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Abstract

This Report summarises the results of the activities in the period 2014-2015 of the LHC Higgs Cross Section Working
Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating
all new results that have appeared in the last few years. This report follows the first working group report Handbook of
LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook
of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). Handbook of LHC Higgs Cross Sections:
3. Higgs properties (CERN-2013-004). BlaBla...
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Chapter 1

EFT formalism

For a large class of models beyond the SM, physics at energies below the mass scale A of the new particles can
be parametrized by an effective field theory (EFT) where the SM Lagrangian is supplemented by new operators
with canonical dimensions D larger than 4. The theory has the same field content and the same linearly realized
SU(3) x SU(2) x U(1) local symmetry as the SM.! The higher-dimensional operators are organized in a systematic
expansion in D, where each consecutive term is suppressed by a larger power of A. For a general introduction to the EFT
formalism see e.g. [1-4]; for recent review articles about EFT in connection with Higgs physics see e.g. [5-9].

Quite generally, the EFT Lagrangian takes the form:
o (5) o (6) of” (7 o (®)
Eeff:LSMJFZ:TOi +zi:ﬁ0i +zi:ﬁ(9i +;F(9i +oee (1.1)

where each (’)Z(D) is an SU(3) x SU(2) x U(1) invariant operator of dimension D and the parameters cz(.D) multiplying

the operators in the Lagrangian are called the Wilson coefficients. This EFT is intended to parametrize observable effects
of a large class of BSM theories where new particles, with mass of order A, are much heavier than the SM ones and much
heavier than the energy scale at which the experiment is performed. The main motivation to use this framework is that
the constraints on the EFT parameters can be later re-interpreted as constraints on masses and couplings of new particles
in many BSM theories. In other words, translation of experimental data into a theoretical framework has to be done only
once in the EFT context, rather than for each BSM model separately.

The contribution of each OED) to amplitudes of physical processes at the energy scale of order v scales? as (v/A)P 4.
Since v/A < 1 by construction, the EFT in its validity regime typically describes small deviations from the SM pre-
dictions, although, under certain conditions discussed later in this chapter, it may be consistent to use this framework to
describe large deviations.

A complete and non-redundant set of operators that can be constructed from the SM fields is known for D=5 [10],
D=6 [11], D=7 [12], and D=8 [13]. All D=5 operators violate the lepton number [10], while all D=7 operators violate
B — L [12] (the latter is true for all odd-D operators [14]). Then, experimental constraints dictate that their Wilson
coefficients must be suppressed at a level which makes them unobservable at the LHC [15], and for this reason D=5 and
7 operators will not be discussed here. Consequently, the leading new physics effects are expected from operators with
D=6 [16], whose contributions scale as (v/A)2. Contributions from operators with D > 8 are suppressed by at least
(v/A)*, and in most of the following discussion we will assume that they can be neglected.

In the rest of this chapter, we discuss in detail the set D=6 operators that can be constructed from the SM fields.
We review various possible choices of these operators (the so-called basis) and their phenomenological effects. We also
discuss the validity regime of the SM EFT with D=6 operators. Only the operators that conserve the baryon and lepton
numbers are considered. On the other hand, we do not impose a-priori any flavor symmetry. Also, we include CP violating
operators in our discussion.

In Section 1 we introduce the SM Lagrangian extended by dimension-6 operators. Two popular bases of dimension-
6 operators using the manifestly SU(2) x U(1) invariant formalism are explicitly listed. In Section 2 we discuss the
interactions of the SM mass eigenstates that arise in the presence of dimension-6 operators beyond the SM, with the
emphasis on the Higgs interactions. We also derive provide a map between the couplings in that effective Lagrangian and

IThe latter assumption can be relaxed, leading to an EFT with a non-linearly realized electroweak symmetry. This framework is discussed in
Section 2?.

2 Apart from the scaling with A, the effects of higher-dimensional operators also scale with appropriate powers of couplings in the UV theory. The
latter is important to assess the validity range of the EFT description, as disiussed in Section 4.
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Wilson coefficients of dimension-6 operators introduced in Section 1. In Section 3 we define a new basis of D=6 operators,
the so-called Higgs basis, which is spanned by a subset of the independent couplings of the mass eigenstate Lagrangian.
In Section 4 we discuss under which conditions and in which energy range does the EFT with D=6 operators provides an
adequate description of the underlying theory beyond the SM. We also comment on several physically important examples
where such a framework is insufficient. This chapter attempts to review the most important results from the point of view
of LHC Higgs phenomenology. Some additional details and derivations can be found in the associated LHCHXSWG
internal note [17].

1 SM EFT with dimension-6 operators

We consider an EFT Lagrangian where the SM is extended by dimension-6 operators:

1
Lepr = Lsm + 43 Z 0O, (1.2)

To fix our notation and conventions, we first write down the SM Lagrangian:

1
Low = —5GhGh, ~

1. . 1
1 WirWiw = 3 B B + D, H'D,H + 2 H'H — \(HTH)?
+ Z ivauDqu + Z ifRV;ADMfR

feqt f€Eu,d,e

- [ﬁTﬂRyqu + HidgyaViuar + Hegyelr, +hec.| . (1.3)

Here, G, W}, and B,, denote the gauge fields of the SU(3) x SU(2) x U(1) local symmetry. The corresponding

gauge couplings are denoted by g, g, ¢'; we also define the electromagnetic coupling e = gg’'/+v/g? + ¢'2, and the
Weinberg angle sp = g'/+/g? + g’2. The field strength tensors are defined as G, = 0,Gy, — 9,GY, + gsf“chZG,‘i,
VV;I, = 8MWj — 8VW13 + geijle{ Wf, B,, = 0,B, — 0,B,,. The Higgs doublet is denoted as H, and we also define
H; = e H; . Tt acquires the VEV (H'H) = v?/2. In the unitary gauge we have H = (0, (v + h)/\/2), where h is the
Higgs boson field. After electroweak symmetry breaking, the electroweak gauge boson mass eigenstates are defined as
W+ = (W FiW?)/V2, Z = cgW? — syB, A = sgW?3 + ¢y B, where cy = /1 — s2. The tree-level masses of W and
Z bosons are given by my = gv/2, mz = \/g? + g’>v/2. The left-handed Dirac fermions q;, = (ur, Voxmdr) and
{1, = (v, er) are doublets of the SU(2) gauge group, and the right-handed Dirac fermions ug, dg, eg are SU(2) singlets.
All fermions are 3-component vectors in the generation space, and y, are 3 X 3 matrices. We work in the basis where
the fermion mass matrix is diagonal with real, positive entries. In this basis, y; are diagonal, and the fermion masses are
given by my, = v[yy]i;//2. The 3 electroweak parameters g, ¢’, v are customarily derived from the Fermi constant G
measured in muon decays, Z boson mass my, and the low-energy electromagnetic coupling «(0). The tree-level relations
between the input observables and the electroweak parameters are given by:

1 2 12 2 /2
Gr 99 Vg T (1.4)

= -, o = 5 5w m =
V2?2 An(g? +g"%) ’ 2

We demand that the dimension-6 operators 056) in Eq. (1.2) form a complete, non-redundant set - a so-called ba-
sis. Complete means that any dimension-6 operator is either a part of the basis or can be obtained from a combination
of operators in the basis using equations of motion, integration by parts, field redefinitions, and Fierz transformations.
Non-redundant means it is a minimal such set. Any complete basis leads to the same physical predictions concerning
possible new physics effects. Several bases have been proposed in the literature, and they may be convenient for specific
applications. Below we describe two popular choices in the existing literature. Later, in Section 3, we propose a new basis
choice that is particularly convenient for leading-order LHC Higgs analyses in the EFT framework.

Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [11], and is usually referred
to as the Warsaw basis. For our purpose, it is more convenient to work with a variant of that basis which differs from the
one in Ref. [11] by the following aspects:

— We replace the operator |[HTD,H|? by Or = (HTEH)Q, where HTHZH = H'D,H — D,H'H. The reason is
that O is more directly connected to violation of custodial symmetry among Higgs couplings.

— For Yukawa-type D=6 operators H |H |? f f we subtracted v? from | H |?in the definition, so that they do not contribute
to fermion mass terms. This way we avoid tedious rotations of the fermion fields to bring them back to the mass
eigenstate basis. Moreover, we isolated factor of fermion masses in the definition, for a more direct connection
to minimal flavor violating scenarios. Starting with the Yukawa couplings —H f}’%(Y]ﬁ + H TH/v?)f; we can



bring them to the form in Eq. (1.3) and Table 1.2 by defining fL,R = Ur rfL R, /T [CFlij /U = [U}L%C}UL]”,
Yy = U};(Yf/ + c/f /2)UL, where Uy, r are unitary rotations to the mass eigenstate basis.

For other operators, we often use a different notation and normalizations than the original reference. The full set of
operators in the Warsaw basis is given in Tables 1.1, 1.2, and 1.3.

Another D=6 basis choice commonly used in the literature is the SILH basis [18, 19]. In the case we also use a
different notation and normalization than in the original references. Compared to the Warsaw basis, the SILH basis
introduces the following nine new operators:

OW = % (HTUIH:H) DVW,Z.IN
-
Op — %(HTB;H)@BW,
Opw = ig(D,H'0e'D,H)W},,
Oup = ig (DyH'D,H) By,
Oﬁﬁ/ = ig(D/LHTUiDDH)WﬁV,
Ogp = ig (D,H'D,H)B,,,
Ow = D,W],D,W},,
O2B = a/LB,ul/a[)pra
Osc = D,G%,D,GS,. (1.5)

Consequently, in order to have a non-redundant set of operators, 9 operators present in the Warsaw basis must be absent
in the SILH basis. The absent ones are 4 bosonic operators Owyy, OW, Ows, O%, 2 vertex operators [Ogy]11,
[O%¢)11, and 3 four-fermion operators [Og¢)1221, [Orel1122, (O] 3333.> The remaining operators are the same as in the
Warsaw basis, and we use the normalizations in Tables 1.1, 1.2, and 1.3. There exists a 1-to- linear map between the
Wilson coefficients in the Warsaw and SILH bases. The dictionary is given in Ref. [17].

2 Effective Lagrangian of mass eigenstates

In Section 1 we introduced an EFT with the SM supplemented by D=6 operators, using a manifestly SU(2) x U(1)
invariant notation. At that point, the connection between the new operators and phenomenology is not obvious. To relate
to high-energy collider observables, it is more transparent to work with the degrees of freedom that are mass eigenstates
after electroweak symmetry breaking (Higgs boson, W, Z, photon, etc.). In this section we relate the Wilson coefficients
of dimension-6 operators to the parameters of the tree-level effective Lagrangian describing the interactions of the mass
eigenstates.

We demand that the effective Lagrangian at tree level written in term of mass eigenstates has the following features:

#1 All kinetic and mass terms are diagonal and canonically normalized.

#2 Tree-level relations between the electroweak parameters and input observables are the same as the SM ones in
Eq. (1.4).

#3 The non-derivative photon and gluon interactions with fermions are the same as in the SM.

#4 Two-derivative self-interactions of the Higgs boson are absent.

#5 For each fermion pair, the coefficient of the vertex-like Higgs interaction terms (2% + Z—j) Vi f% f is equal to the

vertex correction to the respective V, f v, f interaction.

These conditions greatly simplify the relation between the parameters of the Lagrangian and collider observables. In
general, dimension-6 operators can induce interaction terms that do not respect these features. However, the conditions
#1-#5 can always be achieved, without any loss of generality, by using equations of motion, integrating by parts, and
redefining the fields and couplings. The required set of transformations starting from the Warsaw basis is presented in
Ref. [17]; an analogous procedure could be executed starting from the SILH basis.

We move to discussing the interactions in the effective Lagrangian conditions once #1-#5 are satisfied. We will focus
on interaction terms that are most relevant for LHC phenomenology. To organize the presentation, we split the Lagrangian
into the following parts,

EEFT = £kinetic + ‘Caf‘f + £vertex + Edipole + ‘Ctgc + £hff + ‘Chvv + ‘Ch'uff + Ehdvff + Lh,self + £h2 + Eother- (11)

3Refs. [18,19] do not specify flavor indices of the absent operators when general flavor structure of D=6 operators is introduced. Here, for concrete-
ness, we made a particular though somewhat arbitrary choice of these indices.
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Below we define each term in order of appearance. We also express the corrections to the SM interactions in LgpT via
Wilson coefficients of D=6 operators in the Warsaw and SILH basis. These corrections start at O(1/A?) in the EFT
expansion, and will ignore all O(1/A*) and higher contributions. Below we only present the Lagrangian in the unitary
gauge when the Goldstone bosons eaten by W and Z are set to zero; see Ref. [17] for a generalization to the ¢ gauge.

Kinetic Terms

By construction, the kinetic terms of the mass eigenstates are diagonal and canonically normalized:

1 1

1 _ 1 .
Ekin - —§W:LW#V - ZZF”’ZNV - ZA/'“’A/'“’ - 4GHVGZV
2,2 2 2Y,,2
g*v - (P +g%)
+ (1+0m)> Wiw, + S Zul
1 _
+ 50uhOuh = Xh? + i > F0u—my) f. (1.2)

feq,tu,de

Above, the parameter ) is defined by the tree-level relation m? = 2\v2. There is no correction to the Z boson mass terms,
in accordance with the condition #2. With this convention, the corrections to the W boson mass cannot be in general
redefined away, and are parametrized by dm. The relation between dm and the Wilson coefficients in the Warsaw and
SILH bases is given by

1

bm = g [0 ews + g er — g
2 12
g9 4 2,
= - - — — . 1.3
4(92_912) (Sw+83+82w+823 g/28T+ 7 [SHE]QQ (1.3)

For the sake of clarity, here and in the following denote the Wilson coefficients in the Warsaw basis by c¢;, and in the SILH
basis by s;. We also define 6v = ([ )11 + [yol22)/2 — [cee]1221 /4.
Gauge boson interactions with fermions

By construction (condition #3), the non-derivative photon and gluon interactions with fermions are the same as in the
SM:

Laosy = €Ay Z f’Yquf‘ngGz Z JF'YuTaf- (1.4)

f€Eu,d,e feu,d
The analogous interactions of the W and Z boson may in general be affected by dimension-6 operators:

Loortex = % (WJELW (Is + (592/2) er, + Wiy, (13 + 6gzvq) dr, + W:ﬂR'yM(Sgg/qdR + h.c.)
+ VPE+g?Z, | > fu (Tﬁ — 55Qs + wégff) fu+ > fr <—5§Qf + ’Yuégzzgf) fr| (15)

f€Eu,d,e,v fEu,d,e

Here, I3 is the 3 x 3 identity matrix, and the vertex corrections 6g are 3 x 3 Hermitian matrices in the generation space,
except for 0 g}/qu which is a general 3 x 3 complex matrix. The vertex corrections to W and Z boson couplings to fermions
are expressed by the Wilson coefficients in the Warsaw basis as

Sgr" = e+ f(1/2,0) = f(=1/2,-1),

Sgfv = %C/Hg_%CHZ‘i‘f(l/Zvo)’

b07° = — g~ gem + F(=1/2,-1),

dge = —%CHe“v‘f(Ov_l)v (1.6)
s = (chq + £(1/2,2/3) — f(=1/2,-1/3)) Vekm,
Sgp? = _%CHuda

1

. 1
595 = §C/Hq— §CHq+f(1/272/3)7
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1 1
(592(1 = _§VgKMC/PIqVCKM - §VCTKMCHqVCKM + f(_1/27 _1/3)7
1
6g}%u == _§CHu+f(Oa2/3)7
1
S9ht = —5CHd+ f(0,-1/3), (L7
where
9°9"” 3 9”
F(T},Qs) = | -Qewp———5 + (cr — 6v) (Tf + sz/z)] : (1.8)
g —gq g —9g
The analogous expression in the SILH basis read
7y 1, 1 2
6gL = §SH5755H€+]0(1/270)’
1 1 ;
(Sgge = *55}{@* 55H6+f(71/2ﬂ71)7
1 .
591Z%€ = 7§SHG+f<O’71)7
1 1 A
(59%“ = 53}1(] - iqu + f(1/2,2/3),
1 1 ;
59%‘1 = —ivchMS}{qVCKM - §VCTKMSHQVCKM + f(_]‘/27 _1/3)7
1 .
5ggu = _isHu+f(O72/3)7
1 .
(5gZd = —§3Hd + f(07 _1/3)7
597" = s+ f(1/2,0) = f(=1/2,-1),
sgye = (qu + f(1/2,2/3) — f(-1/2, —1/3)) Vekm,
1
dgp? = 5 SHud; (19
where
. 1
F(T3,Qp) = 7 lg%sow +9%s2p + dsr — 2lsyas] TF
g/2
+ (g —g?) [—(29° — g"*)s2B — g° (saw + sw + sB) + 457 — 2[sy]22] Q-

(1.10)

Another type of gauge boson interactions with fermions are the so-called dipole interactions. These do not occur in
the tree-level SM Lagrangian, but they in general may appear in the EFT with D=6 operators. We parametrize them as

follows:

ﬁdipolc

daflijfiAuw

VI 2 a a VI &
9s Z ——fion T [dcf]ijijW‘Fe Z ffm#u[

fEu,d fEu,d,e
A /mfimf. _
Ve +g? ) y Jiouwldzslii [ Zw
f€Eu,d,e

A/ M TNy, mq,mqg; _
+\/§g (’UdL ZJ/,LV[qu]ZJuR,jW + TUL,iO-MV[de]ZJdR,jW +h.c )

1/’I’TLEWL’I’TL@
Jr\@g (UVL 10W[dwe]”6R7JW + h. c)
VI - \/ my;
> Y fio T dasli /G, e >

feu,d feu,de

myg,mg, 7 7 7

f€Eu,d,e

+9s fouV[dAf]ufJ pv



(1.11)

226 where 0, = i[vu,7]/2, and day, day, dzs, dzy are Hermitian 3 x 3 matrices, while dyy ; are general complex 3 x 3
22z matrices. The field strength tensors are defined as X, = 9, X, — 0, X, and X,,, = €,,,000,X . The coefficients d, s
22 are related to the Wilson coefficients in the Warsaw basis as

de - Z'CZGf = —2\/§CfGa
dag —iday = —2V2(nsepw +csp),
- 2v/2
dz¢ —id = ——_(¢®nrerw — ¢ %¢ ,
Zf Zf 2+ g2 (9 ngcfw — g fB)
dwy = —2V2cpw, (1.12)
220  where 1, = +1, 14 = —1, and the formulas in the SILH basis are the same with ¢; — s;.

230 Gauge boson self-interactions

21 Gauge boson self-interactions are not directly relevant for LHC Higgs searches, however we include them in this presen-
232 tation because of the important synergy between the triple gauge couplings and Higgs couplings measurements [6,20-24].
233 The triple gauge interactions in the effective Lagrangian are parameterized by

Lige = e (WhWi = Wi, W) Ay +ie (14 66,) Ay WiEW, 4+ i Ay W]
+igeo (14 6g1.2) (WhEW, = W W) Zy (14 662) Zuo WiEW + e Zy WV |

+ z% MWW A+ AW W ] +i chGV AW W Zo + N W W 2

_ gsfabca GaGch 4 3¢ 3G Sfacha Gb Ge + == ‘5G 3facha Gb G¢ (1.13)

vp T pp vp T pp

23 The couplings of electroweak gauge bosons follow the customary parametrization of Ref. [25]. The anomalous triple
235 gauge couplings of electroweak gauge bosons are related to the Wilson coefficients in the Warsaw basis as

+
6gl,z = 792 J ( g CWB+CT—(5’U>
g g’
6’%"/ = QQCWB)
2 12
g9 g +9
0k, = —2cwnm (CT — ),
z 92 _ g/2 g2 g
Ay, = —§ e
Y - 29 3W
3
)\Z = _59403{/1/,
’%’Y g2EWB;
/:Lz - 79/25WBa
5\ 3 A~
= ——qg°¢
Y 2g 3W
. 3,
)\z = _59 C3W - (114)

236 The analogous relations for the SILH basis read

92 +gl2 [(92

0g1. = *m — 9 suw + g°(sw + saw) + 9> (s + s2B) — 4sr + 2[5}”}22} )
6 — g
Ky = s [sew + suB],
J — 1( ) 92+g/2 [2( + )_|_ /2( + )_4 _|_2[/ ] ]
Ry = 1 9*suw —9"%sus 74(92 —4?) g 8w T Sw)T g \SB T 52B ST SHel22] 5
3
A = 594331/1/, )\7 = A,
e
0ky = -7 5w +5uB],
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Single Higgs couplings

In this subsection we discuss the terms in the effective Lagrangian that involve a single Higgs boson field h. This part is
the most relevant one from the point of view of the LHC Higgs phenomenology.

We first define the Higgs boson couplings to a pair of fermions:
h ol \ 7
Lur = =3 DL D vy (5”‘ + [5yf]ij€z[¢f]”) frifrj+he, (1.16)
f€u,d,e ij

where [dy¢];; and ¢;; are general 3 x 3 matrices with real element. The corrections to the SM Yukawa interactions are
related to the Wilson coefficients in the Warsaw and SILH basis by

1

Buslee = ey = b (en + 0v)
1
= [sflij — i {SH + 2[8’1”]22} , (1.17)

Next, we define the following single Higgs boson couplings to a pair of the SM gauge fields:

9202 (2 + g)v?

h -
»Chvv = E (1 + 5610) TW:W# + (]. + 502) 4 ZMZIL

2 2
g W — -9 o _
B +wa2 ;j; [#V+wa2 ,Z,l[ul,—i—cngQ([[H&,H;,—i—h.c.)

2 e2 er/ a2 L g2 2 + 12
+cgg%GzyGZV + CWZAWAW + CZW%ZWAW + cZZ%ZWZW

+CZDg2ZM8VZHV + Cngg/ZuauAuu

2 e/ g2 + g2 _ g2+ g2 .
- 5 7Z[JJIZ,U,Z/

2
~ Y95 ~a Fa ~ € 1 ~ ~
+CQQZG#1/G/,“/ + C’Y’YZA'U‘VA#V + Czry D) Zl“’Al“’ + Cyy 1
(1.18)

where all the couplings above are real. The terms in the first two lines describe corrections to the SM Higgs couplings to
W and Z, while the remaining terms introduce Higgs couplings to gauge bosons with a tensor structure that is absent in
the SM Lagrangian. Note that, using equations of motion, we could get rid of certain 2-derivative interactions between the
Higgs and gauge bosons: hZ,,0,%2,,, hZ,0,A,,, and th&,Wi. These interactions would then be traded for contact
interactions of the Higgs, gauge bosons and fermions in Eq. (1.5). However, one of the defining features of our effective
Lagrangian is that the coefficients of the latter couplings are equal to the corresponding vertex correction in Eq. (1.5).
This form can be always obtained, without any loss of generality, starting from an arbitrary dimension-6 Lagrangian
provided the 2-derivative hV,,0,V,,,, are kept in the Lagrangian. Note that we work in the limit where the neutrinos are
massless and the Higgs boson does not couple to the neutrinos. In the EFT context, the couplings to neutrinos induced by
dimension-5 operators are proportional to neutrino masses, therefore they are far too small to have any relevance for LHC
phenomenology.

The shifts of the Higgs couplings to W and Z bosons are related to the Wilson coefficients in the Warsaw and SILH
basis by

4g%¢" g2 3¢% + ¢’
0cw = —CH—cwp g% — g2 +der 2_g? ov g% — g2
2 12 4 3¢% + ¢'2
= —SH — —5 3 |Sw + 5B+ Saw + 828 — —55T7 + —5 5 [SHel22| »
g2 _ g/2 g/2 2929/2 [ HZ]
6c, = —cg —30v
3
= —sm = 5lshd, (1.19)

The two-derivative Higgs couplings to gauge bosons are related to the Wilson coefficients in the Warsaw basis by

Cgg = CaaG,
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Cyy = cww +cBB —4cwn,

B greww + 9 cpp + 4929 *cwn
zZZ - )

(7 + 97
2
Co = —9—2 (er — dv),
 GPeww —9%cs —2(9* — 9'*)ews
Cay = 2 2 ’
g“+g

2
o = W ((g2 + g/2)CWB —2cr + 2(5’1)) s
Cow = CWW,

2
S )

(1.20)

and the same for the CP-odd couplings C4g, Cyvy, C2ys Czzs Cww, With ¢ — € on the right hand side. The analogous
expressions for the SILH basis read

Cgg = SGG»
Cyy = SBB,
1 2 12 12 2
Crz = —W [9 SHW +9 "SHB — g SQSBB] )
1

c. = @ [92(8W+SHW+Szw)+g/2(sB+SHB+SZB) _45T+2[3}{Z]22] )

_ SHB — SHW o
Gy = — 5~ SSBB,

_ SHW — SHB 1 2 2 /
o = 5 + P (07 (sw + saw) + ¢'%(sp + s2p) — 4s7 + 2[syl22]
Cow = TSHW,

SHW 1

Conl = + (9% (sw + sow) + g (s + s2) — 4sT + 2[sy4l22] , (1.21)

2 29?—9g7)

Next, couplings of the Higgs boson to a gauge field and two fermions (which are not present in the SM Lagrangian)
can be generated by dimension-6 operators. The vertex-like contact interactions between the Higgs, electroweak gauge
bosons, and fermions are parametrized as:

h
Lhopr = \/iggwj (ﬂLwégﬁW‘ldL+ﬂRmégZquR+Dmu5g2"”eL) the.
h F s hZ r o hz
+ 2N+ g2 | D Tewdg T+ D0 Frvder fr) (122)
f=u,d,e,v f=u,d,e

By construction (condition #5), the coefficients of these interaction are equal to the corresponding vertex correction in

Eq. (1.5):

5ghzf — 5ng, 5gth — 5ng (1.23)

The dipole-type contact interactions of the Higgs boson are parametrized as:

h

Lhave = T2

gs Z fUuuTathfszy"’_e Z .fouudhAffAuu+ V92+g/2 Z .fo'uuthfquu

fEu,d f€Eu,d,e f€Eu,d,e

—H/ig (CZLCTM,/CZ}LWuuRW,;V + ﬂLUuuthddRW;ry + l_/LCTM,/d}LWeeRW;rV + h.C.)

+9s Z f_o—,uuTaCthfféZu +e Z fauuczhAffguu + v 92 + 9/2 Z faﬁwdhszg;w )
fEu,d fEu,d,e feu,de
(1.24)

where dp 4y, Jh Af> drzf, th ¢ are Hermitian 3 x 3 matrices, while dpw ¢ are general complex 3 x 3 matrices. The
coefficients are simply related to the corresponding dipole interactions in Eq. (1.11):

dpy s = dyy. (1.25)
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Dimension-6 operators can also induce single Higgs couplings to 3 gauge bosons, but we do not display them here.

Higgs boson self-couplings and double Higgs couplings

The cubic Higgs boson self-coupling and couplings of two Higgs boson fields to matter play a role in the EFT description
of double Higgs production [26,27]. The cubic Higgs boson self-coupling is parametrized as
Lh seif = — (A + 6Az)vh?. (1.26)

The relation between the cubic Higgs coupling correction and the Wilson coefficients in the Warsaw and SILH basis is
given by

03

—A (3CH + 0v) — com

1
—\ <3SH + 2[8312]22> — S6H -

(1.27)

In accordance with the condition #4, the 2-derivative Higgs boson self-couplings have been traded for other equivalent
interactions and do not occur in the mass eigenstate Lagrangian. Self-interactions terms with 4, 5, and 6 Higgs boson
fields may also arise from dimension-6 operators, but we do not display them here.

The interactions between two Higgs bosons and two other SM fields are parametrized as follows:
2 2 2 2
+ _ h =
h2 (1 + 25022)) %ZHZM + h2 (1 + 2(507(3)) %WJWH — W Z w/mf,imfj {fLR[y?)]ijij + h.c.] .
fiig

h? _
+ 8? (cgfg)gngyGZV + 20’50273_)92WJVW;U/ + c,(z?z) (92 + gIQ)Z,U«VZHV + QC(z?y)gg/ZMVAMV + 0%2'7)6214#”14#”)

h2

+ g3 (eg?gsczyézy + 260 PWEW,, + 6292 + 9°) D Zyw + 262 99 Zy Ay + é%)eQAWAW)
h2 2 _ _ 2 2
52 (gchu)D(W:[awa +W, &,W:L) + gZCiD)ZM&,ZW + gg’cglz)lZua,,A,,M) . (1.28)
All double Higgs couplings arising from D=6 operators can be expressed by the single Higgs couplings:
509) = dcs, (50&}2) = dc, + 3dm,
2 iij -
[y; ) ij = 3[6yf}z]e i 5cz 51]a
01(;21;) = Cou, 51(3;) = Cyus ve{g,w,z,7},
cq()?z)l = Gl CAS {wa 2, 7} (129)

Other interaction terms with two Higgs bosons involve at least 5 fields: e.g the h2V3 or h2 f fV contact interactions, and
are not displayed here.

Other terms

In this section we wrote down the interaction terms of mass eigenstates in the D=6 EFT Lagrangian which are most
relevant for LHC Higgs phenomenology. They either enter the single and double Higgs production at tree level, or they
affect electroweak precision observables that are complementary to Higgs couplings measurements. The remaining terms
in the mass eigenstate Lagrangian, which are not explicitly displayed in this chapter, are contained in Lo¢her in Eq. (1.1).
They include 4-fermion terms, couplings of a single Higgs boson to 3 or more gauge bosons, quartic Higgs and gauge
boson self-interactions, dipole-like interactions of two gauge bosons and two fermions, and interaction terms with 5 or
more fields.

3 Higgs basis

In the previous section we related the Wilson coefficients in the Warsaw and SILH bases of D=6 operators to the cou-
plings of mass eigenstates in the Lagrangian. With this information at hand, one can proceed to calculating observables
at a given order in the EFT as a function of the Wilson coefficients. The information provided above is enough to cal-
culate the leading order EFT corrections to SM predictions for single and double Higgs production and decays in all
phenomenologically relevant channels.

There is no theoretical obstacle to present the results of LHC Higgs analyses as constraints on the Wilson coefficients in
the Warsaw or SILH basis. However, this procedure may not be the most efficient one from the experimental point of view.
The reason is that the relation between these Wilson coefficients and the couplings of the Higgs boson in the Lagrangian is
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somewhat complicated, c.f. Egs (1.6), (1.19), (1.20). In this section we propose another, equivalent parametrization of the
EFT with D=6 operators. The idea, put forward in Ref. [28], is to parametrize the space of D=6 operators using a subset
of couplings in the mass eigenstate Lagrangian, such as the one defined in Eq. (1.1) of Section 2. The parametrization
described in this section, which differs slightly from that in Ref. [28], is referred to as the Higgs basis.

The salient features of the Higgs basis are the following. The goal is to parametrize the space of D=6 operators in a
way that can be more directly connected to observable quantities in Higgs physics. Technically, the Higgs basis can be
defined as a linear transformation from the Warsaw or SILH basis into the coefficients of certain interaction terms of the
mass eigenstates (in particular the W, Z, and the Higgs bosons) in the effective Lagrangian. In practice, we will define
the Higgs basis by choosing a subset of the couplings parametrizing interaction terms in the mass eigenstate Lagrangian
in Eq. (1.1). All couplings in the subset have to be independent, in the sense that none can be expressed by the remaining
ones at the level of a general D = 6 EFT Lagrangian. It is also a maximal such subset, which implies that their number is
the same as the number of independent operators in the Warsaw or SILH basis. We will refer to this set as the independent
couplings. They parametrize all possible deformations of the SM Lagrangian in the presence of D=6 operators. Therefore,
they can be used on par with any other basis to describe the effects of dimension-6 operators on any physical observables
(also those unrelated to Higgs physics). By definition of the Higgs basis, the independent couplings include single Higgs
boson couplings to gauge bosons and fermions. Thanks to that, the parameters of the Higgs basis can be connected in a
more intuitive way to LHC Higgs observables calculated at leading order in the EFT. Furthermore, the vertex corrections to
the Z boson interactions with fermions are chosen to be among the independent couplings. As a consequence, combining
experimental information from Higgs and electroweak precision observables is more transparent in the Higgs basis.

3.1 Independent couplings
We now describe the choice of independent couplings which defines the Higgs basis.

The first group of independent couplings that we parametrizes the interactions of the Higgs boson with the SM gauge
boson, fermions, and with itself:

Cgg, ocs, Cyryy Czyy Czzy C200, Cggy Cyyy Czyy Czz,

6yu7 6yd7 5y€7 ¢1La ¢da ¢€7 6)\3 (11)

The first line is defined by Eq. (1.18), and the second one by Eq. (1.16) except for the last coupling which is defined in
Eq. (1.28). All these couplings affect the Higgs boson production and/or decay at the leading order in the EFT. Therefore
they are of crucial importance for LHC Higgs phenomenology. Moreover, at the leading order, they are not constrained at
all by LEP-1 electroweak precision tests or low-energy precision observables.

The second group of independent couplings parametrizes the W boson mass and the Z and W boson couplings to
fermions:

sm, dgZe, 6g%c, sg\Vt, dg7v, dgB", 8977, 8952, dgp Y,

deu, dea, dac, daw, daa, dze, dzu, dzd, dgu, dcd, dac, daw, dad, dze, dzu, dza.
(1.2)

Here the mass correction dm is defined in Eq. (1.2), the vertex corrections d¢g° are defined in Eq. (1.5), and the dipole
moments d; are defined in Eq. (1.11). All these parameters also affect the Higgs boson production and/or decay at the
leading order in the EFT. However, as opposed to the ones in Eq. (1.1), they affect at the same order electroweak and/or
low-energy precision observables.

The third group of independent couplings parametrizes the self-couplings of gauge bosons:
Ass Ass €36, Bc (1.3)

They are defined in Eq. (1.13). These couplings do not affect Higgs production and decay at the leading order in EFT.

To complete the definition of the Higgs basis, one has to select the independent couplings corresponding to 4-fermion
operators. We choose to parametrize them by the same set of Wilson coefficients as in the Warsaw basis:

/ / / /
Cee,y Cqqs qu7 Ctq, c(qa Cquqd> Cquqd’ Clequs c@equ’ Cledq>

§ , / / /
C@ea CZu; Cfd7 qu; Cq’LLa Cqu7 qua qua Ceea Cuua Cdda Ceu7 Ceda C’u.d7 Cud' (14)

The parameters cyy have 4 flavor indices. The non-trivial question of which combination of flavor indices constitutes
an independent set was worked out in Ref. [29]. In the Higgs basis we take the same choice of independent 4-fermion
couplings as in that reference, with one exception. As explained in the next subsection, in a D=6 EFT Lagrangian, the
coupling [cg]1221 multiplying a particular 4-lepton operator can be expressed by dm and dg°. Therefore [cg¢]1221 is not
among the independent couplings defining the Higgs basis.
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3.2 Dependent couplings

The number of parameters characterizing departure from the SM Lagrangian in Eq. (1.1) is larger than the number of
Wilson coefficients in a basis of D=6 operators. Due to this fact, there must be relations among these parameters. Work-
ing in the Higgs basis, some of the parameters in the mass eigenstate Lagrangian can be expressed by the independent
couplings; we call them the dependent couplings. The relations between dependent and independent couplings can be
inferred from the matching between the effective Lagrangian and the Warsaw or SILH basis in Section 2. These relations
hold at the level of the dimension-6 Lagrangian, and they are in general not respected in the presence of dimension-8 and
higher operators.

We start with the dependent couplings in Eq. (1.18) parametrizing the single Higgs boson interactions with gauge
bosons. They can be expressed in terms of the independent couplings as*

0cy = O0c,+4om,
Cow = Cup+ 253@7 + sgcw,
Cww = Con+ 285G + 854Gy,
1
Cyd = W [gzczD +4%c.. — 3253077 - (¢ - 9/2)53627] J
1
60 = g 29760+ (87 +9%)es - e = (6" g%)e ] (1.5)

The coefficients of W-boson dipole interactions in Eq. (1.11) are related to those of the Z and the photon as
Npdus = dag — idsg + s3(dag —idag), (1.6)

where 1, = 1 and g = —1. The coefficients of the dipole-like Higgs couplings in Eq. (1.24) are simply related to the
corresponding dipole moments:

dhoy = dof,  dnoy = duy, v € {g,w,z,7} (1.7

Coefficients of all interaction terms with two Higgs bosons in Eq. (1.28) are dependent couplings. The can be expressed
in terms of the independent couplings as:

5022) = de,, 60&? = dc; + 3dm,
[yf)]ij = 3[0yylize® — dc. 65,
A2 = ey, &2 = Gy, v € {g,w, 2,7},
c% = ¢y, v €{w,z,7}. (1.8)

The dependent vertex corrections are expressed in terms of the independent couplings as
(ngl’ = 5gfe + 592”, 5gE/q = 6gf“VCKM - VCKM(Sggd. (1.9)

All but two triple gauge couplings in Eq. (1.13) are dependent couplings expressed in terms of the independent couplings
as

1
s = S gD [c31€29"% + con (9% = 9%)g"% = c22(9” + 9"7)g"? — c.0(d” + 9'*)9°]
2 2 2 12
g e 9 -9
ok, = L -
o 2 (CW Frg? g CZZ) 7
2 2 2 12
- ~ € ~ - ~
KJ’Y B _gi (C’Y’Y 2 /2 + CZ’Y g2 g/2 - CZZ) ’
2 9°+yg 9°+9g
0k, = 0dgq1,.— t%élﬁv, R, = —tgi%v,
A= A, A=A (1.10)

Finally, we discuss how the Wilson coefficient [cgs]1201 is expressed by the independent couplings. One defining
feature of the mass eigenstate Lagrangian Eq. (1.1) is that the tree-level relations between the SM electroweak parameters

4The relation between Cyu, Gww and other parameters can also be viewed as a consequence of the accidental custodial symmetry at the level of the
dimension-6 operators [19].
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and input observables are not affected by D=6 operators (condition # 2). On the other hand, one of the four-fermion
couplings in the Lagrangian, B ~
‘CA‘LDf:6 D [eee)r221 (U1, .7p02,) (b2, LYpl1,1) (1.11)

does affect the relation between the parameter v and the muon decay width from which v = (v/2G )~ is determined:

T(u — evv)

m ~1 + 2[69}/}/6}11 + 2[(59}76]22 — 45m — [064]1221~ (112)

Therefore, the muon decay width is unchanged with respect to the SM when [cg¢]1221 is related to §m and dg as
[Cg@]lggl = 25[9}//‘/6]11 + 2[59}5[/6]22 — 45777, (113)

In other words, due to the fact that we selected dm and dg selected as an independent coupling in the Higgs basis, [cee]1221
has to be a dependent coupling. Of course, one could equivalently choose [cg¢]1221 to define a basis, and remove e.g. dm
from the list of independent couplings.

3.3 Summary and comments

In summary, in the Higgs basis the parameters spanning the space of D=6 EFT operators are the independent couplings in
Egs. (1.1), (1.2), (1.3), and (1.4). In the EFT expansion, the independent couplings are formally of order O(A~2. These
parameters describe certain deviations from the SM interactions in the mass eigenstate Lagrangian in Eq. (1.1). All other
deviations in the mass eigenstate Lagrangian can be expressed by the independent coupling.

The Higgs basis can be used in par with any other basis to describe the effects of dimension-6 operators on physical
observables. It should be stressed that it is not intrinsically better or worse than any other complete basis. Its usefulness is
in the fact that description of Higgs observables and electroweak precision observables at the leading EFT order (tree-level
O(A~2)) is more transparent than in other bases. On the other hand, most of the existing one-loop EFT calculations have
been performed in the SILH [30-33] Warsaw [29, 34-38] basis, therefore these bases are currently the natural choice as
far as analyses beyond the leading order are concerned. Nevertheless, experimental constraints on the parameters in the
Higgs basis can be always translated to other bases. To this end, the linear map between the parameters in the Higgs basis
and the Wilson coefficient in the SILH and Warsaw bases provided in Section 2 can used (see e.g. [24] for the translation
of the LHC Higgs and TGC constraints). These maps are used by the Rosetta program [39], which provides automated
translation between different bases and an interface to Monte Carlo simulations in the MadGraph 5 framework [40]. At
the same time, the independent couplings can be easily connected to Higgs pseudo-observables at the amplitude level, as
defined e.g. in Ref. [41].

In total, the Higgs basis, as any complete basis at the dimension-6 level, is parametrized by 2499 independent real
couplings [29]. One should not, however, be intimidated by this number. The point is that a much smaller subset of the
independent couplings is relevant for analyses of Higgs data at leading EFT order. First of all, the coefficients of 4-fermion
interactions in Eq. (1.4) and triple gauge interactions in Eq. (1.3) do not enter Higgs observables at the leading order. At
that order, the parameters relevant for LHC Higgs analyses are those in Eqgs. (1.1) and (1.2), which already reduces the
number of variables by a significant number. Furthermore, there are several motivated assumptions about the UV theory
underlying the EFT which could be used to further reduce the number of parameters:

— Minimal flavor violation, in which case the matrices dyy, df, 6g', and sin ¢ ¢ reduce to a single number for each f.
— CP conservation, in which case all CP-odd couplings vanish: ¢; = ¢ = d r=0.
— Custodial symmetry, in which case ém = 0.

We stress that independent couplings should not be arbitrarily set to zero without an underlying symmetry assumption.
Furthermore, the relations between the dependent and independent couplings in the mass eigenstate Lagrangian should be
consistently imposed, so as to preserve the structure of the D=6 EFT Lagrangian.

Finally, to reduce the number of variables, one can take advantage of the fact that, in addition to Higgs observables,
other measurements are sensitive to the parameters in Eq. (1.2). In particular, the parameters in the first line of Eq. (1.2) are
constrained by electroweak precision tests in LEP-1. These are among the most stringent constraints on EFT parameters,
and they have an important impact on possible signals in Higgs searches. Assuming minimal flavor violation, all the
vertex corrections in Eq. (1.2) are constrained to be smaller than O(10~3) (for the leptonic vertex corrections and dm),
or O( 10’2) (for the quark vertex corrections) [21, 42, 4315 Even when the assumption of minimal flavor violation is

SCustodial symmetry implies several relations between Higgs couplings to gauge bosons: dcyy = ¢z, Cpry = cgczg + sg CyOs Cww = Czz +
QSSCZAY + sgc,y, and Gy = Czz + 255627 + sgé,y. The last three are satisfied automatically at the level of dimension-6 Lagrangian, while the first
one is true for dm = 0, see Eq. (1.5).

%These constraints may be relaxed if the D=6 EFT does not provide a good description of electroweak precision observables [44]. Such cases are
discussed in more detail in Section 4.
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not imposed, all the leptonic, bottom and charm quark vertex corrections are still constrained at the level of O(10~2) or
better [45]. Similarly, many parameters in the second line of Eq. (1.2) are strongly constrained by measurements of the
magnetic and electric dipole moments. In the LHC environment, experimental sensitivity is often not sufficient to probe
these parameters with a comparable accuracy. If that is indeed the case, it is well-motivated to neglect the parameters in
Eq. (1.2) in LHC Higgs analyses.

Once the parameters in Eq. (1.2) are neglected, this leaves the parameter in Eq. (1.1) to describe Higgs observables.
This set consists of 10 bosonic and 2 x 3 X 3 x 3 = 54 fermionic couplings. Furthermore, 31 of these couplings are
CP-odd, therefore they affect the Higgs signal strength measurements only at the quadratic level (O(A~%) in the EFT
expansion), while flavor off-diagonal Yukawa couplings only affect exotic Higgs decays. In the limit where fermionic
couplings respect the minimal flavor violation paradigm, 9 parameters remain to describe leading order EFT corrections
to the existing Higgs signal strength measurements at the LHC. In the Higgs basis, these 9 parameters are:

Cqg, 5CZa Cyys Czyy Czz,y Cz0O, 6yua 6yd7 5?!5- (1.14)

4 Comments of EFT validity



Bosonic

On [0, (HTH)]?
Or (#' EHY
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O3~G ggf?chZl,G?{szu
O3W gsezjk,ijWIZpWﬁM
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Table 1.1: Bosonic dimension-6 operators in the Warsaw basis.

Yukawa and Vertex Dipole

Odis |~ (i - ey (Ol | 9 G0t Hoe WY,

O |~ (i i (Ol | ¢ Yl Hope; By
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[Onadlis idyd; HY D H
[Orudlij ity d; HY D, H

Table 1.2: Two-fermion dimension-6 operators in the Warsaw basis. In this table, e, u, d are always right-handed fermions, while £
and q are left-handed. For complex operators the complex conjugate operator is implicit.

(LL)(LL) and (LR)(LR) (RR)(RR) (LL)(RR)
o (0. €) (0,.6) Oce (Evue) (Evue) Ore (. 6) (Eue)
Oqq (@709)(@729) Ouu (@yuu) (@y.u) Otu (Cru) (wypw)
O (@7u0'9)(@Vu0"q) Oaa (dud)(dyud) Ora 6y 0)(dypd)
Ocq (Cyu0)(Gvua) Oecu (@vne) (@yuu) Ocq (@vnq) (Eve)
Oty (D70 0)(qVuo"q) Oed (&vue)(dvud) Oqu (q7uq) ()
Oquqa (@ uw)ejn(g"d) Oud (@yuu) (dyud) Ogu | (@vuT*q)(uy,Tu)
ugd | (@ T w)en (5T d) wa | (@ T u)(dy,Td) Oqa (@719) (dyud)
Otequ (Fe)ejr(qu) b | (@ T*q)(dv,Td)
Otequ | (Pouve)ejn(q o™ u)
Otedq (Fe)(dg’)

Table 1.3: Four-fermion operators in the Warsaw basis [11]. In this table, e, u, d are always right-handed fermions, while £ and g are
left-handed. A flavor index is implicit for each fermion field. For complex operators the complex conjugate operator is implicit.
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Chapter 2

EFT application

1 LO EFT tools

1.1 Tools for translations (Rosetta)

1.2 Tools for calculating observables (e.g EHdecay)
1.3 Tools for simulating events (e.g. Madgraph)

1.4 Tools for comparing with experiments (e.g. Sfitter)
2 NLO EFT results

2.1 NLOEW

comparison to LO

2.2 NLO QCD

comparison to LO

3 Interpretations in terms of non-linear EFT
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