Production Cross Sections

[Frederix et al `14] [Maltoni, Vryonidou, Zaro `14]

Other Processes: NLO Recommendations

Hespel, Vryonidou, Zaro

hhjj (WBF) $\mu_0 = M_{hh}/2$

$m_h (GeV)$	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$	$\sqrt{s} = 100 \text{ TeV}$
124.5	$0.320^{+3.2\%}_{-3.7\%} \pm 2.7\%$	$0.470^{+2.4\%}_{-3.1\%} \pm 2.6\%$	$1.65^{+2.4\%}_{-2.7\%} \pm 2.3\%$	$1.97^{+2.3\%}_{-2.6\%} \pm 2.3\%$	$81.9^{+0.2\%}_{-0.2\%} \pm 1.8\%$
125	$0.316^{+3.7\%}_{-4.1\%} \pm 2.7\%$	$0.468^{+2.8\%}_{-3.3\%} \pm 2.6\%$	$1.64^{+2.0\%}_{-2.5\%} \pm 2.3\%$	$1.94^{+2.3\%}_{-2.6\%} \pm 2.3\%$	$80.3^{+0.5\%}_{-0.4\%} \pm 1.7\%$
125.09	$0.313^{+3.2\%}_{-3.8\%} \pm 2.6\%$	$0.459^{+3.2\%}_{-3.6\%} \pm 2.6\%$	$1.62^{+2.3\%}_{-2.7\%} \pm 2.3\%$	$1.95^{+1.8\%}_{-2.3\%} \pm 2.4\%$	$80.8^{+0.8\%}_{-0.8\%} \pm 1.8\%$
125.5	$0.312^{+3.6\%}_{-4.0\%} \pm 2.7\%$	$0.458^{+2.9\%}_{-3.4\%} \pm 2.6\%$	$1.63^{+2.0\%}_{-2.5\%} \pm 2.3\%$	$1.94^{+1.3\%}_{-1.9\%} \pm 2.3\%$	$80.7^{+0.7\%}_{-0.7\%} \pm 1.8\%$

 $t\bar{t}hh$

 $\mu_0 = M_{hh}/2$

$m_h (GeV)$	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$	$\sqrt{s} = 100 \text{ TeV}$
124.5	$0.112^{+3.5\%}_{-12.5\%} \pm 4.2\%$	$0.176^{+2.9\%}_{-10.7\%} \pm 3.9\%$	$0.786^{+1.3\%}_{-4.5\%} \pm 3.2\%$	$0.968^{+1.7\%}_{-4.6\%} \pm 3.1\%$	$87.2^{+7.9\%}_{-7.3\%} \pm 1.6\%$
125	$0.110^{+3.5\%}_{-12.5\%} \pm 4.2\%$	$0.174^{+2.9\%}_{-10.6\%} \pm 3.9\%$	$0.775^{+1.5\%}_{-4.3\%} \pm 3.2\%$	$0.949^{+1.7\%}_{-4.5\%} \pm 3.1\%$	$82.1^{+7.9\%}_{-7.4\%} \pm 1.6\%$
125.09	$0.109^{+3.5\%}_{-12.8\%} \pm 4.2\%$	$0.174^{+2.8\%}_{-10.6\%} \pm 3.9\%$	$0.772^{+1.7\%}_{-4.5\%} \pm 3.2\%$	$0.949^{+1.8\%}_{-4.8\%} \pm 3.2\%$	$82.1^{+8.3\%}_{-7.6\%} \pm 1.6\%$
125.5	$0.107^{+3.3\%}_{-12.9\%} \pm 4.2\%$	$0.172^{+2.9\%}_{-10.4\%} \pm 4.0\%$	$0.762^{+1.3\%}_{-4.5\%} \pm 3.2\%$	$0.937^{+1.5\%}_{-4.5\%} \pm 3.1\%$	$81.9^{+8.2\%}_{-7.6\%} \pm 1.6\%$

hhtj

 $\mu_0 = M_{hh}/2$

$m_h (GeV)$	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$	$\sqrt{s} = 100 \text{ TeV}$
124.5	enal	$650551^{+5.6\%}_{-3.2\%} \pm 5.8\%$	$0.0289^{+5.4\%}_{-3.4\%} \pm 4.6\%$	$0.0365^{+4.4\%}_{-1.6\%} \pm 4.7\%$	$4.44^{+5.2\%}_{-5.6\%} \pm 2.3\%$
125	ntlyfilm	$0.00538^{+5.3\%}_{-3.0\%} \pm 5.6\%$	$0.0289^{+5.5\%}_{-3.6\%} \pm 4.7\%$	$0.0367^{+4.2\%}_{-1.8\%} \pm 4.6\%$	4.27 ^{+5.0%} _{-5.5} * + 2.5%
125.09111		$0.00540^{+5.4\%}_{-3.1\%} \pm 5.6\%$	$0.0281^{+5.2\%}_{-3.2\%} \pm 4.5\%$	$0.0364^{+3.7\%}_{-1.3\%} \pm 4.7\%$	ntly
125.5		$0.00521^{+5.5\%}_{-3.4\%} \pm 5.8\%$	$0.0279^{+6.1\%}_{-4.6\%} \pm 6.4\%$	$0.0359^{+3.8\%}_{-1.6\%}$	

hhh (GF)

μ_0	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$	$\sqrt{s} = 100 \text{ TeV}$
$M_{hhh}/2$	$12.1^{+17.9\%}_{-16.4\%} \pm 5.2\%$	$18.4^{+17.1\%}_{-15.7\%} \pm 4.8\%$	$75.2^{+15.5\%}_{-14.1\%} \pm 3.3\%$	$89.2^{+14.8\%}_{-13.6\%} \pm 3.2\%$	$4819^{+12.3\%}_{-11.9\%} \pm 1.8\%$
M_{hhh}	$10.0^{+19.5\%}_{-16.7\%} \pm 5.2\%$	$15.3^{+18.7\%}_{-16.1\%} \pm 4.7\%$	$63.8^{+16.2\%}_{-14.2\%} \pm 3.3\%$	$76.9^{+16.2\%}_{-14.1\%} \pm 3.2\%$	$4300^{+14.0\%}_{-12.3\%} \pm 1.8\%$

Hespel, Vryonidou, Zaro

Other Processes: NLO Recommendations

	hi	hZ	
μ_0	=	$M_{hh}/2$)

$m_h (GeV)$	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$	$\sqrt{s} = 100 \text{ TeV}$
124.5	$0.103^{+2.6\%}_{-2.2\%} \pm 2.7\%$	$0.135^{+2.4\%}_{-2.0\%} \pm 2.4\%$	$0.323^{+2.0\%}_{-1.5\%} \pm 1.8\%$	$0.364^{+2.0\%}_{-1.4\%} \pm 1.7\%$	$5.33^{+3.9\%}_{-5.8\%} \pm 1.9\%$
125	$0.102^{+2.6\%}_{-2.2\%} \pm 2.7\%$	$0.133^{+2.4\%}_{-2.0\%} \pm 2.4\%$	$0.319^{+2.1\%}_{-1.5\%} \pm 1.8\%$	$0.358^{+2.1\%}_{-1.5\%} \pm 1.7\%$	$5.28^{+3.8\%}_{-5.7\%} \pm 1.9\%$
125.09	$0.102^{+2.7\%}_{-2.4\%} \pm 2.7\%$	$0.132^{+2.7\%}_{-2.2\%} \pm 2.4\%$	$0.316^{+2.1\%}_{-1.5\%} \pm 1.8\%$	$0.357^{+1.8\%}_{-1.3\%} \pm 1.7\%$	$5.24^{+4.0\%}_{-5.8\%} \pm 1.9\%$
125.5	$0.101^{+2.5\%}_{-2.2\%} \pm 2.7\%$	$0.131^{+2.6\%}_{-2.1\%} \pm 2.4\%$	$0.314^{+2.3\%}_{-1.6\%} \pm 1.8\%$	$0.355^{+2.2\%}_{-1.6\%} \pm 1.7\%$	$5.23^{+3.9\%}_{-5.7\%} \pm 1.9\%$

 $hhW^ \mu_0 = M_{hh}/2$

$m_h (GeV)$	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$	$\sqrt{s} = 100 \text{ TeV}$
124.5	$0.0531^{+2.8\%}_{-2.4\%} \pm 3.4\%$	$0.0714^{+2.4\%}_{-2.0\%} \pm 3.1\%$	$0.180^{+1.9\%}_{-1.4\%} \pm 2.3\%$	$0.205^{+1.9\%}_{-1.4\%} \pm 2.2\%$	$3.35^{+4.0\%}_{-5.7\%} \pm 2.0\%$
125	$0.0527^{+2.5\%}_{-2.2\%} \pm 3.4\%$	$0.0697^{+2.9\%}_{-2.3\%} \pm 3.1\%$	$0.177^{+1.9\%}_{-1.4\%} \pm 2.3\%$	$0.202^{+2.0\%}_{-1.4\%} \pm 2.2\%$	$3.32^{+4.1\%}_{-5.8\%} \pm 2.0\%$
125.09	$0.0524^{+2.7\%}_{-2.3\%} \pm 3.4\%$	$0.0698^{+2.7\%}_{-2.2\%} \pm 3.1\%$	$0.177^{+2.4\%}_{-1.7\%} \pm 2.3\%$	$0.201^{+2.1\%}_{-1.4\%} \pm 2.2\%$	$3.33^{+4.0\%}_{-5.7\%} \pm 2.0\%$
125.5	$0.0515^{+2.6\%}_{-2.2\%} \pm 3.4\%$	$0.0691^{+2.6\%}_{-2.1\%} \pm 3.1\%$	$0.175^{+2.3\%}_{-1.6\%} \pm 2.3\%$	$0.199^{+1.9\%}_{-1.3\%} \pm 2.2\%$	$3.25^{+3.7\%}_{-5.5\%} \pm 2.0\%$

 hhW^+ $\mu_0 = M_{hh}/2$

$m_h (GeV)$	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$	$\sqrt{s} = 100 \text{ TeV}$
124.5	$0.117^{+2.6\%}_{-2.3\%} \pm 2.8\%$	$0.149^{+2.6\%}_{-2.2\%} \pm 2.6\%$	$0.333^{+1.9\%}_{-1.3\%} \pm 2.1\%$	$0.371^{+2.0\%}_{-1.4\%} \pm 2.0\%$	$4.57^{+4.2\%}_{-5.9\%} \pm 1.9\%$
125	$0.116^{+2.5\%}_{-2.2\%} \pm 2.8\%$	$0.149^{+2.4\%}_{-2.0\%} \pm 2.6\%$	$0.330^{+1.9\%}_{-1.4\%} \pm 2.0\%$	$0.367^{+2.1\%}_{-1.5\%} \pm 2.0\%$	$4.47^{+4.1\%}_{-5.7\%} \pm 1.9\%$
125.09	$0.115^{+2.6\%}_{-2.2\%} \pm 2.8\%$	$0.147^{+2.7\%}_{-2.3\%} \pm 2.6\%$	$0.329^{+1.9\%}_{-1.4\%} \pm 2.1\%$	$0.368^{+2.1\%}_{-1.5\%} \pm 2.0\%$	$4.47^{+4.2\%}_{-5.8\%} \pm 1.9\%$
125.5	$0.114^{+2.5\%}_{-2.2\%} \pm 2.8\%$	$0.146^{+2.6\%}_{-2.2\%} \pm 2.6\%$	$0.327^{+2.3\%}_{-1.7\%} \pm 2.1\%$	$0.365^{+1.8\%}_{-1.3\%} \pm 2.0\%$	$4.44^{+3.9\%}_{-5.6\%} \pm 1.9\%$

[Frederix et al `14] [Maltoni, Vryonidou, Zaro `14]

... will be updated to NNLO for YR4 with different scale choice

BSM: Effective Field Theory

• dominant CP-even interactions gluon fusion

[WG2]

$$L = L_{SM} + \left(c_g \frac{h}{v} + c_{gg} \frac{h^2}{2v^2}\right) \frac{g_s^2}{4} G_{\mu\nu}^A G^{A,\mu\nu} - \frac{h}{v} \Sigma_f \Sigma_i m_{f_i} [\delta y_f]_i \overline{f}_i f_i$$
$$- \frac{h^2}{2v^2} \Sigma_f \Sigma_i m_{f_i} [y_f^{(2)}]_i \overline{f}_i f_i + \delta \lambda_3 h^3.$$

production not sensitive to bottom Yukawa, relevant parameters

$$c_g, c_{gg}, \delta y_t, y_t^{(2)}, \delta \lambda_3$$

• phenomenological fit to (isomorphic to WG2 parametrisation)

$$L' = \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{m_h^2}{2} h^2 - \kappa_{\lambda} \lambda_{SM} v h^3$$

$$- \frac{m_t}{v} \left(v + \kappa_t h + \frac{c_2}{v} h h \right) \left(\bar{t}_L t_R + h.c. \right) + \frac{\alpha_s}{12\pi v} \left(c_{1g} h - \frac{c_{2g}}{2v} h h \right) G_{\mu\nu}^A G^{A,\mu,\nu}$$
[Dall'Osso et al. `15]

[details available in separate LHCXSWG-INT-2015-007]

BSM: Effective Field Theory

• NLO QCD corrections available and flat [Gröber, Mühlleitner, Spira, Streicher `15]

 $\frac{\sigma_{hh}}{\sigma_{hh}^{SM}} = A_1 \kappa_t^4 + A_2 c_2^2 + (A_3 \kappa_t^2 + A_4 c_g^2) \kappa_\lambda^2 + A_5 c_{2g}^2 + (A_6 c_2 + A_7 \kappa_t \kappa_\lambda) \kappa_t^2$ $+ (A_8 \kappa_t \kappa_\lambda + A_9 c_g \kappa_\lambda) c_2 + A_{10} c_2 c_{2g} + (A_{11} c_g \kappa_\lambda + A_{12} c_{2g}) \kappa_t^2$ $+ (A_{13} \kappa_\lambda c_g + A_{14} c_{2g}) \kappa_t \kappa_\lambda + A_{15} c_g c_{2g} \kappa_\lambda.$

\sqrt{s}	8 TeV	13 TeV	$14 \mathrm{TeV}$	$100~{\rm TeV}$
A_1^H	0.86	0.82	0.81	0.72
A_2^H	0.32	0.29	0.29	0.22
A_3^H	-4.86	-4.82	-4.81	-4.72
A_4^H	8.92	8.76	8.73	8.38
A_5^H	-3.24	-3.04	-3.01	-2.60
A_6^H	-5.68	-5.70	-5.69	-5.78
A_7^H	9.91	10.16	10.19	11.27
A_8^H	14.41	14.27	14.24	14.08
A_9^H	-3.05	-2.88	-2.85	-2.51
A_{10}^H	-9.5E-02	-8.7E-02	-8.6E-02	-6.1E-02
A_{11}^H	8.2E-03	9.3E-03	9.4E-03	2.0E-02
A_{12}^H	-3.3E-02	-3.0E-02	-3.0E-02	-2.4E-02
A_{13}^H	8.2E-04	7.3E-04	7.2E-04	5.5E-04
A_{14}^H	4.2E-03	4.0E-03	4.0E-03	3.8E-03
A_{15}^H	1.7E-03	2.4E-03	2.5E-03	3.1E-03
A_{16}^H	-7.8E-02	-7.1E-02	-7.1E-02	-5.8E-02
A_{17}^H	9.7E-02	8.8E-02	8.7E-02	6.8E-02
A_{18}^H	0.27	0.25	0.24	0.18
A_{19}^H	0.13	0.12	0.12	0.10
A_{20}^H	0.43	0.41	0.41	0.36

recommendations

Benchmark	κ_{λ}	κ_t	c_2	c_g	c_{2g}
1	7.5	1.0	-1.0	0.0	0.0
2	1.0	1.0	0.5	-0.8	0.6
3	1.0	1.0	-1.5	0.0	-0.8
4	-3.5	1.55	-3.0	0.0	0.0
5	1.0	1.0	0.0	0.8	-1
6	2.4	1.0	0.0	0.2	-0.2
7	5.0	1.0	0.0	0.2	-0.2
8	15.0	1.0	0.0	-1	1
9	1.0	1.0	1.0	-0.6	0.6
10	10.0	1.5	-1.0	0.0	0.0
11	2.4	1.0	0.0	1	-1
12	15.0	1.0	1.0	0.0	0.0
SM	1.0	1.0	0.0	0.0	0.0

[Dall'Osso et al. `15] LHCXSWG-INT-2015-007

Higgs Basis Dorigo, Goertz, Tosi, Gouzevich, Oliveira LHCXSWG-INT-2015-007 [HPair]

BSM: Effective Field Theory

• NLO QCD corrections available and flat [Gröber, Mühlleitner, Spira, Streicher `15]

[HPair]

$$\frac{\sigma_{hh}}{\sigma_{hh}^{SM}} = A_1 \kappa_t^4 + A_2 c_2^2 + (A_3 \kappa_t^2 + A_4 c_g^2) \kappa_\lambda^2 + A_5 c_{2g}^2 + (A_6 c_2 + A_7 \kappa_t \kappa_\lambda) \kappa_t^2
+ (A_8 \kappa_t \kappa_\lambda + A_9 c_g \kappa_\lambda) c_2 + A_{10} c_2 c_{2g} + (A_{11} c_g \kappa_\lambda + A_{12} c_{2g}) \kappa_t^2
+ (A_{13} \kappa_\lambda c_g + A_{14} c_{2g}) \kappa_t \kappa_\lambda + A_{15} c_g c_{2g} \kappa_\lambda.$$

particularly relevant: Higgs selfcoupling
 K* factors for NNLO+NNLL available

	$\sigma_{NNLL}/\sigma_{NNLL,SM}(\delta\lambda_3)$					
$\delta \lambda_3/\lambda_{SM}$	-2	-1.5	-1	-0.5	1	
$\sqrt{s} = 7 \text{ TeV}$	4.17	3.12	2.24	1.53	0.452	
$\sqrt{s} = 8 \text{ TeV}$	4.09	3.06	2.21	1.52	0.455	
$\sqrt{s} = 13 \text{ TeV}$	3.85	2.92	2.13	1.49	0.466	
$\sqrt{s} = 14 \text{ TeV}$	3.82	2.90	2.12	1.49	0.467	
$\sqrt{s} = 100 \text{ TeV}$	3.39	2.62	1.97	1.43	0.492	

de Florian, Mazzitelli

recommendations

Benchmark	κ_{λ}	κ_t	c_2	c_g	c_{2g}
1	7.5	1.0	-1.0	0.0	0.0
2	1.0	1.0	0.5	-0.8	0.6
3	1.0	1.0	-1.5	0.0	-0.8
4	-3.5	1.55	-3.0	0.0	0.0
5	1.0	1.0	0.0	0.8	-1
6	2.4	1.0	0.0	0.2	-0.2
7	5.0	1.0	0.0	0.2	-0.2
8	15.0	1.0	0.0	-1	1
9	1.0	1.0	1.0	-0.6	0.6
10	10.0	1.5	-1.0	0.0	0.0
11	2.4	1.0	0.0	1	-1
12	15.0	1.0	1.0	0.0	0.0
SM	1.0	1.0	0.0	0.0	0.0

[Dall'Osso et al. `15] LHCXSWG-INT-2015-007

BSM: hh Resonances

 multi-Higgs phenomenology most transparently reflected in singlet extension scenario

$$V = -m^2 \Phi^{\dagger} \Phi - \mu^2 S^2 + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 S^4 + \lambda_3 \Phi^{\dagger} \Phi S^2$$

$$m_h = 125 \ GeV, M_H, \cos \alpha, v, \tan \beta = v/\langle s \rangle$$

$$\Gamma(h \to X_{SM} X_{SM}) = \cos^2 \alpha \, \Gamma(h \to X_{SM} X_{SM})_{SM}$$

$$\Gamma(H \to X_{SM} X_{SM}) = \sin^2 \alpha \, \Gamma(H \to X_{SM} X_{SM})_{SM}$$

$$\Gamma_H = \sin^2 \alpha \, \Gamma_{H,SM}(M_H) + \Gamma(H \to hh)$$

$$\Gamma_h = \cos^2 \alpha \, \Gamma_{h,SM}(m_h),$$
18

BSM: hh Resonances

• multi-Higgs phenomenology most transparently reflected in singlet extension, NLO QCD corrections available

[Dawson, Lewis `15]

cross sections to be included in YR4

Summary

- in YR4 (link to internal note)
 - latest recommendations for gluon fusion Higgs pair production as well as for subdominant channels
 - recommendation for gluon fusion distributions
 - transparent and phenomenologically relevant BSM extension recommendations for hh final states
 - final meeting for YR4: February 1st at 4.30pm CERN time

Thanks for contributions go to

- J. Adelman, A. Apyan, J. Baglio, A. Carvalho, D. de Florian, M. Dall'Osso, T. Dorigo,
- F. Goertz, C. Gottardo, J. Grigo, R. Gröber, P. Hebda, G. Heinrich, B. Hespel, S.
- Jones, M. Kerner, N. Konstantinidis, I. Lewis, J. Mazzitelli, M. Mühlleitner, N. Styles,
- A. Papaefstathiou, J. Rojo, M. Spannowsky, M. Spira, M. Tosi, C. Vernieri,
- E. Vryonidou, M. Zaro, T. Zirke.

Beyond YR4.....

• further investigate NLO finite top mass effects in gluon fusion

[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke]

[first details to be publicised in separate LHCXSWG note]

- shower systematics
- NNLO GF differential distributions and NLO differential distribution recommendations for subdominant production modes
- supplement additional subdominant production cross sections at NLO
 - gluon fusion + 2 jets (similar to gluon fusion hh)
 - gluon fusion induced hhZ production, VVhh...
- specific model-dependent benchmarking of (exotic) multi-Higgs final states in light of improved single Higgs results: (N)MSSM, 2HDM, ...