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1 Introduction

The LHC Higgs Cross Section Working Group is focused on various steps of the analysis
chain:

Data — Fiducial cross-sections — Pseudo-observables — Model-independent
EFT — BSM Models .

This note concerns model-independent interpretations of the data in the framework of
effective field theory (EFT) beyond the Standard Model (SM), which is a part of the
scope of the Working Group 2. The purpose of this note is to propose a common EFT
language and conventions that could be universally used in LHC Higgs analyses and be
implemented in numerical tools.

In the EFT approach to physics beyond the SM, the basic assumption is that the
mass scale A of non-SM particles is larger than the electroweak scale v, A > v. If
this is the case, physics at energies £ < A can be parametrized by the SM Lagrangian
supplemented by new operators with canonical dimensions d larger than 4. The theory
has the same field content and the same linearly realized SU(3) x SU(2) x U(1) local
symmetry as the SM.! The higher-dimensional operators are organized in a systematic
expansion in d, where each consecutive term is suppressed by a larger power of A. The
EFT Lagrangian can be written as

(5) (6)
CZ- 5 Ci 6
Lgpr = LM + E e o + E _AQOZ() e (1.1)

IThe latter assumption can be relaxed, leading to EFT with a non-linearly realized electroweak
symmetry. In this note, we will not discuss these theories.
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In this equation, Lgy is the SM Lagrangian, which contains operators with d <4. The
remaining terms parametrize effects of heavy particles beyond the SM. Each Ofd) is a
gauge-invariant operator of canonical dimension d, and cgd) is the corresponding Wilson
coefficient. The contribution of each Ogd) to amplitudes of physical processes at the
energy scale of order v scales? as (v/A)4~%. Since v/A < 1 by construction, EFT typically
describes small deviations from the SM predictions, except for observables that, within
the SM, vanish or are suppressed by small parameters.

All dimension-5 operators that can be constructed from the SM fields violate the
lepton number. Experimental constraints dictate that their coefficients must be sup-
pressed at a level which makes them unobservable at the LHC, and for this reason d=5
operators will not be discussed here. Consequently, the leading new physics effects are
expected from operators with d=6 whose contributions scale as (v/A)?* We will ignore
here the effects of operators with d > 6.

In the rest of this note, we discuss in detail the set d=6 operators that can be
constructed from the SM fields. We review various possible choices of these operators
(the so-called basis) and their phenomenological effects. Only the operators that conserve
the baryon and lepton numbers are considered. On the other hand, we do not impose
any flavor symmetry. Also, we include CP violating operators in our discussion.

In Section 2, to define our notation and conventions, we write down the SM La-
grangian. Two popular bases of dimension-6 operators using the manifestly SU(2)x U (1)
invariant formalism are described in Section 3. In Section 4 we introduce an effective
Lagrangian summarizing the new interactions of the SM mass eigenstates that arise in
the presence of dimension-6 operators beyond the SM. We also derive provide a map be-
tween the couplings in that effective Lagrangian and Wilson coefficients of dimension-6
operators introduced in Section 3. In Section 5 we define a new basis of d=6 operators,
the so-called Higgs basis, which is spanned by a subset of the independent couplings
of the effective Lagrangian. This basis is particularly convenient for leading-order EFT
analyses of LHC Higgs data.

2 Standard Model Lagrangian

The SM Lagrangian in our notation takes the form

1 1.1
LV = —2GLG, = W W,y = (BB + DyH'D,H + iy HUH — A(H'H)?
+ Z Z‘fL’YuDqu + Z i]?R’YuDufR
feql f€u,d,e
— [F[TﬂRyqu + HTCZRdeCTKMqL -+ HTéRyefL + hC] . (21)

Here, G, W/, and B, denote the gauge fields of the SU(3) x SU(2) x U(1) local

symmetry. The corresponding gauge couplings are denoted by g5, g, ¢’; we also define the

electromagnetic coupling e = gg'/+/ g% + ¢’?, and the Weinberg angle sy = ¢'/+/ g% + ¢'>.

2 Apart from the scaling with A, the effects of higher-dimensional operators also scale with appropriate
powers of couplings in the UV theory. The latter may be important to assess the validity range of the
EFT description.
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The field strength tensors are defined as G%, = 9,G% — 9,G% + g, f*™ GG, W), =
W, —0,W), + ge"jngWf, B,, = 0,B, — 0,B,,. The Higgs doublet is denoted as H,
and we also define H; = e;H?. It acquires the VEV (H'H) = v*/2. In the unitary
gauge we have H = (0, (v 4 h)/+v/2), where h is the Higgs boson field. After electroweak
symmetry breaking, the electroweak gauge boson mass eigenstates are defined as W+ =
(WrFiW?) /2, Z = cgW3 —s54B, A = s4W?+cyB, where ¢y = /1 — s2. The tree-level
masses of W and Z bosons are given by my = gv/2, mz = \/¢>+ ¢’?v/2. The left-
handed Dirac fermions q;, = (ur, Vexmdy) and ¢, = (v, er) are doublets of the SU(2)
gauge group, and the right-handed Dirac fermions ug, dg, eg are SU(2) singlets. All
fermions are 3-component vectors in the generation space, and y; are 3 x 3 matrices. We
work in the basis where the fermion mass matrix is diagonal with real, positive entries.
In this basis, y; are diagonal, and the fermion masses are given by my, = v[ys]i/v/2.

For a future use, we write down the equations of motions for the gauge fields following
from Eq. (2.1):

g .
auBu,u = _THTEZH - g/]i/?
Oy + 9 WiWh, = DWW, = ~ZH'o DuH - gjt,
DVGglu = _gij;7 (22)

where jff = Zf Yff’}/uf, jz = ch'yM%iqL + gL’yM%iﬁL, and j; = qv,T"q are the fermionic
currents corresponding to the U(1), SU(2), and SU(3) factors of the SM gauge group.
Rewriting the Lagrangian in Eq. (2.1) in terms of the mass eigenstates after elec-
troweak symmetry breaking, one finds the following mass terms:
2,2 2 12,2
smv 9w (g g%
L = TW” W, +-—F——"

mass

2,2, + Z mfff: (2.3)

feu,de

the gauge boson couplings to fermions:

L‘E%« = eA, Z fo’nyJrgst Z FrTef,

f€Eu,d,e f€u,d

+ % (W:ﬂL’YuVCKMdL + W:ﬂLﬁY,ueL -+ h'c,)
+ VP2 Y (vt — siQrfud) (2.4)

feu,d,ev

the couplings of a single Higgs boson to gauge bosons and fermions:

b T o202 B 2 4 /292 h _
f

the couplings involving two or more Higgs bosons

h2 |:g2v2

(9° + g")v?
202 | 2

4

2
My

ESM —

2
WiEW, + Zuzﬂ} - SRR - (2.6)
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and the triple and quartic self-interactions of the vector bosons:
Lo = e [(WhW, =W, W, ) A, + A, WiW, ]
+ igeg [(WEW, = WL WH) Z, + Z,, W,W, ]
— gsf“bCGMGZGZG,C,. (2.7)

Lo = g; (WIWIW, W, = WIW, WIW,) + g*c; (WrZ,W, Z, - W, W, 2,2,
g°ss (W;AMWV_A,, — W:WM_AVAV)

gPcoso (W Z W, A, + WA W, Z, —2WiW, Z,A)

A aeeredens (2.8)

+ +

The couplings multiplying the SM interaction terms depend on a number of input pa-
rameters: my, mys, Vexm, 9s, g, ¢, v, all of which are known with a good precision.
The last 3 parameters are customarily derived from the observable Fermi constant Gg
(more precisely, from the measured muon lifetime 7, = 1927°/G%mS,), Z boson mass
myz, and the low-energy electromagnetic coupling a(0). The tree-level relations between
the input observables and the electroweak parameters are given by:

1 2 12 2 /2
G — S Vo' +g% (2.9)

myz =

V22 dn(g® + ) 2
3 Bases of dimension-6 operators

A basis of dimension-6 operators is a complete, non-redundant set of 02(6) in Eq. (1.1).
Complete means that any dimension-6 operator is either a part of the basis or can be
obtained from a combination of operators in the basis using equations of motion, inte-
gration by parts, field redefinitions, and Fierz transformations. Non-redundant means
it is a minimal such set. Any complete basis leads to the same physical predictions con-
cerning possible new physics effects. Several bases have been proposed in the literature,
and they may be convenient for specific applications. In this section we describe two
popular choices in the existing literature. Later, in Section 5, we propose a new basis
choice that is particularly convenient for leading-order LHC Higgs analyses in the EFT
framework.

3.1 Warsaw Basis

Historically, a complete and non-redundant set of d=6 operators was first identified in
Ref. [1], and is usually referred to as the Warsaw basis. For our purpose, it is more
convenient to work with a variant of that basis which differs from the one in Ref. [1] by
the following aspects:

e We replace the operator Ogp = |H'D, H|? by Or = (HTﬁMH)Q, where HTﬁ“H =
HTDMH — DMHTH. These operators are related by Or = Oy — 40gp, where Ogy
is also defined in Table 1.
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H*D? and HS f?H3 V3D3
On [8#(HTH)]2 [Oe}z’j —M(HTH - L)éiHTej Osc ggfachszng/cw

2 Mgy Moy, - ~ ~
Or | (HIDuH) [0y | V" (0l — Syl Ogy | 3G, Gh,G

v 2 vp~ pp
O¢r | (H'H)? Odlij |~ (HTH — 8)d;Higy Osw | g°¢7* Wi, Wi, Wk,
O | gPe7* W, Wi, Wk,
V2H? f2H?D f2VHD
2 = Me,Me; —
Oce | GHHGLGS,  (Omly | il HDH  [Oavly | g e fiot Ho e, WE,
Ogg | 4HIHGE,GY, Olyelis | ifiotyu b HIo Dy H Oclij | ¢ i Hoywe; B,
2 . . L _ [Mou; M ~
Oww QZHTH W,LZLVW;ZLV [OHe]ij Zei’yﬂejHTHiH [OuG]ij Js %QiHUuyTaujGZy
2 . . L /My, M ~
Oww | GTHHW, W, [Onglij g H DL H Ouwlij | g ok H o, WE,
/2 . /My, My, ; ~
OBB gTHTH BﬂVBuV [O,Hq]z] ZQikaqujHTO—kﬁﬂH [OuB]ij g'%@iHauyujBlw
/2 ~ . / . .
OEVB gTHTH B,uuB;w [OHu]ZJ lui’YMujHJrE)H [OdG}ij QS%@HUMVTGOZJ'GZV
Owp | gf H'o'HW By [Opaly | idiud; HID,H Oawlij | 6 g0k Hoyd, W,
Owp | 99 HIo'HW} B, [Onudlij | itiyud; H D, H Oaslij | ¢ GiHoyd; By

Table 1: Dimension-6 operators other than four-fermion operators in the Warsaw basis.
In this table, e, u, d are always right-handed fermions, while ¢ and ¢ are left-handed. For
complex operators the complex conjugate operator is implicit.

e For Yukawa-type d=6 operators H|H|*ff we subtracted v? from |H|?in the defi-
nition, so that they do not contribute to fermion mass terms. This way we avoid
tedious rotations of the fermion fields to bring them back to the mass eigenstate
basis. Moreover, we isolated factor of fermion masses in the definition, for a
more direct connection to minimal flavor violating scenarios. Starting with the
Yukawa couplings —H ff,(Y} + ¢;H'H/v?)f we can bring them to the form in
Eq. (2.1) and Table 1 by defining f} » = UrrfL.r, v/mamlcslij/v = [U;c’fUL]ij,
Yy = U;(Yf’ + ¢}/2)Ur, where Uy g are unitary rotations to the mass eigenstate
basis.

For other operators, we often use a different notation and normalizations than the origi-
nal reference. The translation to the original notation in Ref. [1] is given in Appendix ?7?.

The Lagrangian in the Warsaw basis is given by

1 .

ﬁwarsaw = ‘CSM + F Z CiOia (31)

i
where the SM Lagrangian £5M was introduced in Section 2, A is the EFT expansion
parameter identified with the mass scale of new particles in the UV theory, O; are

the dimension-6 operators summarized in Table 1 and Table 2, and ¢; are the Wilson
coefficient multiplying the operator O;. Note that observables calculated in the EFT
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(LL)(LL) and (LR)(LR) (RR)(RR) (LL)(RR)

O (€7,6)(£r,0) Oce | (7€) () Ow | ((yul)(Eve)
Ouq (@7.0)(T7u9) Ouwn | (uryu) (y,u) O | (yul) (@)
Ol | (@0')(@0'e)  Oaa | (dyud)(dy,d) Ow | (ty0)(d,d)
Orq (3 0)(@79) Ocu | (Eu€) (1) Ocg | (@7u4)(E0€)
O | (v 0)(@1.0'q) Oci | (eue)(dyud) Oqu | (qyu9) (wy,u)
Oquga | (Pu)ejn(q"d) Oud | (@y,u)(dy,d) Op | (@1.T°q) (@7, T )
vugd | (@Tw)ejp(7Td) va | (@ T u)(dy,Td) O | (77,4)(dyud)
Ovtequ (Pe)en(qu) Oy | (@7, T%q)(dn,Td)
Ofequ | (Pome)en(qioru)
Otedq (Fe)(dg’)

Table 2: Four-fermion operators in the Warsaw basis [1]. In this table, e, u, d are always
right-handed fermions, while ¢ and ¢ are left-handed. A flavor index is implicit for each
fermion field. For complex operators the complex conjugate operator is implicit.

depend only on the combination ¢;/A?. Therefore, working with the low-energy EFT,
it is more convenient to redefine ¢; — ¢;A?/v%. In the following we will display all the
formulas using the redefined Wilson coefficients c;.

3.2 SILH basis

Another d=6 basis choice commonly used in the literature is the SILH basis [3, 11].3
The SILH Lagrangian is written as

1
ESILH = ESM + ﬁ Z SlOl (32)

3For the sake of this note, the SILH basis is understood simply as a particular choice of a non-
redundant set of d=6 operators whose Wilson coefficients are arbitrary. We do not assume any hierarchy
of the Wilson coefficients motivated by particular strongly coupled UV completions that was discussed
in Refs. [3, 11]. As in the case of the Warsaw basis, in this note we use a different notation and
normalization than in the original references.
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Compared to the Warsaw basis defined in Section 3.1, the SILH basis of dimension-6
123 operators introduces the following nine new operators:

Ow

% (H%—Zﬁﬂ) DWW,
%gl (! EH) 9,B,,,
ig (D, H'o'D,H) W},
ig' (D,H'D,H) By,
ig (D H'o'D,H) WY,
ig (D,H'D,H) B
DuW;quW;m
8, B0, B,
D,G%,D,G",.

nz

(3.3)

Consequently, in order to have a non-redundant set of operators, 9 operators present
in the Warsaw basis must be absent in the SILH basis. The absent ones are 4 bosonic
operators Oww, Opy, Ows, O, 2 vertex operators [Opelir, [Of)i1, and 3 four-
fermion operators [Ol1201, [Og]1122, [Ol,)3333- The remaining operators are the same as
in the Warsaw basis, and we use the normalizations in Table 1.4

3.3 Map between Warsaw and SILH bases

One way to derive the translation is to first transform the operators in Eq. (3.3) to the
Warsaw basis using integration by parts, Fierz transformations, and the equations of

4The original references do not discuss the flavor structure explicitly, and the flavor indices of the
absent operators are not specified. Here, for concreteness, we made a particular though somewhat

arbitrary choice of these indices.



132 motion Eq. (2.2). This way, one can derive the following operator equalities:

1
Oup = Op— ZOWB — Oga,
1
Opw = Ow — ZOWB - Oww,
1
Oms = —10ws— Og
1
Omv = —1%s ~ Oww:
Op = ¢" ——OT+— Z YfZOHf
qu u,d,l,e
1 / !
f€q,l 1
1
O = —79r+ SV [Oulit Y. YiYy Z[Oflh]iijj 7
fequ,dl,e i fif2€qu,dle
1 / 1 !
OQW = _ZOH + OHD + 5 Z Z[OHf]“
f€q,l 1
1 / / !
+ 1 Z ([Oze]iijj + Q[Oéq]im [qu]zm)] )
ij
2 / 1 1 /
Oy = 9s Z [qu]wz 4[qu]ijji - 6[qu]zm + Z[Oqu]”ﬂ + 2[ qd]”]]
4]
! 1 ! 1 ! 1 / 1 /
+ 2[Oudlisgs + 51O0ulissi = GlOulisss + 5[Oudliisi = 51Oaalisis | - (3.4)

13 The operator O%, = |H|*|D, H|* appearing above is present neither in the Warsaw nor
14 in the SILH basis. One can remove it from the Lagrangian by rescaling the Higgs field
155 and the Yukawa couplings as H — H(1 + €|H|?/v?), y; — yp(1 — €/2). To lowest order

136 in €, this rescaling generates the following terms in the Lagrangian

AL = (QO}ID +0g — 4 0y +V2 > Y ([Of]u- + [0}]ii)> . (3.5)

feu,de 1

137 Thus, to get rid of the O, operator generated by the transformation from the SILH
158 to the Warsaw basis we need to choose € = —g¢*(sw + sgw + Sow)/2. Effectively, this

139 amount to replacing in Eq. (3.4):

Oy — OH + 2006 — —= Z 3 ( Ol ) . (3.6)

fEude )

1o Moreover, we have to get rid of the 4-fermion operator Oy, using the identity

[O4liisi = (Livuo™0:) (£7,0" ;) = 2[Oulijsi — [Ouliis- (3.7)



w1 Finally, one should take into account that certain combination of flavor indices corre-
w2 spond to the same operators, e.g. [Oyljiij = [Oulijjis o [Owljjii = [Ouwliijs-
143 We are ready to give the translation between the Wilson coefficient in the SILH and

12s  Warsaw basis:

2

CH SH—T(SW—FSHW—FSQVV),
12
cr S — I (sp + sup + S28)
CoH serr + 2007 (sw + Sugw + Saw)
1
CWB 1 (sgp + Suw),
CBB SBB — SHB,
ww —SHW,
CwB 1 (Sup + Suw) ,
CBB SBB — SHB;
Cww —SHw, (3.8)
145
g/2 [
[crflis [smrlij + 5 (sp + sup + 2s2) dij,
2
[l [ plij + T (sw + saw + 2s2w) 6ij, (3.9)
146
e
crlii = [8¢]ii — 6ii2= (sw + sgw + Saw ), 3.10
[crliz = [s£]ij gﬂ(W W + Saw) (3.10)
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1
[celisii = [See)isii + = 9/2823 +9282W )
4

lcocliij; = [Sedliijj + (9 o5 — §7Saw ) 1< 7,
(coddijii = [Sedizji +g 52W7 1< J,
[Cée]iijj = [Sée]ujj +g 5237
[Cee]iiii = [See]uu +g 3237
[Cee]iijj = [See]u]j + 29 S2B; 1<y,
g2
[etaliizs = [Staivss + 50w
12
lewliizi = Iswliizi — Z5-s28,
29/2
[Cm]n'jj = [Séu]iijj_TSQBa
/2
(cealiij; = [Sedliijj + 5528
3
12
lCeqlivii = [Seqliiis — 5528,
49/2
[Ceu]iijj = [Seu]iijj_TSQBa
2 12
[Cedliij; = [Sed]iijj+%323, (3.11)

where it is implicit that [sge|11 = [$y]11 = [See)1201 = [See]11220 = 0. The translation for
4-quark Wilson coefficients is not listed in Eq. (3.11) but it can be easily derived from
Eq. (3.4). For other Wilson coefficients not listed above the translation is trivial: ¢; = s;.

4 Phenomenological effective Lagrangian

In Section 3 we introduced d=6 operators in the SU(2) x U(1) invariant notation. At that
point, the connection between the new operators and phenomenology is not obvious. In
this section we relate the Wilson coefficients of dimension-6 operators to the parameters
of the effective Lagrangian describing the interactions of SM mass eigenstates after
electroweak symmetry breaking. The effective Lagrangian is of the form

Lo = LM+ ALy, (4.1)

where £5M is the SM Lagrangian introduced in Section 2, and AL;_g, contains new

interactions beyond the SM induced by the d=6 operators.® The effect of ALy¢ is

either to shift the coupling strength away from the SM predictions or to introduce new

tensor structures of interactions that are absent in the SM Lagrangian. A subset of these

interactions is relevant to describe new physics effects in Higgs searches at the LHC.
By construction, L.g has the following features:

5Note that, after electroweak symmetry breaking, the canonical dimensions of some interaction terms
ALgj—¢ is smaller than 6 due to insertions of the Higgs field VEV v.

10
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#1 All kinetic and mass terms are diagonal and canonically normalized. In particular,
there is no kinetic mixing between the Z boson and the photon.

#2 Tree-level relations between the electroweak parameters and input observables are
the same as the SM ones in Eq. (2.9). In particular, the photon and the gluon
interact with fermions as in Eq. (2.4), and there is no correction to the Z boson
mass term.

#3 Two-derivative self-interactions of the Higgs boson are absent.

#4 For each fermion pair, the coefficient of the vertex-like Higgs interaction term
%Vu fuf is equal to the vertex correction to the respective V, fv, f interaction.

These conditions greatly simplify the connection between the parameters of the La-
grangian and collider observables. In general, dimension-6 operators can induce inter-
action terms that do not respect these features. However, the conditions #1-#4 can
always be achieved, without any loss of generality, by using equations of motion, inte-
grating by parts, and redefining the fields and couplings. Below, we discuss the required
set of transformations starting from the Warsaw basis. An analogous procedure could
be executed starting from the SILH basis; alternatively, the map between the SILH basis
and the phenomenological effective Lagrangian can be derived using the results for the
Warsaw basis obtained below together with the Warsaw-to-SILH translation given in
Section 3.3,

We need to bring the Warsaw basis Lagrangian to a form that satisfies the condi-
tions #1-#4. To begin with, the operator Oy g leads to a kinetic mixing between the
hypercharge and SU(2) gauge bosons, Owp — —%gg’ Wil,BW. To get rid of it, one has
to use the equations of motion in Eq. (2.2):

—ewpdW3,B,, = —cwp®L (—253B,0,W3, — 23W39,B,,, + gca*WiW*B,,)
v 2 2 . . 2 g . . .
—  cwpe? [% (gW3 —g'B,)" —gW2jY — ¢ B.js — 29—9,637'“W/{WfBW — g’e?’]kBMWngu}

2 /2 v 2 -em - Fe1m
- cw pe? [—(9 HOE). 72— e AL J + P+ 7 2, (53 — )]

/

+ Z.CWB(JQ_E;% [gz(gAw/ - g,ZuV)WJWV_ - 9/2(9Au - g/Zﬂ)(W/Z/WII_ - W;;/sz-)] ) (4'2)

where ji" = jfj + jZL/ is the electromagnetic current. Next, the operators Ogg, Oww,
and Ogg change the normalization of the kinetic terms of the gauge bosons. To recover
the canonical normalization we redefine the gauge fields as

0339'2 i i CWW92 a a CGGQ?
B#_>BH<1+ ),WH—>W‘M<1+T>,G#—>GN(1+T . (43)

4

The operator Oge contributes to the QCD -term which, for phenomenological reasons,
should be extremely small. Therefore, we assume that this contribution if present,
precisely cancels against the f-term in the SM Lagrangian such that |fsy + 055 <
1071°. The operator Oy changes the normalization of the Higgs boson kinetic term,
and also induces Higgs boson self-interactions that contain two derivatives. To recover

11
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the canonical normalization and remove the 2-derivative self-interactions we redefine the
Higgs field as
h h?
h—h (1 —Cyg — ;CH — ﬁcH) . (44)
The relation between the Higgs VEV vy and the mass parameter in the SM Lagrangian
is affected by the Ogy operator:

2
2 Mg i
UO - A (]‘ + 4)\C6H> ) (45)

while the relation between the Higgs boson mass and the quartic coupling in the SM
Lagrangian is affected by both Ogy and Oy:

3
m; = 2v5 <)\ — 2cgA — 506H> : (4.6)

We still need to ensure the condition #2 which requires that the tree-level relations
between the couplings and the observables employed to determine them must be the
same as in the SM. This is a non-trivial requirement, because dimension-6 operators
affect the observables used to extract these parameters. We have seen that the operator
Ow p shifts the electric charge and the Z boson mass. Similarly, the operator Or shifts
the Z boson mass term. Furthermore, one of the Oy operators leads to the 4-fermion
coupling v™2[ce]1201 (V.1 YpVe.1.) (EL7Vpher) that contributes to the muon decay at the linear
level and thus effectively shifts the Fermi constant. Finally, the leptonic vertex operators
Opge change the couplings of W to electrons and muons, and thus also effectively shift
the Fermi constant. To undo these effects, we need to ensure that the photon and the
gluon couple to the electromagnetic and strong currents as in Eq. (2.4). Furthermore,
the Z boson mass term in the Lagrangian should be as in Eq. (2.3), and the tree-level

p — evev, decay width should be given by I' = 382;—%”4. This is achieved by the following

redefinition of the coupling constants and the VEV:

g:
gs — Gs 1_CGG’Z )

2 2 12 2
g g9 9
g — g (1 —ww CWB—g2 — + (er — 6v) —) ;

4 g2 _g/2
g/2 g29/2 g/2
g/ — g’ <1—CBBZ+CWBW—(CT—6U)W s
vo — v(l+dv), (4.7)

where 6v = ([clg]11 + [Cl22) /2 — [cor)i221 /4

One last transformation is needed satisfy the condition #4. At this point, the coef-
ficients of the contact hV ff and h2V ff interactions differ from the vertex corrections
to the V f f interactions by flavor universal terms depending only on the electric charge
and the isospin of the fermions. It is possible to get rid of the latter using equations of
motion for the gauge bosons, so as to trade them into zero- and two-derivative Higgs
boson interactions with gauge bosons of the form hV,V, and hV,0,V,,. To this end, we
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add and subtract the following Lagrangian term:

h  h?
AL = (2— + _2) [Ladd - Ladd, eom]
v ()

2
Loga = %92 z o (cr —o0v—g”cws) (W, j, +he.)

1 : : 3,
+ Vit Q'ZW ((er = 0v)(g%p +9%3,) — 9°d*ewn(in +3y)) Zu

(4.8)

where Ladd, eom 15 Lada With the fermionic currents j, eliminated in favor of bosonic
terms using the equations of motion in Eq. (2.2). This step ensures the the coefficients
of the vertex-like Higgs contact interactions hV ff and h?V ff in the Lagrangian are
proportional to the vertex correction to the SM V f f interactions.

After all these transformations, the conditions #1-#4 are satisfied. We can proceed
to listing the corrections to the SM in ALy—g in this representation. We will focus on
interaction terms that are relevant for LHC phenomenology. Coefficients of all interac-
tion terms in ALy are O(1/A?) in the EFT expansion, and will ignore all O(1/A%)
and higher contributions. To facilitate presentation, we split ALyz—g into the following
parts,

AACd:6 = AAcmass—i_A'Cvertex—i_Edipolva-_+_A£1:g(:_{'Aﬁqgc_+_A£h—i_£ilft)ﬂ” +£hdvff +A£h,self+A£h2 +£0ther-

(4.9)
Below we define each term in order of appearance. In this section we give the Lagrangian
in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero; see
Appendix C for a generalization to the R, gauge.

4.1 Quadratic terms

By construction, there are no corrections to quadratic terms of the SM mass eigenstates
with the exception of the shift of the W boson mass in Eq. (2.3):

2,02

AL = 25m T W W (4.10)

The relation between dm and the Wilson coefficients in the Warsaw and SILH bases is
given by

1

om = 22 [—9°9"%cws + gcr — g"%0v]
2 12
99 4 2,
YTy - — — . 4.11
4(92 _9/2) (SW+SB+82w+SQB 9/25T+ 92 [5H€]22> ( )

4.2 Gauge boson interactions with fermions

Two types of corrections to the SM gauge boson interactions with fermions may be
introduced by dimension-6 operators. Omne is the so-called wvertex corrections, which

13



23 shift the W and Z couplings to fermions away from the SM Lagrangian of Eq. (2.4):

A‘CV(er‘ce>< = % (WJDL,.YHJQE/KGL + W:ﬂ7uéggfqu + W:ﬂR’yu(Sg}/{quR + hC)
+ V@92 | D el o+ ) megéffR] , (4.12)
f€u,d,e,v f€Eu,d,e

24 where all the dg are 3 x 3 Hermitian matrices in the generation space, except for 592/‘7
25 which is a general 3 x 3 complex matrix. The vertex corrections to W and Z boson
a6 couplings to fermions are expressed by the Wilson coefficients in the Warsaw basis as

dgr = e+ £(1/2,0) = f(=1/2,-1),

1 1
Sg7" = QC}M —gemet f(1/2,0),
1 1
Sg7¢ = —50}1@ —gemet f(=1/2,-1),
1
Sg5¢ = —5CHe + f(0,-1), (4.13)

247

dgp* = (cyg+ F(1/2,2/3) = f(=1/2,~1/3)) Vexu,

1
592/(1 = _§CHud7
Zu 1 / 1
(5gL - §CHq_ §CHq+f(1/272/3)7
1 1
097t = _§VCTKMC}1(1VCKM — éngMCHqVCKM + f(-1/2,-1/3),
1
1
ogi" = —gema+ f(0,-1/3), (4.14)
s where
. 929" , g
f(T°,Q) =15 —QCWBw-F(CT—(;U) (T +Q92—g’2>} , (4.15)

14



a9 and I3 is the 3 x 3 identity matrix. The analogous expression in the SILH basis read

097" = %SHe—%SHe+JE(1/270);

S07 = gy — gome+ F(-1/2,-1),

Sof = g+ £(0,-1),

S = gy~ g+ 1(1/2,2/3),

dg7? = _%V(]]LKMSSI(]VCKM - %VgKMSHqVCKM + f(_1/2a —1/3),
SRt = —gsma+ 1(0,2/3)

5gat = —%st+f(0,—1/3)

Sgi* = s+ F(1/2,0) = f(=1/2,-1),
o9 = (shag + F(1/2,2/3) = F(=1/2,-1/3)) Ve,

Sgp ! = —%SHum (4.16)
50 where
f(T%,Q) = 111 [ saw + g% s0p + 4sr — 2[shyloa] T°
+ 4(g29—/_29,2) [—(29° = ¢%)s28 — 9*(saw + sw + sB) + 4sr — 2[s}yl2] Q.
(4.17)
251 Another type of gauge boson interactions with fermions, which does occur in the SM

»2  Lagrangian, are the so-called dipole interactions, We parametrize them as follows:

Ldipole

1 VIV 5 a a VI &
T lgs >, — fiow T ldaylii fiG, +e > “—, Jiowldagli fiAuw

feu,d feu,d,e

mygmy,
+\/W Z inaw[dzﬂijszw

feu,d,e

A/ Ty Ty mg;Mq,; _
—i-\/_g ( dL zO'W,[qu]quJW + TUL»iO-“V[de]'UdRJW + h.c. )
+v2g ( ; jVLzUW[dWe]UeR]W +hc)

VAL UL P ar 3 ~ A/ My, ~
+9s Z v fiow T [deylii ;G Z N fouwldaglifi A

feud feu,de
My, Fo 1d 7
N \/W; S° FouldaslsfiZuw|
fEu,d,e

(4.18)
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where 0, = i[y,,7]/2, and day, JAf, dzg, cZZf are Hermitian 3 x 3 matrices, while
dwy are general complex 3 x 3 matrices. The field strength tensors are defined as
X = 0,X, —0,X,, and X/w = €up00,X,. The coeflicients d,; are related to the
Wilson coefficients in the Warsaw basis as

dG'f - Z'dNGJc = —2\/§Cfg,
dag—iday = —2V2(nsepw +crp),
- 2v/2
dzs —id = ———_(*nrerw — %),
Zf Zf PER (9 necrw — g fB)
de = —2\/§wa, (419)
where 1, = +1, 4. = —1, and the formulas in the SILH basis are the same with ¢; — s;.

4.3 Gauge boson self-interactions

The corrections to the cubic interactions of gauge bosons in Eq. (2.7) are parametrized
as

ALige = i€ Sy A WEW, + oy Ay, W, |
- ige |01 (WiW, = Wi, W) Zy o+ 00z Z, WEW, 4 e Zy WEW |

. € - 3 _ i . gCq _ S 5
i W At AW Wi A ] + e NV Wi Zo 4 MW Wi 2|
C3G 3 pabc,va b c 63G 3 pabc a b c
+ ?gsf GuyGl/pGpu + ?gsf GuyGqup;u (420)
The couplings of electroweak gauge bosons follow the customary parametrization of
Ref. [7]. The anomalous triple gauge couplings of electroweak gauge bosons are related
to the Wilson coefficients in the Warsaw basis as

2 2
9°+g
0Gr. = 2 =g (_g/QCWB +or — 5?1) 3
5’% = QQCW&
2 12 2 2
g-g g°+g
5%2 = —201/[/392 — 9/2 + g2 — 9,2 (CT — (SU) 5
3
)w = —5940314/,
3
A = _§Q4C3W7
Ry 925WB>
K —g"*éwp,
N 3 4.
)w = —59 Caw,
- 3 4.
A, = —59 CGaw. (4.21)
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ss  The analogous relations for the SILH basis read

0g1: =
dky =
Ok, =

A, =

dRy =

0k, =

A =

2 12
_|_

_ﬁ [(6° = 9%)suw + §°(sw + saw) + ¢ (sp + s2) — 457 + 2[s)y)22] |

e
vy [saw + susl

1 2 + 12
- (QQSHW - Q/QSHB) - % [QQ(SW + SzW) + 9/2(83 + 823) —4dsp + Q[S/Hg]zﬂ )

4 4(g* — g%

3
—§Q4S3W7 Ay = Az,

2

_gz [Saw + 3us)

12
gz [Saw + 3us)

3, ~ -
—59433% A= AL (4.22)

s 'The quartic gauge interactions can be parametrized as

AL e

+ o+

+

2
g S - -
5gW45 (Wiwrw,w, —w W, w}rw,)
Sgw2z29cy (Wi Z, W, 2, —WIW, Z,Z,)
Sgw2z49"coso (W Z, W, A, +WiIAW, Z, —2W, W, Z,A,)
2
g )\WAL

2
2 myy,

(W Wop = W W) (Wi W, = W, W)

A
923 W (2 Wy = Wi ) Wy (2 Wiy = Wi Z0y) 2,

W
e? AZ%? (W, (AW, =W A) Ay + W, (AuW,, —WHA,) A,
s (I (A Wiy = Wi ) 2,4 Wy (AW, = W5AL) 7]
egcy A:)ZZ;A (Wi (ZuW,, = Wi Zop) Ay + W, (ZWW, =W Z,,) A
39363—20 feefetege, G GAGS + CP odd, (4.23)

%6 where CPodd stands for analogous terms with A\, — 5\z, cisc — G4, and one of the
27 field strength tensors replaced by the dual one. The parameters in Eq. (4.23) can be
s expressed by the corrections to the triple gauge couplings

Ogws = O0gweze = 0gweza = 591,27
)\W4 = )\szz = )\WzAz = )\WQAZ = )\W2ZA = >\za
e = ca, (4.24)

» and analogous formulas hold for the CP-odd couplings with A — X and ¢ — ¢.

17



270

271

272

273

274

276

277

278

279

280

281

282

283

284

285

286

287

288

290

4.4 Single Higgs couplings

This part is the most relevant one from the point of view of the LHC Higgs phenomenol-
ogy. First, we define the following single Higgs boson couplings to a pair of the SM
fields:

h
AL, = " [25cwm%VWJW; +(5czmQZZ“Zu

N Z Z VI, [0y ¢)i; [ew’fj ]?L,ifR,j + h.C.}

f€ude 1ij

2 2
Swriww- o+~ I wriir- 2 (17— +
a5 Wi W+ oy Wil Wi, + cung? (W, 0,W,, + hic.)

2
2 2 2 12 2 12
95 ra va e evVyg t+4g gty
_'_ngZGNVG:UJV + C’Y'YZA/“’A,“'V + Cz'y 2 Z,LLVA/JZ/ + Cys 4 Z,LLI/Z;LV

"‘CzDgQZMaVZuu + C»yDgg/ZuauAuu

g3 ~ g2 _ e /Jg? ¥ g2 . P24 g2 ~
+CQQ%GZVGZV + Cyy ZAMVAMV + CZ’Y%ZMVAMV + szuz Z

(4.25)

where all the couplings above are real. The terms in the first two lines shift the SM
couplings in Eq. (2.5), while the remaining terms introduce Higgs couplings to matter
with a tensor structure that is absent in the SM Lagrangian. Note that, using equations
of motion, we could get rid of certain 2-derivative interactions between the Higgs and
gauge bosons: hZ,0,7,,, hZ,0,A,,, and th@VWfM. These interactions would then be
traded for contact interactions of the Higgs, gauge bosons and fermions in Eq. (4.30).
However, one of the defining features of our effective Lagrangian is that the coefficients of
the latter couplings are equal to the corresponding vertex correction in Eq. (4.12). This
form can be always obtained, without any loss of generality, starting from an arbitrary
dimension-6 Lagrangian provided the 2-derivative hV,0,V,,, are kept in the Lagrangian.
Note that we work in the limit where the neutrinos are massless and the Higgs boson
does not couple to the neutrinos. In the EFT context, the couplings to neutrinos induced
by dimension-5 operators are proportional to neutrino masses, therefore they are far too
small to have any relevance for LHC phenomenology.

The shifts of the Higgs couplings to W and Z bosons are related to the Wilson
coefficients in the Warsaw and SILH basis by

492912 g2 392 + g/2
0cy = —cy— WB 5 g2 + 4CT92 —g7 ov 72— g2
2 12 2 /2
99 4 39" +g

= —SH — 72— g2 Sw + Sp + Sow + S2B — FST + 292" [Strel22 | »

dc, = —cyg—30v
3
= —SH — 5[3}1@]227 (4.26)

The Yukawa interactions are related to the Wilson coefficients in the Warsaw and
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291 SILH basis by

1
7 [erlij

1 1
= E[Sf]ij — 0ij {SH + 5[53%]22] » (4.27)
202 The two-derivative Higgs couplings to gauge bosons are related to the Wilson coef-
203 ficients in the Warsaw basis by
Cqg = Caa,
Cyvy = cww +cpp — 4cwn,
4 14 2 12
_ geww + 9" e+ 4979 cwn
Cy, — )
(9% +97)?
2
C,o = —? (CT — 5’(]) s
_ GPeww — ¢%cps —2(9° — ¢)ews
Coy = 92 + gl2 ’
2
Cyo = 92 — g/2 ((92 + gl2)CWB — 2cr + 2(51}) ,
Cow = CWW,
2 /2
e T gy (9" cwn —or + dv) .

(4.28)

20 and the same for the CP-odd couplings C4g, Cyys Cyy Cazy Cuww, With ¢ — ¢ on the right
2s  hand side. The analogous expressions for the SILH basis read

Cgg = SGG,
Cyy = SBB,
1
T TR (9*saw + 9 sup — 9" s3spB]
1
C.o = 3 [ (sw + suw + sow) + 9% (5B + sup + s28) — 4sr + 2[shyl0]
SHB — SHW 2
Cy = — 5~ SispB
SHW — SHB 1 2 12 /
Cyo = 9 T (9% (sw + saw) + g (sB + s28) — 451 + 2[Sla2]
Cyw = —SHW,
SHW 1
Con = —5— F 2 — 97 9% (sw + saw) + g (s + s28) — 457 + 2[sy ]2 , (4.29)
206 Next, couplings of the Higgs boson to a gauge field and two fermions (which are not

207 present in the SM Lagrangian) can be generated by dimension-6 operators. The vertex-
28 like contact interactions between the Higgs, electroweak gauge bosons, and fermions are
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parametrized as:

h
Lhopp = \/ﬁg;WJ <be7u5QZquL + UpYudgy " Ydp + 5L7u592W66L> + h.c.

h _ _
+ 2P+, | Y Fondgr fu+ Y Tendy fn

f=u,d,e,v f=ud,e

. (4.30)

As discussed before, by construction, the coefficients of these interaction are equal to
the corresponding vertex correction in Eq. (4.12):

g = 6477, 5g" I = 5qW7 . (4.31)

The dipole-type contact interactions of the Higgs boson are parametrized as:

feu,d f€u,d,e f€u,de
+\/§g (JLUWthuuRWJV + aLUu,jthddRW/j; + DLUWtheeRW:V + hC)

+9s Z JFUWTaJthféZV +e Z fauudhAffzuu +Vg:+g? Z fUuuCihfoZw

feu,d feu,de feu,de

where dpay, JhAf, dnzy, thf are Hermitian 3 x 3 matrices, while dpw s are general
complex 3 x 3 matrices. The coefficients are simply related to the corresponding dipole
interactions in Eq. (4.18):

thf = dvf. (433)

Dimension-6 operators can also induce single Higgs couplings to 3 gauge bosons, but
we do not display them in this note.

4.5 Higgs boson self-couplings
Corrections to the Higgs boson self-couplings in the SM are parametrized as
AE}Z’SQH‘ = —5)\3Uh3 - 5>\4h4. (434)

The relation between the cubic corrections and the Wilson coefficients in the Warsaw
and SILH basis is given by

(5)\3 = —A (3CH + 51)) — C6H
L
= —A <35H + 5[8;”]22) — S6H- (4.35)

The correction to the quartic Higgs boson term in Eq. (4.34) can be expressed as

3 m3

Self-interactions with more than 4 fields can also arise from dimension-6 operators,
but we do not display them in this note.
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4.6 Couplings of two or more Higgs bosons

To describe double Higgs production at the LHC we need, apart from a subset of the
single Higgs couplings introduced in Section 4.4 and the cubic Higgs self-interaction in
Eq. (4.34), the interactions between two Higgs bosons and two other SM fields. They
are parametrized as follows:

n? (5(;(2) g +9”°
2

V2 #

2,7, +6c? gQW/jWM)
fitg
h? ) )
a a /
+ U2 ( 99 gSG G + 2wag W+ W + czz (g + g )ZMVZ + 26(

2

z

h? _
o2 Z g my, |:fi,R[y§f2)]ijfj7L + h.C.} .

99'Z, Am,—i—c(2 2A VA, )

8
h2 ~ a a ~
- @(99980 Gy + 20008 W W, + 829" + %) 2 Zys + 282) 99 2y Ay + 822 AL A, )

h?
—5o3 (S WEOLWS, + Wo, W) + * 82,0, 2, + 99/ B 2,0,A,,)

All double Higgs couplings arising from d=6 operators can be expressed by the single
Higgs couplings:

6c? = b, 6ct?) = e, + 30m,
[y§f2)]1j = 3[dyylize’” — dc. 0y,
Cg)) = Cyu, ~£)%) - 6’0117 v E {97 w, 277}7
CSJQD) = Cum, v e {w,z,v} (4.38)

Other interaction terms with two Higgs bosons involve at least 5 fields: e.g the h2V? or
h2f fV contact interactions. We do not display them in this note.

4.7 Other terms

In the subsections above we wrote down interaction terms in the effective Lagrangian that
are relevant for SM precision tests and for Higgs searches at the LHC. The remaining
terms, which are not explicitly displayed in this note, are contained in Lyiner. They
include 4-fermion terms, couplings of a single Higgs boson to 3 or more gauge bosons,
dipole-like interactions of two gauge bosons and two fermions, and interaction terms
with 5 or more fields. Currently, these terms are not relevant for single and double
Higgs production and decay at the LHC. If phenomenological interest is presented, any
of the terms in Lyiher can be explicitly written down in this note.

5 Higgs basis

In principle, there is no theoretical obstacle to present the results of LHC Higgs analyses
as constraints on the Wilson coefficients in the Warsaw or SILH basis. However, this
procedure may not be the most efficient one. One difficulty is that, in those bases, one
needs to consider a large number of parameters, however the LHC Higgs observables
depend only on a smaller number of linear combinations of the Wilson coefficients. An-
other practical difficulty is that some of these linear combinations are already stringently
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constrained by electroweak precisions tests, such that they cannot yield observable ef-
fects at the LHC. In this section we propose a more convenient parametrization of the
effective Lagrangian with d=6 operators, along the lines of the EFT primaries in Ref. [2].

The salient features of our proposal are the following. The goal is to parametrize the
d=6 operators in a way that can be more directly connected to observable quantities
in Higgs physics. We call this parametrization the Higgs basis. Technically, the Higgs
basis can be defined as a linear transformation from the Warsaw or SILH basis into the
coefficients of certain interaction terms of the mass eigenstates (in particular the W,
Z, and the Higgs bosons) in the effective Lagrangian. In practice, we will define the
Higgs basis by choosing a subset of the couplings multiplying interaction terms in the
effective Lagrangian Eq. (4.1) defined in Section 4. We will refer to this subset as the
independent couplings. The number of independent couplings is the same as the num-
ber of independent operators in the Warsaw or SILH basis. They define the space of
all possible deformations of the SM Lagrangian in the presence of d=6 operators. The
independent couplings include the single Higgs couplings to gauge bosons and fermions,
such that the parameters of the Higgs basis can be easily related to LHC Higgs observ-
ables. Furthermore, the vertex corrections to the Z boson interactions with fermions are
among the independent couplings so that the stringent constraints from the Z and W
partial decay widths can be incorporated in a transparent way.

The number of interaction terms in the effective Lagrangian of Eq. (4.1) is larger
than the number of Wilson coefficients in a dimension-6 EFT basis. Due to this fact,
some of the parameters in ALy_g can be expressed by the independent couplings; we
call them the dependent couplings. The relations between dependent and independent
couplings can be inferred from the matching between the effective Lagrangian and the
Warsaw or SILH basis in Section 3. These relations hold at the level of the dimension-6
Lagrangian, and they are in general not respected in the presence of dimension-8 and
higher operators. Of course, the choice which couplings are independent and which
are dependent is a subjective choice dictated by convenience. In our case, the choice
of the independent couplings was motivated by their direct connection to observables
constrained by electroweak precision tests and Higgs searches. However, other choices
can be envisaged and may be more convenient for other applications.

5.1 Independent couplings

We select a subset of couplings in the effective Lagrangian of Eq. (4.1) that has a 1-to-1
mapping to the Wilson coefficients in the Warsaw or SILH basis (or any other dimension-
6 basis). This subset of independent couplings defines the Higgs basis. It can be used
on par with any other basis to describe the effect of dimension-6 operators on physical
observables.

The first group of independent couplings are the ones affecting the W boson mass
and the Z and W boson couplings to fermions:

om, Sg7c, Sgkc, dgVt, dg7r, Sghv, 6g7e, g%, gy,
deu, dad, dae, daw, dad, dze, dzu, dza, dou, dca, dae, daw, dad, dze, dzu, dzq.
(5.1)

Here the mass correction dm is defined in Eq. (4.10), the vertex corrections dg" are
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defined in Eq. (4.12), and the dipole moments d; are defined in Eq. (4.18). While they
are free parameters from the EFT point of view, precision measurements constrain them
to be small. In particular, most of the parameters in the first line are constrained to be
<1072 — 107* [10]. The remaining parameters are constrained by measurements of the
magnetic and electric dipole moments. Therefore, even if combinations of dimension-6
operators defined by the independent couplings in Eq. (5.1) affect the Higgs observables,
it is well-motivated to neglect them in LHC Higgs analyses whose precision is worse than
the existing constraints.

The second group of independent couplings are the ones describing the interactions
of the Higgs boson with the SM gauge boson, fermions, and with itself:

Cqg» 5Cz7 Cyyy Czyy Czzy CzO, Cggy Cyyy Czyy Ciz,y

6yu7 5?Jd, 5%, Sin¢u7 Singbd? Sin¢€7 6A3 (52)

They are defined by Eq. (4.25), except for the last one which is defined in Eq. (4.37). As
opposed to the ones in Eq. (5.1), the combinations of Wilson coefficients corresponding
to the independent couplings in Eq. (5.2) are weakly constrained by SM precision tests.
In fact, the strongest limits on these couplings typically come from Higgs searches. An
important task of the LHC collaborations is to provide model-independent limits on the
parameters in Eq. (5.2).

The third group of independent couplings are related to gauge bosons self-couplings:

)\27 )\Za C3a, 63G' (53)

They are defined in Eq. (4.20). These couplings do not affect Higgs searches, and they
are only weakly constrained by SM precision tests.

To complete the definition of the Higgs basis, one has to include the independent
couplings corresponding to 4-fermion operators. We choose to parametrize them by the
same set of Wilson coefficients as in the Warsaw basis:

/ / / /
Coey Cqqs qu7 Ceq, c@qa Cquqd Cquqda Clequ, Ceng Cledq

/ / /
Cte; Ceus Cedy, Cger Cqu, Cqu7 Cqd, qu? Cees Cuus Cddy Ceus Ced; Cudy Cyq- (54)

The parameters c¢y have 4 flavor indices. The non-trivial question of which combination
of flavor indices constitutes an independent set was worked out in Ref. [8]. In the Higgs
basis we take the same choice of independent 4-fermion couplings as in that reference,
with one exception. As explained in the next subsection, in the Higgs basis the coupling
[ce]1201 is a dependent coupling that can be expressed by dm and dg°. Therefore [c/]1201
is not among the independent couplings defining the Higgs basis.

5.2 Dependent couplings

The remaining couplings in the effective Lagrangian are called the dependent couplings
because, at the level of a dimension-6 EFT Lagrangian, they can be expressed by the
independent couplings defining the Higgs basis. To obtain the relations between the
dependent and independent couplings one can use the matching between the Warsaw
basis and the effective Lagrangian worked out in Section 3.1. The procedure is to solve
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for the Warsaw basis Wilson coefficients in terms of the independent couplings and
eliminate the former from the expressions for the dependent couplings.

We start with the dependent couplings in Eq. (4.25) describing the single Higgs boson
interactions with matter. They can be expressed in terms of the independent couplings

as®

0c, = 0c, +4om,

Cow = Cuz—+ 233027 + sﬁcw,
Cuw = Cos + 2850y + 54Cyrs
1
Cwo = W [QQCzD + g%, — esjes, — (97 — 9’2)33027} ’
1
o = 5 20700+ (07 + g7)e — ey — (68— g%)en] (5.5)

The coefficients of W-boson dipole interactions in Eq. (4.18) are related to those of the
7 and the photon as

nfdwf Zdzf—idzf+83(dAf—iczAf>, (56)

where 7, = 1 and 14, = —1. The coefficients of the dipole-like Higgs couplings in
Eq. (4.32) are simply related to the corresponding dipole moments:

d}wf = dvf, thvf = Cva, vV E {g,w, z,v}. (57)

The correction to the quartic Higgs boson term in Eq. (4.34) is given by

2

Sy = g(»g ~ Mhge,. (5.8)

602

Coefficients of all interaction terms with two Higgs bosons in Eq. (4.37) are dependent
couplings. The can be expressed in terms of the independent couplings as:

6c? = b, 6ct?) = b, + 30m,
2 i
[y; )]ij = 3[dyylie % — 4§, dij,
Cq()%) = Cyu, 51(;%;) = Cyv, (NS {g, w, 277}7
65;25) = G, ve {w7 2y rY} (59)

The dependent vertex corrections are expressed in terms of the independent ones as
(5ng = 59%8 —+ (SQE/Z, 593/(1 = 6gguVCKM — VCKM(Sggd. (510)

Note that we choose the W couplings to leptons (rather than the Z couplings to neutri-
nos) as our independent couplings, because in the flavor non-universal case the former are

more directly constrained by experiment (in particular, in leptonic W decays measured
at LEP).

6The relation between Cyuw, Gww and other parameters can also be viewed as a consequence of the
accidental custodial symmetry at the level of the dimension-6 operators [11].
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Next, all but two triple gauge couplings in Eq. (4.20) are dependent couplings ex-
pressed in terms of the independent couplings as

691, = 2(92—1—9’2) [cn€29"% + con(9” — 99”7 — c.o(6* + §%)g* — c.n(g® + ¢')g7]
2 o2 2 2
oy = 5 (omgr g+ ol o).
Ry = _9_2 (5776—2 + 5WM — gzz) 7
2 92 + g/2 92 + g/2
0k, = Ogi1.— 130Ky,  FRo= —tgiy,
A= A, A = (5.11)

Note that d¢; ., k., and K, are dependent couplings here, unlike in Ref. [2]. Our
motivation is that the Higgs basis should be parametrized such that the connection
with Higgs observables is the simplest. However, for the sake of studying WW and
WYZ production a different set of independent couplings would be more convenient. For
example, one could choose the independent couplings as 0gi ., dky, A;, Ky, \., and
consider c.n, ¢, and ¢, as dependent couplings expressed in terms of this set.

The corrections to quartic gauge boson self-couplings in Eq. (4.23) are all dependent.

They can be expressed by corrections to triple gauge couplings as

59W4 = 5ngz2 = 59WQZA = 591727
)\W4 = )\WQZQ = )\WzAz = )\WQAZ = )\W2ZA - )\Zu

C4a 3G, (5.12)

Finally, we discuss how the Wilson coefficient [cg]1291 of the 2-electron-2-muon oper-
ator is expressed by the independent couplings. One feature of the effective Lagrangian
Eq. (4.1) is that the tree-level relations between the SM electroweak parameters and
input observables are not affected by new physics. On the other hand, one of the four-
fermion couplings in the Lagrangian,

'C4Df:6 D [eueiaor (01,17pl2,1) (bo. 17,01 1) (5.13)

does affect the relation between the parameter v and the muon decay width from which
Grp=1/ V20?2 is determined:

I'(u — evv)
['(p — evv)sm

~ 1 + 2[592[/6]11 + 2[592/6]22 — 45m — [ng]lggl. (514)

Therefore, the muon decay width is unchanged with respect to the SM when [cg]1901 1S
related to dm and dg as

[035]1221 = 25[.9?/6]11 + 2[5‘9?/6]22 — 46m. (515)

In other words, due to the fact that we defined dm as an independent coupling in the
Higgs basis , [cy]1221 has to be a dependent coupling. Of course, one could equivalently
choose [cy]1221 to define the Higgs basis, and remove dm from the list of independent
couplings.
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5.3 Summary and comments

In summary, the Higgs basis is parametrized by the independent couplings in Eqs. (5.1),
(5.2), (5.3), (5.4). In total, the Higgs basis, as any complete basis at the dimension-6
level, is parametrized by 2499 independent real couplings [8]. One should not, however,
be intimidated by this number. The point is that a much smaller subset in Eq. (5.2) is
adequate for EFT analyses of Higgs data at leading order in new physics parameters.
For example, to describe single Higgs production and decay processes in full generality
one needs 10 bosonic and 2 x 3 x 3 x 3 = 54 fermionic couplings. Furthermore, 31 of
these couplings are CP-odd, therefore they affect the Higgs signal strength measurement
only at the quadratic level, while flavor off-diagonal Yukawa couplings only affect exotic
Higgs decays. In the limit where fermionic couplings respect the minimal flavor violation
paradigm, 9 parameters are enough to describe leading order EFT corrections to the
existing Higgs signal strength measurements at the LHC. In the Higgs basis, these 9
parameters are:

ng> 5027 C’y’yv Cz'ya Czz, Co0O, 5yu> 5yd7 (53/6' (516)

We conclude with a number of comments.

e The Higgs basis is particularly well suited for data analyses performed using tree-
level (LO) EFT calculations. On the other hand, existing one-loop EFT calcu-
lations have been performed in the Warsaw basis, therefore the Warsaw basis is
currently the most natural choice as far as analyses beyond LO are concerned. In
order to facilitate the transition between the two bases, and in order to provide a
proper definition of the Higgs basis, the complete mapping between these two bases
is provided. It is straightforward to extend this mapping to any other complete
basis, and we provide a detailed mapping also in the case of the SILH basis, that is
particularly useful within specific model-dependent approaches. At the same time,
the independent couplings can be easily connected to Higgs pseudo-observables at
the amplitude level, as defined e.g. in Ref. [9].

e The choice of independent couplings in the Higgs basis is made such that the
constraints from the Z and W partial decay widths (measured with a per-mille
precision by the LEP experiment) can be easily incorporated. These are among the
most stringent constraints on EF'T parameters, and they have an important impact
on possible signals in Higgs searches. In particular, assuming vertex corrections
are flavor blind, all the independent couplings in Eq. (5.1) are constrained to be
smaller than O(107?) (for the leptonic vertex corrections and dm = dmy /my),
or O(107%) (for the quark vertex corrections) [4, 6, 12]. Dropping the assumption
of flavor blindness, all the leptonic, bottom and charm quark vertex corrections
are still constrained (assuming only d < 6 operators contribute to the precision
observables) at the level of O(1072) or better [10]. In the LHC environment,
experimental sensitivity is typically not sufficient to probe these parameters with
a comparable accuracy. If that is indeed the case, the electroweak constraints on
Z and W boson couplings to fermions can be imposed when analyzing LHC data,
especially in the context of Higgs physics. Other precision observables, such as
WW production or off-shell fermion scattering, lead to less stringent constraints
that are not discussed in this note (see e.g. [4, 5, 6] for a recent discussion).
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e The relations between independent and dependent couplings in Eqs. (5.5), (5.6),

(5.7), (5.8), (5.9), (5.10), (5.11), (5.12), (5.15) are consequences of the linear
realization of electroweak symmetry breaking at the level of dimension-6 EFT
operators. They are an essential part of the definition of the Higgs basis. If the
independent and dependent couplings were unrelated, then LyigesBasis would not
be a dimension-6 basis but would belong to a more general class of theories. Such
theories are outside of the scope of this note.

Customarily, the SM electroweak parameters are extracted from a(0), myz and G.
One could also use my, instead of G, as suggested in Ref. [4]. This formalism
leads to the same relations between the independent and dependent couplings as
written down here, except that dm = 0 by definition, and that [cg]1201 becomes an
independent coupling. The downside of this formalism is that the SM predictions
for all observables would have to be recalculated, as all existing high-precision
calculations use G as an input.

The number of independent couplings in Eq. (5.2) relevant for Higgs observables
is still large. At the early stages of the LHC run-2 it may be reasonable to em-
ploy simplified analyses with a smaller number of parameters. There are several
motivated assumptions about the underlying UV theory that reduce the number
of parameters:

— Flavor universality, in which case the matrices mdy; and sin ¢; reduce to a
single number for each f = u,d, e.

— Minimal flavor violation, in which case the dominant entries in dy are [dy,]s3
and [0y4]33, while other diagonal entries are suppressed by the respective mass
square ratio.

— CP conservation, in which case all CP-odd couplings vanish: ¢; = 0 = sin ¢y.

— Custodial symmetry, in which case dm = 0.7

We stress that independent couplings should not be arbitrarily set to zero with-
out an underlying symmetry assumption. Furthermore, the relations between the
dependent and independent couplings should be consistently imposed, so as to
preserve the weak SU(2) local symmetry.

The independent couplings are formally of order v?/A?, where A is the scale of
new physics. For completeness, it is important to define the range of independent
couplings such that the EFT description is valid. This issue is discussed in another
document.

"Custodial symmetry implies several relations between Higgs couplings to gauge bosons: dc,, = éc.,
Cwn = C3C.0 + S2Cy0, Cuw = Caz + 282Co + S5Cy, and Gy = Cuy + 2528, + SgC. The last three are
satisfied automatically at the level of dimension-6 Lagrangian, while the first one is true for jm = 0,
see Eq. (5.5).
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=« A Translation to the original Warsaw basis

s In this appendix we summarize the relations between the independent couplings defining
533 the Higgs basis and the Wilson coefficients w; in the Warsaw basis using the original
su operator normalization of Ref. [1].

v 1 g"” (3) 3) 2 2
/
om = PW [—99 WewB + T <[wez]1221 - 2[7~U¢> Jin = 2[w Wy ]22> — g wgn — 4g wqﬂ?} )
535 (Al)
02
. v? 1 1
Ze v? 1
ogr" = A2 _§w¢>e + £(0,-1) ), (A-2)
536
2
W v 1
5gRq = A2 (_§w¢ud) )
2
2o _ V(L @ 1
09." = 13 (§w¢q 3Waq T F(1/2,2/3) ),
za _ U 1o @ Lyt
dg7® = e §VCKMw¢q Vexkm — §VCKMw¢q Vekm + f(=1/2,-1/3) |,
2
VAT v 1
5gR = F( 5 ¢u+f(02/3))
zd v’ 1
0gg" = 2\ v weq + f(0,—1/3) (A-3)
537 where

f(TSaQ) = —[3Q 5 WeWw B

1 1 3 1 3 9/2
+ I3 (Z[ww]um - 2[w((z)g)]11 - 5[102,5)]22 — We¢n — 4w¢D) (TS + Qg2 —g7)
(A.4)
s and I3 is the 3 x 3 identity matrix.
dgf — iJgf = ——2\/_ wra,
myg,myg;
dag —iday = ——2\/_ (npwpw +wysp),
Al AUSE
~ v? 22 v
dzr —id = —— 2 —q? A5
ZE A2 g2 + g% | /gy, ("o =9 wrs), )
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s:9 where 7, = +1, 1g. = —1,

)\Z = A2 2wa7
~ v 3 N
o ’U2 wa
C3¢ = P?
B v? wp
G¢ = Pg_g (A.7)
2
l¢{ . v v % 1 1 (3) 1 (3)
[6yslije'® = e _W[wﬂb]ij + 03 (Z[wzehzzl - 5[%54 Ji1 — §[w¢4 Jo2 +weo ||
(A.8)
v? 3 3 3
oc, = iz <w¢|:1 + Z[wez]um - §[w<(;)3@)]11 - §[w<(z>ge)]22) ) (A.9)
v? 2 (1 1 1
R G ( [wee] 1221 — Q[Wg?]n - §[w§>?2)]22 — Wy — 4w¢D) : (A.10)
v? 4
Cgg = Fg_gw¢6'7
1)24 ( 1 L 1 1 >
" A2 g7 g BB g
_ g wew + g wep + 99" Wew s
Czz = 4 ?
A2 (g +9’2)
02 4wy — dwyp — 2g 2 wows
e = ¢ i iy (A.11)
A2 9>+ g2
B v? 4
Cgg = ﬁg_zwcﬁé’
~ v? 1 1 1
Frr = p‘l g e ™ gt )
- g Wy + g quB + g9’ Wew B
Cyr, — 4 )
A2 (9* +9’2)
2 4oy, o — dw, 5 — 28797
g, = LW 775 w ¢WB, (A.12)
A2 9>+ g
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541

542

543

544

545

546

547

548

v 1 1 1
0N = — [A (3w¢|:| + —[weelioo1 — [ 52)]11 =5l g?]ﬂ) - w¢} . (AL3)

A2 4 2 2

2

o= L0

qq A2 997
2

e = 2,0

a4 A2 99’
2

L A C)

“q = p2Wa>
2

v

= jaV

)

Cud = A2 ud
2

v

Cud = Ew“d’
2

A )

Cqa = A2wqd’
2

N €Y

ol = xo%ad
2
v

/ — (8)

‘o = Ja%ow
2

o = Y u®

o A2 Tau?
2

g T

qugd T A2 qugd’
2

N €Y

Cquqd - quuq(ﬁ
2

/ AN C))

Cfequ - Azw&aqu’
2

v

Clequ = waequ’ (A14)

and the relation is trivial, ¢; = w;v?/A?, for the remaining 4-fermion coefficients (except
for [cp]1221 which does not enter into the definition of the Higgs basis).

B More dictionaries

In this section we quote the linear transformation between the parameters defining the
Higgs basis and the Wilson coefficients in several other bases of dimension-6 operators
utilized in the literature.® For simplicity, we assume here (unlike in the rest of this note)
that the parameters are flavor blind. Moreover, we give the dictionary only for the subset
of the Higgs basis parameters that can give observable contributions to single Higgs and

80n request, translation to other bases may be added in the future.
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electroweak diboson processes, given the constraints from electroweak precision tests.
That set consists of 10 CP-even and 8 CP-odd parameters:

ng: 5025 C’y’w Czv, Czz, CzO, 5yu: 5yd7 5yea )‘27 (Bl)

Cogr Coryy Camy Cazy SIN Gy, SN By, SIN G, A, (B.2)
The dictionaries below allow one to translate results of any complete EFT Higgs analyses
into constraints on the Higgs basis parameters (and, by consequence, between any pair
of bases), as long as the full likelihood function in the space of Wilson coefficients is
given.

B.1 SILH’ basis

The original SILH basis of Ref. [3] includes operators Oqy, Ozp and Oy, which lead to
4-derivative corrections to the kinetic terms of the gauge fields. This may be inconvenient
for some applications. A simple fix is to remove these operators in favor of the Warsaw
basis 4-fermion operators [Ogli201, [Owel1122, and [O! ]3333. This construction was used
in Ref. [4] and we refer to it as the SILH’ basis. One advantage of this choice is that
electroweak precision constraints take a particularly simple form. Namely, the vanishing
of the vertex correction g and the W mass correction dm corresponds to setting sy =
[See)1221 = sy = syy =0, and sp = —sw.

The CP even Higgs basis parameters in Eq. (B.1) are related to the Wilson coefficients
in the SILH’ basis by

Cgg = SGG,
3
0c, = —sg+ 1[825]1221,
C’y'y = SBB;
_ SHB — SHW 2
Coy = - 5 S9SBB;
Cry = —CgsHW - stHB - 53833,
1 g’ 2 1
o = 5 (sw+smw)+ 2 (sB+smp) — FEAE Y [sechio21,
1 1
dyscos gy = ER@[SJ:] —spg+ 1[844]12217 j € {u,d,e},
3
)\z = —594831/1/. (B?))

The CP odd Higgs basis parameters in Eq. (B.2) are related to the Wilson coefficients
in the SILH’ basis by

Cogg = SGG,
677 = §BB7
- _ SHB — SHW 9~
Coy = T — S5¢SBB;
~ 2~ 2~ 4~
Czz = —CySHW — S9pSHB — S¢SBB,
. 1
Oy sin = —Im|s¢]. B.4
yr f f

V2
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50 B.2 HISZ basis

s0 We consider a subset of bosonic operators introduced by Hagiwara et al. (HISZ) in

1 Ref. [7]

5

J

i 1

Oz = 5 (0u(HH))’,

Ovg = 2 I _fgigge,qe
3272 o

OWW = HWWWWH7
Opg = H'B,,B,H,
Ow = D,H'W,D,H,
Op = D,H'B,,D,H,

OWWW = Tr[W/J,l/Wl/pru]u (B5)
572
Ops = —L mimee,de
aa 322 w
O = HW,, W, H,

Oz = H'B.B.H,
Ow = D,H'W,D,H,
Oivny = T [WiuWop W] (B.6)

5 9

3

3 where the electroweak field strength tensors are related to the one used in this note via:

B Wi = —2go' W', (B.7)

1
py = —59'B 9

9 na

sza - We also consider the Yukawa operators

2 2 2
Ou=(HH -2 gA™ up, Oy = (H'H -2 ) ga™dp, O, = (HH -2 ) 1,10 ey,
2 v 2 v 2 v
(B.8)

s5 where my are 3 x 3 diagonal fermion mass matrices. The dimension-6 Lagrangian is

s given by
i J

sz where the first sum goes over the bosonic operators in Eq. (B.5) and Eq. (B.6), the
s second sum goes over the fermionic operators in Eq. (B.8), and the dots stands for
s9 remaining operators that complete the dimension-6 basis. The CP-even operators from
0 this set (except OWWW) are used by SFitter [13] to describe constraints on dimension-6
ses - operators from LHC Higgs data. Ref. [14] proposes to use the HISZ operators OW, OB,

5

=

EHISZ A2 ) (B.9)

o

9The additional minus sign in Eq. (B.7) is due to the fact that the covariant derivatives in Refs. [7]
are defined with the opposite sign to that used here. This amounts to rescaling the gauge fields as
w, —- -W,, B, = —B,, in the translation.
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Owww, OW’ and Om

to describe constraints on dimension-6 operators from the pair

production of electroweak gauge bosons.
The CP even Higgs basis parameters in Eq. (B.1) are related to the Wilson coefficients

in the HISZ basis by

1 v2

—ﬁfc:cp,

2
__fH2A27

(~fww = fan) 55
1 2

1 )
wa — ZfB - Cgfww + ngBB) A2

g 2
<62—9fw+

(

(

v
1
4
1
2

2

52

_efB - CngW - 83fBB> P’
02

fB) A27

Re )
fH,Z_ \/[J) A27 J E{U,d,e},
3g* v?

?FfWWW?

W =

(B.10)

The CP odd Higgs basis parameters in Eq. (B.2) are related to the Wilson coefficients

in the HISZ basis by

0y sin ¢;

1 - ?
_WfGGF>

(~Fu — o)
(1
(

2
v
Eefw - CefWW SefBB)

A2’
(Imfj
V2

,02

Fa
27 27 v?
—cofww + 30fBB> ek

2

)5 detude, (B.11)

For completeness, we also give the relation between the anomalous TGCs and the
HISZ basis Wilson coefficients:

5912
0Ky
Az

Inverting the transformat

2

+ v
g g fW
2 2 2 2
g v B g* - v
—(fWJrfB)Ea 5’f7:_fWF
3 V2 3 v?
ifWWWA 2= ifWWWA—- (B.12)

ions, the relation between the Wilson coefficients in the
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s HISZ basis and the Higgs basis parameters reads

U2

fGGP - _87TQnga
2
v
fH’QF = —20c,,
v? 4 2 2 2 2 2/ 2 2
fWF = _—g2 — g’2 [g C,o+ g7 Cyy — Sp€ Cyy — 89(9 —g )CZV} ,
2
v
fBP - 92— g2 [92625 + g — 0362% —c3(g® — QIQ)CZV} ;
v? 1
fwwp = o 126°c.o+ (¢ + 9°)cse — 559 ¢ys]
V2 1
fBBF - g2 — g2 [292625 +(9° +9"7)c.. — ng%m] J
v? 8
- = T\ B.13
fwww A2 3¢ ( )
592 9
v .
ij = \/Efscz - \/iéyje_Z(bj? ] € {U, d7 6}7 (B14)
593
2
~ U -
fGGF = —871'2ng,
;v 4 12~ 2 2~ 2/ 2 12y ~
fWF - _92 — g7 [9 Cow — Sg€ Cyy — 85(9" — g )Czw} )
;v _ 1 2 12y ~ 2 12~
fWWﬁ - _92 _9/2 [(g +g )sz — S99 C’y'y} )
< 0 1 .
fBBP - 72— g2 [(92 +9%)e.. — ngzc'w] )
~ UQ 8 -
- = oM B.15
fWWWA2 34" ( )

= C Goldstone bosons and gauge fixing

sos In the main body of this note we worked in the unitary gauge where the Goldstone boson
so6 degrees of freedom in the Higgs doublet are set to zero. This is enough for the sake of
so7 tree-level EFT calculations. However, if the necessity arises to extend the calculations
ses  t0 a loop level, retrieving the Goldstone degrees of freedom is convenient, as this allows
s00 one to perform the standard gauge fixing procedure. This is done in this appendix.

600 We parametrize the Higgs doublet as

i = ( 1 ﬁf— iGy) ) (C.1)

sor  where G+ and G3 are three Goldstone fields, that will be eaten by the W and Z bosons.
o2 In the Higgs basis, derivation of the Goldstone boson couplings follows exactly the same
03 algorithm as the one applied before to derive the Lagrangian for physical fields: we
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first derive these couplings in the Warsaw basis, and then perform the field and coupling
redefinitions that take us to the Higgs basis. Of course, all the Goldstone boson couplings
are dependent ones, that is they can be expressed by the independent couplings defining
the Higgs basis. As an illustration, below we display a subset of these couplings that
are relevant for the 1-loop calculation of h — V'V*. These are

1. Goldstone kinetic terms and their mixing with the electroweak gauge fields.
2. Cubic interactions with one Higgs boson and one or two Goldstone fields.

3. Cubic interactions with one or two Goldstone fields and one electroweak gauge

field.
4. Quartic interactions with one or two Goldstone fields and two electroweak gauge
fields.
The relevant part of the Lagrangian is parametrized as
Lo=LE"+ L8 + L&Y + L8 + L&YV + L5V + gV (C.2)
where

' 1 v B / A2 + /21)
LE" = 0,G20,G-+ 5(0uGs)? = Bav T (9,6 W +her) = LT 20,G42,, (C3)

3 m2 m2
L3 = —ThﬁhCChGJrG— - 2_Zﬁh33hG3G3 (C.4)
) B 2+ /2
L3V = Brow 50,0 (G2W; +he) + B 0,2,
' B / 2+ 12
+ ZﬁScwgauGB (G+Wu - h‘C'> - ﬁ?’hz%a“G?’hZ"

+ ie(0,G+G_ —h.c.) A, +iBecz 0,G.G_ —h.c)Z,

g2 _g/2 (
2 /92+912

B 5 (9uG W,y +he.) h— B (OG- W; —he) Gy, (C5)

. egu _ . cog'*v ~
Ly = iBava—y (GWy —he) Ay —ifavz—o— (GW; —he) Z,, (C.0)
VY i (G —he) Ay — inays S (G —hc)) Z,, + (CP—odd
o = chA% ( W, — .C.) w — anWA% ( W, — .c.) w + (CP—odd).
(C.7)
g2y2 > e(g® —g?) (9> —g7) 92 ~
‘CG == G+G_ (6 A“AH + 5CCAZwA“Zu + BCCZZWZ“Z‘u + /BCCWWEW:W#
g2 g2 _I_g/2
+ Gs3Gs (533WWZW:W; + Ba3zz ZMZH>
. eq _ eqg _
-+ ZBChWA? (G+WM - hC) hAM - /BC3WA? (G_,_W# + hC) G3AM

. eq' _ eqd -
_ Zﬂchwz?q (G+W# — h.C.) hZM + ﬂcgv[/z?g (G+WH + h.c,) G3ZM
+ w9t (GLGLW, W, +he.),
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,CSGQdV2 = G+G— (nceA2€2AMVAMy + nccAZgg,AMVZMV + Neez2 (92 + g/2)ZMVZlW + nCCW2g2W;VWM_V)
+  G3Gs (M3344€° A Ay + 0334299 A Zy + 3322(8° + 92) Zpw Zy + 7733WW92W:;/W;;/)
+ neswaeg (GLW,, +h.c.) GsAu, + neswzeg (GLW, +h.c.) GsZ,, + (CP—odd).
(C.9)
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Above, “CP-odd” stands for analogous terms with V,,, — ‘N/W, and n — 7. Note the
Goldstone kinetic terms in Eq. (C.3) are assumed to be canonically normalized. To
achieve this, one needs to rescale the neutral Goldstone field as

Gg — Gg <1 “+cr + QCT%) . (ClO)

Moreover, the Lagrangian in Eq. (C.2) does not contain 2-derivative cubic scalar self-

interactions. To ensure this feature, the Higgs boson field redefinition in Eq. (4.4) has
to be generalized to

h h? 2G.G_+ GsG GG

hsh < ) _oep 2t + GGy 3G3

l—cy—cuy——cp=— -2 . C.11
CH CH'U CH31)2 v Cr v ( )

The above field redefinitions are in addition to the steps described in Section 3.1. These
include the gauge coupling rescaling and the use of the equations of motion (that are
modified to include the Goldstone fields). The final step is to transform the couplings
from the Warsaw to the Higgs basis using the dictionary provided in Section 3.1. At the
end of the day, the coefficients in the Goldstone Lagrangian of Eq. (C.2) take the form

Pew = 14 0m, (C.12)

thc - 1 + gQCwD + (5cz + 257727
Brss = 14 g°c.o+ e, (C.13)

ﬂth = 1+ g2CwD + 602 + 35m7
ﬁh3Z = 1+ g2czD + 6627

3
Bsew = 1—2¢%Cun+ 592025 — 36m,
Banz = 1+ 0dc.,

2 12
g +yg 2
Beez = 1+ W (—g C.o + 45m) )
5chW = 1+ (SCZ + 36777,,
2
Baw = 1= Zea+om, (C.14)
5CWA = 1+ 5m7
2(,.2 /2 2 /2
+ 2% +
BCWZ = 1+ % (CzD - Cw\]) - gng(Sm, (015)
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g2 — g2 ,

NewA = Newz = Czz — 92 T 9,2 Coy — € Cyy, (016)
2 2
gty
Becaz = 1+ W <_gzczlil + 45m) ,
(9> +9%) (9’5~ 97 2 59" +69%” + g"
BCCZZ = 1 + (g2 — 912)2 - g2 + g/2 Cyo + 3g CywO + 2(562 + 2 (92 + g/2)2 5m y

Beeww = 14 2¢%c.o + 26c, +26m,
533ZZ = 1+ 29203'!:1 + 260z7

Basww = 1+ ¢*(cun + con) + 25c, + 40m,
Berwa = 14 dc, 4+ 3dm,
g2
6c3WA = 1- gczlj + (5m,
3 2(.2 + /12 2 2 + /2
Bewz = 1+ 59(‘ng (€20 — cun) + 0c; — 399—,295m,
4 2(,2 2 2 /12
N g 9* (9> +9") 29°+g
Beawz = 1+ 297 Czo — 297 Cwn — T(Sm,
: 9
Neeww = 5 (cwn — c.o) +0m, (C.17)
2 2 2 12\2
MecAA = Caz ™ 92 ; 3Cy T %Cw»
9> +9 49>+ 9")
1
13344 — gcw,
S gz_g/2c - g4_6929/2+g/4c - 62(g2—g/2)c
92+g/2 2<92+g/2>2 v (92+g/2)2 Y
_ &
N33Az = 1
) _ (g2 — ¢%)? . e2(g? _gxz)c . o .
ceZZ A2+ g2 " (2+g2)2 7 (P2+g22
CZZ
N33zz = ]
1 2 59
NeewWw = §sz + S9Czy + Ec'y’w
1 s s
msww = Zczz + Eczv + Zc’y’ya
1 9°—g"” e?
c = —ZCyy Cy Crry s
e 2 a2y ) A D)
1 g% — ¢? o2
—Cpy— ————Cypy — —————Crry- C.18
Ne3aw z 9 2(gz+g/2) R 2(92+g’2) Y ( )
633 With the Goldstone bosons degrees of freedom present in the Lagrangian, gauge

s34 fixing can be implemented as in any gauge theory. Below we show how to implement
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the linear ¢ gauge. For the electroweak sector, we introduce the following gauge fixing
Lagrangian

1
Lyt = % [Fi+F;+2F F], (C.19)
where

(a2 12

FA = GMAM (1 + BQCWB) + aMZMCWBM s
9°+yg

Vgt g 2
FZ = @LZ# - fTGg (1 - 2CT +e CWB) s
Fir = 9, g%Gi. (C.20)

Above, the electroweak parameters g, ¢, v and the Goldstone fields G4, G5 are the ones
before the rescaling in Eq. (4.7) and Eq. (C.10). After the rescaling and going to the
Higgs basis the quadratic terms in the gauge fixing Lagrangian become

2
1 2 /2
Lo = —— | (8,4, + (auzu - g—WGg> +2

- 0.+ — 2 (14 6m) G|
26 2 nm 2 *

(C.21)
This way, the kinetic mixing between the Goldstone bosons and massive vector bosons
in Eq. (C.3) is canceled after introducing the gauge fixing term. At the same time, the
Goldstone bosons acquire the gauge dependent masses:

me. = VEL (1 om) = Vemw,  mg, = VEVI T = em, (022

To derive Eq. (C.21) one needs to take into account that the gauge fixing term affects
the equations of motion used in Eq. (4.2) and Eq. (4.8) to bring the Warsaw basis
Lagrangian to the prescribed form of phenomenological effective Lagrangian. Due to
this, the gauge fixing term affects not only quadratic terms in the Lagrangian, but also
yields new interactions terms of the Goldstone bosons, Higgs boson, and gauge fields.

Finally, the ghost Lagrangian can be obtained by the usual Fadeev-Popov procedure.
In the R¢ gauge introduced above

(C.23)

L ghost — —

Z _00F, _ O0F_ e oOF,;  00F4
“+ oo, “ da,, “ da,, & da,, s
ne(Jr,*,Z,’Y)

where §F is the variation of the gauge fixing term under the infinitesimal SU(2) x
U(1) gauge symmetry transformations parametrized by «,,. Since the F’s in Eq. (C.20)
contain the original (unrescaled) gauge and Goldstone fields, their gauge transformations
are the same as in the SM:

0A, = Oy, +ie (W, o =W a7),
02, = 0Oyaz+igey (I/V#_aJr — W;of) )
W = O,aq —igay (coZy + seA,) +ig (cooy + sgay) WE (C.24)
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2 12
Sh = —gTngaz—g(GJra_—l—G_our),
2_|_ 12 ;
3Gy = % (v+h)ay — % (Gra_ —G_ay),
5G. = Lw+h—iG G 99" g C.2
+ = 5( +hn—1 3)0[++Z€ +Oéfy+lm +0z. ( . 5)

At this point the ghost kinetic and mass terms are not diagonal. To this end one needs
to perform the transformation

Cy — Cgyz (1 + (5:%7) ,
A

ey — ¢y (1 —5830K,) — cpt—"L,
v V( 0 7) g’(92 +g/2)

cz = ¢ (1—06g1.+ 550K, . (C.26)
After this transformation the ghost kinetic and mass terms become diagonal and the
kinetic terms are canonically normalized. Their gauge dependent masses of the ghosts
are given by

/ 2 /12
Mo, = \/g% (1+06m) = \/Emw’ Me, = \/g% = \/Emz, me, = 0.

(C.27)
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