bbH report and future plans

Marius Wiesemann

University of Zürich

co-conveners:

Matthew Beckingham, Alexandre Nikitenko, Michael Spira

12th Workshop of the LHC Higgs Cross Section Working Group CERN (Switzerland), October 13, 2016

Associated $H(b\bar{b})$ production

4-flavour scheme

- massive b's
- potentially large logs $\ln(m_b/Q)$
- power terms $(m_b/Q)^n$
- \blacktriangleright involved 2 \rightarrow 3 at LO
- 2 exclusive b's at LO
- b(-tag) well defined

5-flavour scheme

- massless b's
- resummation into b-PDFs
- ▶ —
- simple $2 \rightarrow 1$ at LO
- exclusive b's at higher orders
- b part of light jets

4FS vs. 5FS: Total cross section (New Recommendations) 4FS NLO:

• $\mu_{
m R} = \mu_{
m F} = (m_H + 2 m_b)/4$; 7-point variation

- 4-flavor set of PDF4LHC15 (PDF4LHC15_nlo_nf4_100)
- hybrid scheme for b masses:
 - OS scheme for internal masses $m_b = 4.92 \,\text{GeV}$
 - MS scheme for Yukawa
- OS top mass $m_t = 172.5 \text{ GeV}$ for $y_b y_t$ term

5FS NNLO:

- $\mu_{\rm R} = m_H$, $\mu_{\rm F} = m_H/4$; 7-point variation
- changed: $PDF4LHC15 \rightarrow next slide$
- MS scheme for Yukawa

prescription for MS Yukawa mass: (LHCHXSWG-INT-2015-006) input: $m_b(\mu_R)$, evolved from $m_b(m_b) = 4.18$ GeV with highest looporder (4-loop) and flavor-number consistent with computation; μ_R variations: running with loop-order consistent with computation

NNLO 5FS Results ($m_H = 125 \, { m GeV}$).

PDF4LHC_nnlo_mc out of the box

evolve from Q=2 with $m_b^{
m pole}=4.75\,{
m GeV}$

 \Rightarrow Difference seems entirely due to $m_b^{
m pole} = 4.18\,{
m GeV}$ in NNPDF3.0

 $\Rightarrow f_g(Q=2)$ agrees between all 3 sets within intrinsic PDF uncertainties, $_{_{\odot}}$,

NN	5FS PDF prescription:	
0.6	– Use PDF4LHC15_nnlo 5FS set at $Q < m_b$. ,
[dd]	(ie, no <i>b</i> PDF, only gluon/light quarks)	
$(H^{0.6})$	– Generate and evolve <i>b</i> -PDF with APFEL	
$\uparrow q_{0.5}$	– use inputs:	
$\sigma(t)$	– pole mass: $m_b^{\text{pole}} = 4.58 \text{GeV}$	
0.5	– matching scale: $\mu_m = m_b^{\text{pole}}$	0
0.4	- uncertainties:)14
0.4	– pole mass: 4.44 GeV $\leq m_{b}^{\text{pole}} \leq$ 4.72 GeV	e47
0	– matching scale: $m_b^{ m pole}/2 \le \mu_m \le 2m_b^{ m pole}$	10 ibe
PDF4	(Thanks to Marco Bonvini, Stefano Forte, Ste-	
	fan Liebler, Andrew Papanastasiou and Frank	
\Rightarrow	Tackmann; special thanks to Marco for provid-	20
-	ing the sets)	1 1

4FS vs. 5FS: Total cross section (New Grids)

4+5FS combination: Santander matching

[Harlander, Krämer, Schumacher '11]

$$\sigma = rac{\sigma^{4\mathsf{FS}} + w \, \sigma^{5\mathsf{FS}}}{1 + w},$$

 $w = \ln(m_{\phi}/m_b) - 2$

combined grids available on: https://twiki.cern.ch/ twiki/bin/view/LHCPhysics/ LHCHXSWG#Higgs_cross_ sections_and_decay_b - now: $y_b y_t$ included (crucial for large- y_t scenarios) - e.g, SM: $y_b y_t \sim -10\%$ - y_t^2 simply from gluon fusion

4+5FS combination: NLO+NNLL $_{\rm partial}$

[Bonvini, Papanastasiou, Tackmann; '15]

4+5FS combination: FONLL

[Forte, Napoletano, Ubiali; '15]

FONLL-A:

- 4FS mass effects at LO
- ► 5FS log resummation with NNLO information (NNLL_{partial})
- ► Take 4FS and 5FS and write them as compatible expansions:
 - ▶ 5FS: express *b*-PDF by DGLAP through other PDFs
 - 4FS: change α_s and PDFs to five flavors
- add 4FS+5FS, but subtract double counted terms (these are logarithms that are already present in the 4FS)
- construct double counted terms from massless limit in 4FS

$$\sigma^{\text{FONLL}} = \sigma^{(4)} + \sigma^{(5)} - \text{double counting}$$

FONLL-B (new):

same as FONLL-A but 4FS mass effects at NLO

4+5FS combination: Comparison of matching approaches

$- y_b y_t$ included in all predictions								
 all predictions in agreement 								
consistently matched approaches:								
(FONLL-B and NLO+NNLL _{partial})								
 perfect agreement among them 								
- decent agreement with Santander								
- large m_H : tendency towards 5FS								
– small <i>m_H</i> : no breakdown,								
closer to 4FS								
– Santander now empirical								
New recommendations								
uncertainties:								
envelope of FONLL-B and								
$NLO+NNLL_{\mathrm{partial}}$ bands								
central prediction:								
central values of that envelope								

M. Wiesemann (University of Zürich)

Tools for exclusive $b\bar{b}H$ cross section and distributions

- Higgs distributions (inclusive over b's)
 - 5FS y^H at NNLO: private code

[Bühler, Herzog, Lazopoulos, Müller '12]

- 5FS p_T(H) at NNLO+NNLL: private code by M. Wiesemann [Harlander, Tripathi, MW '14]
- MCs for bbH signal simulation
 - MG5_aMC with $y_b^{\overline{MS}}$ at NLO+PS in 4FS

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/bbH

[MW, Frederix, Frixione, Hirschi, Maltoni, Torielli '14]

- POWHEG at NLO+PS in 4FS

[Jäger, Reina, Wackeroth, '15]

– Sherpa at NLO+PS in 4FS

[Krauss, Napoletano, work in progress]

- Sherpa merged 0,1,2 at NLO and 3-jet at LO in 5FS

[Krauss, Napoletano, work in progress]

Setup for MC comparison in YR4

- Scales:
 - perturbative scales:
 - $\mu_F = \mu_R = \frac{H_T^{\text{Born}}}{4} \equiv \frac{1}{4} \sum_{i \in \{b, \bar{b}, \phi\}} \sqrt{m_i^2 + p_T^2(i)}$ (for MG5_aMC+Pythia 8 and POWHEG+Pythia 8)
 - shower scale:
 - lpha=1/4 (MG5_aMC) and $h=rac{m_{\phi}+2\,m_{b}}{4}$ (POWHEG)
 - Sherpa scales according to reverse clustering scheme

uncertainties:

- 7-point μ_R - μ_F variation
- shower scale variation linearly added
- Jet definition:
 - anti- k_T , R = 0.4, $p_T > 25 \text{ GeV}$ (all jets, including b's)
 - b-jets: additionally |y| < 2.5 with at least one *B*-hadron

all other inputs as for total cross section...

Comparison of MC generators: rates and acceptances

		inclusive	$0j_b$	$\geq 1 j_b$	$\geq 2j_b$	$1j_b$
	MG5_AMC	$0.369^{+19.7\%}_{-18.8\%}$	$0.243^{+22.5\%}_{-23.0\%}$	$0.126^{+32.5\%}_{-28.3\%}$	$0.0160^{+47.2\%}_{-39.8\%}$	$0.110^{+30.4\%}_{-26.7\%}$
a [ab]	POWHEG	$0.375^{+20.3\%}_{-17.9\%}$	$0.281^{+21.8\%}_{-18.6\%}$	$0.0943^{+16.6\%}_{-16.5\%}$	$0.00761^{+15.0\%}_{14.8\%}$	$0.0867^{+16.8\%}_{-16.7\%}$
στροι	Sherpa 4FS	$0.370^{+15.4\%}_{-26.8\%}$	$0.264^{+11.8\%}_{-26.0\%}$	$0.105^{+26.9\%}_{-28.8\%}$	$0.00955^{+74.9\%}_{-45.4\%}$	$0.0952^{+22.2\%}_{-28.6\%}$
	Sherpa 5FS	$0.586^{+30.4\%}_{-22.7\%}$	$0.423^{+20.6\%}_{-15.7\%}$	$0.162^{+56.1\%}_{-40.7\%}$	$0.00773^{+68.9\%}_{-59.7\%}$	$0.155^{+55.5\%}_{-40.4\%}$
	MG5_AMC	1	0.659	0.342	0.0432	0.298
	POWHEG	1	0.749	0.251	0.0203	0.231
acceptance	Sherpa 4FS	1	0.717	0.283	0.0258	0.258
	Sherpa 5FS	1	0.723	0.277	0.0132	0.264

Comparison of MC generators: Higgs p_T

Comparison of MC generators: Higgs p_T

Comparison of MC generators: hardest b jet

Conclusions: Status

total cross section:

- total rates: new consistently matched 4+5FS predictions
- two independent approaches in perfect agreement
- good agreement with empirical Santander result
- recommendation: use envelope of the two new computations

MC generation:

- use 4FS NLO+PS for bbH signal simulation
- three MC generators available for bbH in 4FS
- good agreement among them (in particular: shape-wise)
- reasonable agreement with merged 5FS computation
- recommendation: use at least two MCs to address systematics

Future plans and outlook

There are more things to do...

- total cross section:
 - redo cross section grids with new matching approaches (in progress: mandate given to the relevant people)
 - redefine (if necessary) relevant inputs and scale choices
- MC generation:
 - further understand MC systematics (and differences)
 - in particular: after settling other issues newest Sherpa 4FS results (beyond YR4) show significantly ($\sim 30\%$) smaller total cross section than POWHEG and MG5_aMC (and than previous Sherpa 4FS results)
 - redo MC comparison for heavier Higgs bosons
 - validate MCs with accurate Higgs p_T , y results in 5FS
 - contribution from ggF to exclusive $b\bar{b}H(y_t^2 \text{ terms})$
 - validation of 4FS vs. 5FS with bbZ or single top

BackUp

p_T^H in 5FS: NLO+PS vs. analytic resummation

[MW, Frederix, Frixione, Hirschi, Maltoni, Torielli '14]

analytic resummation: $\mu_F = \mu_R = m_T/4$ NLO+PS: $\mu_F = \mu_R = H_T/4$

M. Wiesemann (University of Zürich)

m_{BB} : y_b^2 vs. $y_b y_t$ (4FS)

[MW, Frederix, Frixione, Hirschi, Maltoni, Torielli '14]

m_{BB} : y_b^2 vs. $y_b y_t$ (4FS)

[MW, Frederix, Frixione, Hirschi, Maltoni, Torielli '14]

Comparison of MC generators: hardest jet

