

ttH / tH Experimental Status LHC Higgs XS WG General Assembly

Stefan Guindon¹, Chris Neu², Stefano Pozzorini³, Laura Reina⁴

¹State University of New York at Albany ²University of Virginia ³Universität Zürich ⁴Florida State University

CERN
October 12th, 2016

ttH / tH Overview

- ATLAS ttH results at ICHEP16:
 - ttH (H→bb): ATLAS-CONF-2016-080
 - ttH (multilepton): ATLAS-CONF-2016-058
 - t̄tH (H→γγ): ATLAS-CONF-2016-067
 - ttH combination: ATLAS-CONF-2016-068
- CMS ttH/tH results at ICHEP16 and Moriond16:
 - ttH (H→bb): HIG-16-004
 - ttH (multilepton): HIG-16-022
 - t̄H (H→γγ): HIG-16-020
 - tH (H→bb̄): HIG-16-019
- Full set of analyses released at Winter and Summer conferences from both collaborations
 - Focus on aspects which are important for each analysis from an experimental point of view
- · Reminder of Run-1 results:
 - Significance of 4.4 σ (2.0 σ expected)

ATLAS: 10.0 (2016) + 3.2 (2015) = 13.2 /fbCMS: 12.9 (2016) + 2.3 (2015) = 15.2 /fb 2015 (2.3/fb) 2015+2016 (15.2/fb) 2016 (12.9/fb)

2015 (2.3/fb)

2015+2016 (13.2/fb)

2015+2016 (13.2/fb)

2015+2016 (13.3/fb)

2015+2016

ttH(bb) Analysis Overview

- Very complex final state:
 - I+jets: 4 b's, 2 q's and 1 lepton
 - dilepton: 4 b's and 2 leptons
- Background modelling is very important: tt+HF, tt+light

- Fit CR and SRs simultaneously
 - BDT designed to separate ttH(bb) from tt+bb
 - Reconstruction BDT, MEM techniques for ttH reconstruction

(CMS)

l+jets	2 b-tags	3 b-tags	4 b-tags
4 jets	inclusive boosted	BDT	MEM
5 jets		BDT	MEM
6 jets	BDT	BDT	MEM

- Additionally CMS has a boosted technique in the I+jets channel
 - Require both hadronic top and Higgs tags (pT > 200 GeV)
 - High S/B with reduced combinatorial background

- Modelling of the tt+jets background is crucial with advanced reconstruction techniques
 - Understanding of the uncertainties on this background vital

ttH(bb) Common Items

- tt+jets modelling:
 - ATLAS: Powheg+Pythia6, CT10 PDF, hdamp=mtop, Perugia2012 tune
 - tt̄+light and tt̄+≥1c corrected to match NNLO QCD top quark p_T and tt̄ p_T
 - tt+≥1b kinematics re-weighted to Sherpa+OL (inclusive tt+≥1b normalization still P+P6)
 - CMS: Powheg+Pythia8, CT10 PDF, hdamp=m_{top}, CUETP8M1 tune
- ATLAS: Deficit observed in (high jet, high b-jet) regions
- CMS: fairly good agreement in all pre-fit regions

ATLAS: kinematic RW (top pT, tt̄ pT) per category to match SherpaOL NLO tt̄+bb̄

ttH(bb) Systematics

AILAS

- tt+jets breakdown in the fit:
 - ATLAS: tt+light, tt+≥1b, tt+≥1c
 - CMS: tt+light, tt+b, tt+2b(B), tt+bb, tt+cc
- CMS: 50% rate uncertainty on all tt+HF backgrounds (uncorrelated)
 - largest uncertainty
- ATLAS: free-floating normalisation factors for tt+≥1b and tt+≥1c
 - Fit results for factors
 - 1.33 +/- 0.18 and 1.31 +0.53 -0.40
- ATLAS: including comparison of different calculations for tt+bb
 - Largest uncertainties come from tt+bb modelling
 - 5F vs 4F Sherpa+OL vs P+P6, comparisons of 4F calculations of Sherpa+OL and MG5_aMC@NLO

QCD scale (tt)	rate	Scale uncertainty of NLO tt prediction
QCD scale (tt+hf)	rate	Additional scale uncertainty of NLO tt+hf predictions
pdf (gg)	rate	Pdf uncertainty for gg initiated processes except $t\bar{t}H$
Q^2 scale (tt)	shape	Renormalization and factorization scale uncertainties of
l		the tt ME generator, independent for additional jet fla-
l		vors
PS Scale (t t)	shape	Renormalization and factorization scale uncertainties of
	•	the parton shower (for tt events), independent for addi-
l		tional jet flavors

		_
Systematic source	How evaluated	tt categories
$t\bar{t}$ cross-section	$\pm 6\%$	All, correlated
NLO generator (residual)	Powheg-Box + Herwig++ vs. MG5_aMC + Herwig++	All, uncorrelated
Radiation (residual)	Variations of $\mu_{\rm R}$, $\mu_{\rm F}$, and $hdamp$	All, uncorrelated
PS & hadronisation (residual)	Powheg-Box + Pythia 6 vs. Powheg-Box + Herwig++	All, uncorrelated
NNLO top & $t\bar{t}$ $p_{\rm T}$	Maximum variation from any NLO prediction	$t\bar{t} + \geq 1c$, $t\bar{t}$ + light, uncorr.
$t\bar{t} + b\bar{b}$ NLO generator reweighting	SherpaOL vs. MG5_aMC + Pythia8	$t\bar{t} + \geq 1b$
$t\bar{t} + b\bar{b}$ PS & hadronis. reweighting	MG5_aMC + Pythia8 vs. MG5_aMC + Herwig++	$t\bar{t} + \geq 1b$
$t\bar{t} + b\bar{b}$ renorm. scale reweighting	Up or down a by factor of two	$t\bar{t} + \geq 1b$
$t\bar{t} + b\bar{b}$ resumm. scale reweighting	Vary $\mu_{\rm Q}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + b\bar{b}$ global scales reweighting	Set $\mu_{\rm Q}$, $\mu_{\rm R}$, and $\mu_{\rm F}$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + b\bar{b}$ shower recoil reweighting	Alternative model scheme	$t\bar{t} + \geq 1b$
$\begin{array}{c} t\bar{t} + b\bar{b} \text{ PDF} \\ reweighting \end{array}$	CT10 vs. MSTW or NNPDF	$t\bar{t} + \geq 1b$
$t\bar{t} + b\bar{b} \text{ MPI}$	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + b\bar{b}$ FSR	Radiation variation samples	$t\bar{t} + \geq 1b$
$t\bar{t} + c\bar{c}$ ME calculation	MG5_aMC + Herwig++ inclusive vs. ME prediction	$t\bar{t} + \geq 1c$

ttH(bb) Importance of LHC HXS WG

- Largest uncertainties in the analysis come from tt+bb normalization and modelling
 - Experimental measurements still in progress (CMS @ 8 TeV)
- Modelling of this background is critical to sensitivity of analysis
- A lot of progress made in understanding differences in both 4F and 5F calculations within a coordinated LHC HXS WG effort
 - Hugely beneficial to experimental understanding of this important background
- Strongly encourage this continued coordinated effort throughout the short/medium/long term

Inclusive b-jets not from top quarks parton level pT > 25 GeV, $l\eta l < 2.5$

parton shower	on
hadronisation	off
UE	off
top decays	off

Selection	Tool	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NLO+PS}$ [fb]	$\sigma_{ m NLO+PS}/\sigma_{ m NLO}$
$n_b \ge 1$	SHERPA+OPENLOOPS	$12820^{+35\%}_{-28\%}$	$12939^{+30\%}_{-27\%}$	1.01
	MadGraph5_aMC@NLO		$13833^{+37\%}_{-29\%}$	1.08
	POWHEL		$10073^{+45\%}_{-29\%}$	0.79
$n_b \ge 2$	SHERPA+OPENLOOPS	$2268^{+30\%}_{-27\%}$	$2413^{+21\%}_{-24\%}$	1.06
	MadGraph5_aMC@NLO		$3192^{+38\%}_{-29\%}$	1.41
	POWHEL		$2570^{+35\%}_{-28\%}$	1.13

Uncertainty source	Δ	μ
$t\bar{t}+ \geq 1b \text{ modelling}$	+0.53	-0.53
Jet flavour tagging	+0.26	-0.26
$t ar{t} H$ modelling	+0.32	-0.20
Background model statistics	+0.25	-0.25
$t\bar{t}+\geq 1c \text{ modelling}$	+0.24	-0.23
Jet energy scale and resolution	+0.19	-0.19
$t\bar{t}$ +light modelling	+0.19	-0.18
Other background modelling	+0.18	-0.18
Jet-vertex association, pileup modelling	+0.12	-0.12
Luminosity	+0.12	-0.12
$t\bar{t}Z$ modelling	+0.06	-0.06
Light lepton (e, μ) ID, isolation, trigger	+0.05	-0.05
Total systematic uncertainty	+0.90	-0.75
$t\bar{t}+\geq 1b$ normalisation	+0.34	-0.34
$t\bar{t}+\geq 1c$ normalisation	+0.14	-0.14
Statistical uncertainty	+0.49	-0.49
Total uncertainty	+1.02	-0.89

ttH(ML) Analysis Overview

- ATLAS: tight lepton cuts on lepton variables
 - Counting experiment
- CMS: lepton-BDT (prompt-vs-nonprompt leptons) and loose pT cuts
 - Input variables: isolation, impact parameter, ID lepton
 - 2 MVAs to separate t̄tH from t̄t and t̄tV

ttH(ML) Systematics

- Many experimental related uncertainties due pile-up and fake leptons
 - Channel dependent uncertainties (lepton related uncertainties)
- Important uncertainties from ttH/V modelling and acceptance
 - Correlated across all channels

ttH(ML) Common Items

- Main limiting factor is understanding of fake lepton backgrounds
 - Charge mis-ID (2L SS electron channels) and non-prompt fake leptons
- Still important uncertainties from ttV especially scale uncertainties
 - NLO QCD+EW XS numbers used by both experiments (coordinated in the YR4)
 - ttW -> 0 additional jets (2L) -> 2 additional jets (3L), ttZ -> 0 additional jets in SR
- tīH uncertainties become larger with higher sensitivity
 - Especially in cases where signal strength is higher than SM expectation
 - Correlated across all channels and fit regions

All ML Channels

Uncertainty Source		$\Delta \mu$	
Non-prompt leptons and charge misreconstruction		-0.64	
Jet-vertex association, pileup modeling	+0.48	-0.36	
$t ar{t} W modeling$	+0.29	-0.31	
$t ar{t} H modeling$	+0.31	-0.15	
Jet energy scale and resolution	+0.22	-0.18	
$t ar{t} Z ext{ modeling}$	+0.19	-0.19	
Luminosity	+0.19	-0.15	
Diboson modeling	+0.15	-0.14	
Jet flavor tagging	+0.15	-0.12	
Light lepton (e, μ) and τ_{had} ID, isolation, trigger	+0.12	-0.10	
Other background modeling	+0.11	-0.11	
Total systematic uncertainty	+1.1	-0.9	

ttH(yy) Event Categorization

 Event categorization to improve analysis sensitivity

hadronic category (0 ℓ)			
ATLAS CMS			
≥ 5 jets, pT> 30 GeV	≥ 5 jets, pT> 25 GeV		
≥ 1 b-jet			
cut-based γγ selection	cut on BDTγγ		

leptonic category (≥ 1 ℓ)			
ATLAS	CMS		
pT(ℓ) >10 GeV pT(ℓ) > 20 GeV			
≥ 2 jets pT>25 GeV, ≥ 1 b-jet			
Z veto (m $_{\ell\ell}$ and m $_{e\gamma}$)			
cut-based γγ selection MET > 20 GeV (for 1bjet events)	cut on BDTγγ		

- CMS
 - BDTγγ discriminate H→γγ from diphoton background
 - Built to be mass independent

ttH(yy) Results

- Both analyses statistically limited
 - Background composition important to understand background model
 - More important with increased statistics
 - Study background composition from t̄t+γ / t̄t+γγ
 - Higgs+HF systematics
- ATLAS
- μ (t \bar{t} H) = -0.25 + 1.26 0.99
 - Dominant systematic uncertainty from photon energy scale/resolution

- $\mu(t\bar{t}H) = 1.91 + 1.5 1.2$
- Similar sensitivity from both ATLAS and CMS

11

tH(bb) - CMS

CMS pourses unity renduzing

12

- Limits on the cross section of tH production as a function of the coupling strength factors κ_t and κ_V
- 2 reconstruction BDTs (tHq and tt hypothesis) + kinematics
- Classification performed separately for each point in the κ_t -κ_V plane
- Similar tt+HF systematic treatment as CMS ttH(bb)
- Systematic uncertainty with largest impact: JES, Q² scale
 - NLO WtH with WtH-ttH LO interference

- Obs (exp) 95% CL upper limit for SM = 113.7 (98.6) $\times \sigma_{SM}$
- Obs (exp) 95% CL upper limit for the inverted top coupling scenario = 6.0 (6.4) \times σ_{ITC}

Outlook and Conclusions

13

- First Run-2 analyses from both collaborations released at Moriond and ICHEP 2016 conferences
 - Still important modelling uncertainties which are vital for improving the sensitivity of ttH/tH results with Run-2 data (~ 150 / fb)
 - Getting closer to expected evidence of ttH from the experiments
 - Run-2 already surpassed expected Run-1 sensitivity reach
- Strongly advocate for a continued coordinated effort between experiments and theory to tackle limited understanding of main backgrounds and signal modelling
 - Very important to improve our understanding of proper uncertainties on these backgrounds
 - Experimental measurements of these backgrounds are also vital
 - Correlated phase-space
- Important to have a common understanding of modelling uncertainties between the experiments
 - Especially important regarding combination

ATLAS

Channel	Significance		
	Observed $[\sigma]$	Expected $[\sigma]$	
$t\bar{t}H,H\to\gamma\gamma$	-0.2	0.9	
$t\bar{t}H, H \to (WW, \tau\tau, ZZ)$	2.2	1.0	
$t\bar{t}H,H\to b\bar{b}$	2.4	1.2	
$t\bar{t}H$ combination	2.8	1.8	

Back-up

14