

"Tell me that you have found no sign of New Physics again, I dare you. I double dare you. Tell me one more goddamn time!"

Insights/Updates in the MSSM: Impact on Higgs Boson Searches

Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander)

CERN, 10/2016

- Introduction
- SUSY Higgs Mass Calculations
- Higgs boson mass scales from rate measuements?
- pMSSM8 results
- Complex parameters
- Conclusions

1. Introduction

Enlarged Higgs sector: Two Higgs doublets

$$H_1 = \begin{pmatrix} H_1^1 \\ H_1^2 \end{pmatrix} = \begin{pmatrix} v_1 + (\phi_1 + i\chi_1)/\sqrt{2} \\ \phi_1^- \end{pmatrix}$$
$$H_2 = \begin{pmatrix} H_2^1 \\ H_2^2 \end{pmatrix} = \begin{pmatrix} \phi_2^+ \\ \psi_2^+ + (\phi_2 + i\chi_2)/\sqrt{2} \end{pmatrix}$$

 $V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.})$

$$+\underbrace{\frac{g'^2+g^2}{8}}_{8}(H_1\bar{H}_1-H_2\bar{H}_2)^2+\underbrace{\frac{g^2}{2}}_{2}|H_1\bar{H}_2|^2$$

gauge couplings, in contrast to SM

physical states: h^0, H^0, A^0, H^{\pm}

Goldstone bosons: G^0, G^{\pm}

Input parameters: (to be determined experimentally)

$$\tan \beta = \frac{v_2}{v_1}, \qquad M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$$

\tilde{t} sector of the MSSM:

Stop mass matrices

$$\mathbf{M}_{\tilde{t}}^2 = \begin{pmatrix} M_{\tilde{t}_L}^2 + m_t^2 + DT_{t_1} & m_t X_t \\ m_t X_t & M_{\tilde{t}_R}^2 + m_t^2 + DT_{t_2} \end{pmatrix} \xrightarrow{\theta_{\tilde{t}}} \begin{pmatrix} m_{\tilde{t}_1}^2 & \mathbf{0} \\ \mathbf{0} & m_{\tilde{t}_2}^2 \end{pmatrix}$$

with

$$X_t = A_t - \mu / \tan \beta$$

 \Rightarrow mixing important in stop sector!

Simplifying abbreviation:

$$M_{\mathsf{SUSY}} := M_{\tilde{t}_L} = M_{\tilde{t}_R}$$

Data we have:

Higgs boson mass (LHC)

- Higgs boson mass (LHC)
- Higgs boson signal strengths (LHC) \Rightarrow HiggsSignals

- Higgs boson mass (LHC)
- Higgs boson signal strengths (LHC) \Rightarrow HiggsSignals
- Higgs boson exclusion bounds (LHC, Tevatron, LEP) \Rightarrow HiggsBounds

- Higgs boson mass (LHC)
- Higgs boson signal strengths (LHC) \Rightarrow HiggsSignals
- Higgs boson exclusion bounds (LHC, Tevatron, LEP) \Rightarrow HiggsBounds
- SUSY searches (LHC)

- Higgs boson mass (LHC)
- Higgs boson signal strengths (LHC) \Rightarrow HiggsSignals
- Higgs boson exclusion bounds (LHC, Tevatron, LEP) \Rightarrow HiggsBounds
- SUSY searches (LHC)

- electroweak precision data
- flavor data
- astrophysical data

2. Relevance of SUSY Higgs Mass Calculations

The Higgs mass accuracy: experiment vs. theory: Experiment:

ATLAS:	$M_h^{\rm exp} = 125.36 \pm 0.37 \pm 0.18 { m GeV}$
CMS:	$M_h^{\rm exp} = 125.03 \pm 0.27 \pm 0.15 ~{ m GeV}$
combined:	$M_h^{\text{exp}} = 125.09 \pm 0.21 \pm 0.11 \text{ GeV}$

2. Relevance of SUSY Higgs Mass Calculations

The Higgs mass accuracy: experiment vs. theory: Experiment:

ATLAS:	$M_h^{\rm exp} = 125.36 \pm 0.37 \pm 0.18 ~{ m GeV}$
CMS:	$M_h^{\rm exp} = 125.03 \pm 0.27 \pm 0.15 ~{ m GeV}$
combined:	$M_h^{\rm exp} = 125.09 \pm 0.21 \pm 0.11 {\rm GeV}$

MSSM theory:

LHCHXSWG adopted FeynHiggs for the prediction of MSSM Higgs boson masses and mixings (considered to be the code containing the most complete implementation of higher-order corrections)

FeynHiggs:
$$\delta M_h^{\text{theo}} \sim 3 \text{ GeV}$$

 \rightarrow rough estimate, FeynHiggs contains algorithm to evaluate uncertainty, depending on parameter point

Working group on M_h predictions:

sites.google.com/site/kutsmh

Katharsis of Ultimate Theory Standards

6th meeting: 23.-25. January 2017, Aachen (Germany)

Precise Calculation of

Higgs Boson masses

Organized by: M. Carena, H. Haber R. Harlander, S. Heinemeyer . Hollik, P. Slavich, G. Weiglein

 $\Rightarrow M_h \sim 125 \text{ GeV}$ requires large X_t and/or large M_{SUSY} \Rightarrow results depend strongly on your M_h calculation/precision!

Method I:

Higher-order corrections in the Feynman diagrammatic method:

Propagator/Mass matrix at tree-level:

$$\left(\begin{array}{cc} q^2 - m_H^2 & 0\\ 0 & q^2 - m_h^2 \end{array}\right)$$

Propagator / mass matrix with higher-order corrections (\rightarrow Feynman-diagrammatic approach):

$$M_{hH}^{2}(q^{2}) = \begin{pmatrix} q^{2} - m_{H}^{2} + \hat{\Sigma}_{HH}(q^{2}) & \hat{\Sigma}_{Hh}(q^{2}) \\ \\ \hat{\Sigma}_{hH}(q^{2}) & q^{2} - m_{h}^{2} + \hat{\Sigma}_{hh}(q^{2}) \end{pmatrix}$$

 $\hat{\Sigma}_{ij}(q^2)$ (i, j = h, H) : renormalized Higgs self-energies *CP*-even fields can mix

 \Rightarrow complex roots of det $(M_{hH}^2(q^2))$: $\mathcal{M}_{h_i}^2(i=1,2)$: $\mathcal{M}^2 = M^2 - iM\Gamma$

Calculation of renormalized Higgs boson self-energies:

 $\hat{\Sigma}(q^2) = \hat{\Sigma}^{(1)}(q^2) + \hat{\Sigma}^{(2)}(q^2) + \dots$

all MSSM particles contribute main contribution: t/\tilde{t} sector (\tilde{t} : scalar top, SUSY partner of the t)

2-Loop:

To avoid large corrections:

On-shell renormalization of the scalar top sector $\Rightarrow X_t^{OS}$

$$\sim m_t^4 \left[\log^2 \left(\frac{m_{\tilde{t}}}{m_t} \right) + \log \left(\frac{m_{\tilde{t}}}{m_t} \right) \right]$$

Structure of higher-order corrections:

One-loop:
$$\Delta M_h^2 \sim m_t^2 \alpha_t \left[L + L^0 \right] , \quad L := \log \left(\frac{m_{\tilde{t}}}{m_t} \right)$$

Two-loop:
$$\Delta M_h^2 \sim m_t^2 \left\{ \alpha_t \alpha_s \left[L^2 + L + L^0 \right] + \alpha_t^2 \left[L^2 + L + L^0 \right] \right\}$$

$$\Delta M_h^2 \sim m_t^2 \Big\{ \begin{array}{c} \alpha_t \alpha_s^2 \left[L^3 + L^2 + L + L^0 \right] \\ + \alpha_t^2 \alpha_s \left[L^3 + L^2 + L + L^0 \right] \\ + \alpha_t^3 \left[L^3 + L^2 + L + L^0 \right] \Big\} \end{array}$$

Partial results: [S. Martin '07]

[R. Harlander, P. Kant, L. Mihaila, M. Steinhauser '08] \Rightarrow H3m

H3m adds $\mathcal{O}\left(\alpha_t \alpha_s^2\right)$ corrections to FeynHiggs

Large $m_{\tilde{t}} \Rightarrow$ large $L \Rightarrow$ resummation of logs necessary \Rightarrow Method II

Method II: EFT approach: Log resummation via RGE's:

Excellent overview paper: [P. Draper, G. Lee, C. Wagner, arXiv:1312.5743]

Simple example for log resummation:

SUSY mass scale: $M_{SUSY} = M_S \sim m_{\tilde{t}}$

Above M_{SUSY} : MSSM Below M_{SUSY} : SM

Relevant SM parameters: – quartic coupling λ

- top Yukawa coupling h_t ($\alpha_t = h_t^2/(4\pi)$)
- strong coupling constant g_s ($\alpha_s = g_s^2/(4\pi)$)
- **1.** Take: $h_t(m_t), g_s(m_t)$

SM RGEs for $h_t, g_s: h_t, g_s(m_t) \to h_t, g_s(M_S)$

- 2. Take $\lambda(M_S), h_t(M_S), g_s(M_S)$ SM RGEs for $\lambda, h_t, g_s: \lambda, h_t, g_s(M_S) \rightarrow \lambda, h_t, g_s(m_t)$
- 3. Evaluate M_h^2 $M_h^2 \sim 2\lambda(m_t)v^2$

$$\Delta M_h^2 = (\Delta M_h^2)^{\mathsf{RGE}} (X_t^{\overline{\mathsf{MS}}}, M_S^{\overline{\mathsf{MS}}}, \overline{m}_t) - (\Delta M_h^2)^{\mathsf{FD},\mathsf{LL1},\mathsf{LL2}} (X_t^{\mathsf{OS}}, M_S^{\mathsf{OS}}, \overline{m}_t)$$
$$M_h^2 = (M_h^2)^{\mathsf{FD}} + \Delta M_h^2$$

Technical aspect:

$$(\Delta M_h^2)^{\mathsf{FD},\mathsf{LL1},\mathsf{LL2}}(X_t^{\mathsf{OS}}, M_S^{\mathsf{OS}}, \overline{m}_t)$$

$$:= (\Delta M_h^2)^{\mathsf{FD},\mathsf{LL1},\mathsf{LL2}}(X_t^{\overline{\mathsf{MS}}}, M_S^{\overline{\mathsf{MS}}}, \overline{m}_t)|_{X_t^{\overline{\mathsf{MS}}} \to X_t^{\mathsf{OS}}, M_S^{\overline{\mathsf{MS}}} = M_S^{\mathsf{OS}}}$$

⇒ combination of best FD result with
resummed LL, NLL corrections for large
$$m_{\tilde{t}}$$

⇒ most precise M_h prediction for large $m_{\tilde{t}}$ ⇒ FeynHiggs 2.10.0
[T. Hahn, S.H., W. Hollik, H. Bzehak, G. Weiglein '13][H. Bahl, W. Hollik, '16]

[T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein '13][H. Bahl, W. Hollik '16]

Possible & necessary refinements of the EFT calculation:

- Inclusion of EWino mass scale in RGE's
- Inclusion of gluino mass scale in RGE's
- Inclusion of EW effects in RGE's
- Inclusion of 3-loop RGEs plus 2-loop thresholds etc.
- "Two Higgs Doublet Model" below M_S
- Splitting in the scalar top sector

Possible & necessary refinements of the EFT calculation:

- Inclusion of EWino mass scale in RGE's ⇒ included into FeynHiggs
- Inclusion of gluino mass scale in RGE's ⇒ included into FeynHiggs
- Inclusion of EW effects in RGE's
 ⇒ included into FeynHiggs
- Inclusion of 3-loop RGEs plus 2-loop thresholds etc.
 ⇒ included into FeynHiggs
- "Two Higgs Doublet Model" below M_S \Rightarrow work in progress for FeynHiggs , only code so far: MhEFT
- Splitting in the scalar top sector
 ⇒ future work

• . . .

2HDM as low-energy theory: MhEFT

 $\Rightarrow M_h = 125 \text{ GeV}$ and low M_A , tan β cannot "everywhere" be realized!

Codes on the market:

- 1.) Fixed order codes: good for all scales low
- SuSpect
- SPheno/SARAH
- SoftSUSY/FlexibleSUSY
- H3m
- 2.) EFT codes: good for all scales high
- SusyHD
- MhEFT
- HSSUSY
- 3.) Hybrid codes: good always?!
- FeynHiggs
- FlexibleEFTHiggs

Obviously: quality depends on the details implemented

NOTE: the updates in FeynHiggs affect also the "standard" scenarios

Simplified benchmark point: $tan\beta = 20$, all SUSY masses = 1 TeV, X_t varied to maximize M_h

Public code	M _h [GeV]	
SPheno 3.3.8	126.3	
SuSpect 2.43	125.8	
SoftSUSY 3.7.0	124.3	
NMSSMTools 4.9.1	124.6	
FeynHiggs 2.11.3	128.1	
FeynHiggs 2.12.0	126.3	

Same DR calculation of the Higgs mass, differences in determination of top Yukawa

OS calculation of Higgs mass (using running m_t at NNLO in loops)

Including resummation plus EW effects in mt

All of these codes include full 1-loop + dominant (strong+Yukawa) 2-loop corrections to M_h

Relevance for the LHCHXSWG?!

Classical benchmark scenarios

- $-m_h^{\max}$
- m_h^{mod+}
- $-m_{h}^{mod-}$
- light-stop
- light-stau
- tau-phobic
- \Rightarrow change in M_h calculation?!

 $\frac{\text{low-tan }\beta \text{ scenarios: low-tb-high, hMSSM}}{\text{Proper EFT code(s) for light 2HDM / heavy SUSY now available}}$

\Rightarrow Time to update our benchmark scenarios?

3. Higgs boson mass scales from rate measuements?

- We have a $\sim 125~\text{GeV}$ SM-like Higgs boson
- \Rightarrow What are the options?
- 1. Decoupling limit:

 $M_A \gg M_Z \Rightarrow$ the light Higgs becomes SM-like

2. Alignment without decoupling:

 \Rightarrow a $\mathcal{CP}\text{-even}$ Higgs becomes SM-like due to an "accidental" cancellation

3. Heavy Higgs SM-like: (see later!)

 \Rightarrow is the case with the heavy CP-even Higgs being SM-like still a viable solution?

Obtaining a light Higgs with SM-like couplings

[J. Gunion, H. Haber, hep-ph/0207010]

 $\rightarrow \mathcal{CP} \text{ conserving 2HDM in the Higgs basis } (\langle H_1 \rangle = v/\sqrt{2}, \langle H_2 \rangle = 0)$ $\mathcal{V} = \ldots + \frac{1}{2}Z_1(H_1^{\dagger}H_1)^2 + \ldots + \left[\frac{1}{2}Z_5(H_1^{\dagger}H_2)^2 + Z_6(H_1^{\dagger}H_1)(H_1^{\dagger}H_2) + \text{h.c.}\right] + \ldots$

 $\Rightarrow CP$ -even mass matrix:

$$\mathcal{M}^{2} = \begin{pmatrix} Z_{1}v^{2} & Z_{6}v^{2} \\ Z_{6}v^{2} & M_{A}^{2} + Z_{5}v^{2} \end{pmatrix}$$

with mixing angle $\cos(\beta - \alpha) \equiv c_{\beta - \alpha}$

Decoupling limit:
$$M_A^2 \gg Z_i v^2$$

 $\Rightarrow m_h^2 \sim Z_1 v^2$, $|c_{\beta-lpha} \ll 1|$, h is SM-like

Alignment limit: see e.g.

[M. Carena, I. Low, N. Shah, C. Wagner '13][M. Carena, H. Haber, I. Low, N. Shah, C. Wagner '14]

In the MSSM $Z_6 = 0$ can be obtained through an "accidental" cancellation between tree-level and loop contribution, roughly at:

$$\tan\beta \sim \left[M_h^2 + M_Z^2 + \frac{3m_t^2\mu^2}{4\pi^2 v^2 M_S^2} \left(\frac{A_t^2}{2M_S^2} - 1\right)\right] / \left[\frac{3m_t^2}{4\pi^2 v^2} \frac{\mu A_t}{M_S^2} \left(\frac{A_t^2}{6M_S^2} - 1\right)\right]$$

Compare:
$$m_h^{\text{mod}+}$$
 and m_h^{alt} :
 $A_t/M_S = 2.45$, $A_t = A_f$,
 $M_S = m_{\tilde{f}} \ge 1$ TeV, $m_{\tilde{g}} = 1.5$ TeV,
 $M_2 = 2 M_1 = 200$ GeV, μ adjustable
(low M_A and tan β : tune $M_S \ge 1$ TeV
to obtain $M_h \ge 122$ GeV)
 \Rightarrow SM-like Higgs for all M_A

\Rightarrow no Higgs mass scale restrictions from rates (in general)

$$\begin{split} m_t &= 173.2 \; {\rm GeV}, \\ M_{\rm SUSY} &= 1500 \; {\rm GeV}, \\ \mu &= 2000 \; {\rm GeV}, \\ M_2 &= 200 \; {\rm GeV}, \\ M_2 &= 200 \; {\rm GeV}, \\ X_t^{\rm OS} &= 2.45 \; M_{\rm SUSY}, \\ A_b &= A_\tau = A_t, \\ m_{\tilde{g}} &= 1500 \; {\rm GeV}, \\ m_{\tilde{l}_3} &= 500 \; {\rm GeV} \; . \end{split}$$

\Rightarrow horizontal line indicates alignment limit

Relevance for the LHCHXSWG?!

Classical benchmark scenarios

- $-m_h^{\max}$
- $-m_h^{mod+}$
- $-m_{h}^{mod-}$
- light-stop
- light-stau
- tau-phobic
- \Rightarrow change in M_h calculation?!
- \Rightarrow improved limits in M_A -tan β plane!
- \Rightarrow new SUSY search limits!
- \Rightarrow Time to devise a new "alignment scenario"?!

4. Results in the pMSSM8

[P. Bechtle, H. Haber, S.H., O. Stål, T. Stefaniak, G. Weiglein, L. Zeune '16]

- decoupling, $M_h = 125 \text{ GeV}$
- alignment without decoupling, $M_h = 125~{\rm GeV}$
- "heavy Higgs" case, $M_H = 125 \text{ GeV}$, h lighter

	Min	Max	$M_{Q_{1,2}} = M_{U_{1,2}} = M_{D_{1,2}} = 1.5$ Te
M _A	90 GeV	1000 GeV	$M_{D_3} = M_{U_3} = M_{Q_3}$
aneta	1	60	$M_{L_{1,2}} = M_{E_{1,2}}$
M_{Q_3}	200 GeV	5000 GeV	$A_b = A_\tau = A_t$
A_t	$-3M_{Q_{3}}$	$+3M_{Q_{3}}$	$M_3 = 1.5 \text{ TeV}$
μ	$-3M_{Q_{3}}$	$+3M_{Q_{3}}$	M_1 fixed by GUT relation
M_{L_3}	200 GeV	1000 GeV	10 ⁷ random points
$M_{L_{1,2}}$	200 GeV	1000 GeV	$\Sigma_i[\sigma_i(\phi) \times BR(\phi \to XX)]_{MSSM}$
<i>M</i> ₂	200 GeV	500 GeV	$\Gamma_{XX} := \overline{\Sigma_i[\sigma_i(\phi) \times BR(\phi \to XX)]_{SM}}$

Our tools:

use FeynHiggs-2.10.2 and SuperIso-3.3 for MSSM predictions.

Construct global χ^2 from observables:

- Higgs mass and signal rates (HiggsSignals-1.4.0)
- Low energy observables (LEO): $b \rightarrow s\gamma$, $B_s \rightarrow \mu\mu$, $B_u \rightarrow \tau\nu$, $(g-2)_{\mu}$, M_W
- exclusion likelihood from CMS $\phi \rightarrow \tau \tau$ search (HiggsBounds-4.2.0)
- LEP Higgs exclusion likelihood, χ^2_{LEP} , if relevant. (HiggsBounds-4.2.0)

Further constraints:

- 95% CL Higgs exclusion limits ($w/o MSSM \phi \rightarrow \tau \tau limits$) (HiggsBounds-4.2.0)
- Sparticle mass limits from LEP, (fixed $m_{\tilde{q}_{1,2}} = m_{\tilde{g}} = 1.5 \text{ TeV}$ to evade LHC limits)
- Require neutral lightest supersymmetric particle (LSP).

Newly included: CheckMate to check SUSY exclusion limits \Rightarrow "naive" χ^2 calculation (heavily relying on HiggsSignals) The best-fit points:

	full fit			fit without a_{μ}			fit without all LEOs		
Case	χ^2/ u	χ^2_{ν}	p	χ^2/ u	χ^2_{ν}	p	χ^2/ u	χ^2_{ν}	p
SM	83.7/91	0.92	0.69	72.4/90	0.80	0.91	70.2/86	0.82	0.89
h	68.5/84	0.82	0.89	68.2/83	0.82	0.88	67.9/79	0.86	0.81
H	73.7/85	0.87	0.80	71.9/84	0.86	0.82	70.0/80	0.88	0.78

Best-fit points parameters:

Case	$\begin{array}{c c} M_A \\ (GeV) \end{array}$	aneta	μ (GeV)	$\begin{array}{c} A_t \\ (\text{GeV}) \end{array}$	$\begin{array}{c} M_{\tilde{q}_3} \\ (\text{GeV}) \end{array}$	$\begin{array}{c} M_{\tilde{\ell}_3} \\ (\text{GeV}) \end{array}$	$\begin{array}{c} M_{\tilde{\ell}_{1,2}} \\ (\text{GeV}) \end{array}$	$\begin{array}{c} M_2 \\ (\text{GeV}) \end{array}$
$\begin{vmatrix} h \\ H \end{vmatrix}$	929 172	$\begin{array}{c} 21.0\\ 6.6\end{array}$	$7155 \\ 4503$	$4138 \\ -71$	$2957 \\ 564$	$698 \\ 953$	$436 \\ 262$	$358 \\ 293$

 \Rightarrow SM and both MSSM cases provide similar fit to the Higgs data \Rightarrow Including LEOs, SM fit becomes worse

The "exotic" solution:

the discovery is interpreted as the heavy $\mathcal{CP}\text{-}even$ Higgs

In principle also possilbe:

 $M_h < 125 {
m ~GeV}$ $M_H pprox 125 {
m ~GeV}$

Consequences:

- all Higgs bosons very light
- easy(?) discovery of additional Higgs bosons at the LHC

Constraints:

- direct searches for the lightest $\mathcal{CP}\text{-}even$ Higgs
- direct searches for the heavy neutral Higgses
- direct searches for the charged Higgses
- flavor constraints (BR($B_s \rightarrow \mu^+ \mu^-$) etc.)

 \Rightarrow original scenario: low- M_H [M. Carena, S.H., O. Stål, C. Wagner, G. Weiglein '13]

 \Rightarrow ruled out by charged Higgs searches (limits on BR $(t \rightarrow H^{\pm}b)$)

How to avoid BR $(t \rightarrow H^{\pm}b)$ bounds: \Rightarrow higher $M_{H^{\pm}}!$

 \Rightarrow "tricky" region below and beyond the top threshold!

Heavy-Higgs case: preferred parameters

Sven Heinemeyer – LHC-Higgs-XSWG workshop, CERN, 13.10.2016

⇒ strongly reduced couplings to gauge bosons ⇒ beyond LEP reach! ⇒ $M_h > M_H/2$ (mostly) to avoid $H \rightarrow hh$ (or BR($H \rightarrow hh$) $\lesssim 10\%$)

 \Rightarrow visible in $gg \rightarrow h \rightarrow \gamma \gamma$?

New low- M_H benchmark scenarios

Based on our best-fit region:

Benchmark scenario	$M_{H^{\pm}}$ [GeV]	$\mu ~[{ m GeV}]$	aneta
low- $M_H^{\mathrm{alt},-}$	155	3800 - 6500	4 - 9
low- $M_H^{\rm alt,+}$	185	4800 - 7000	4 - 9
low- $M_H^{\mathrm{alt,v}}$	140 - 220	6000	4 - 9
fixed parameters:	$m_t = 173.2 \text{ GeV},$	$A_t = A_\tau = A_b = -70 \text{ Ge}$	V, $M_2 = 300 \text{ GeV},$
	$M_{\tilde{q}_L} = M_{\tilde{q}_R} = 150$	$0 \text{ GeV } (q = c, s, u, d), m_{\tilde{g}}$	= 1500 GeV,
	$M_{\tilde{q}_3} = 750 \text{ GeV},$	$M_{\tilde{\ell}_{1,2}} = 250 \text{ GeV}, M_{\tilde{\ell}_3} =$	$500 {\rm GeV}$

low- $M_{H}^{\text{alt}-}$: fixed $M_{H^{\pm}} < m_{t}$

low- $M_H^{\text{alt+}}$: fixed $M_{H^{\pm}} > m_t$

low- M_H^{altv} : varied $M_{H^{\pm}}$ (μ fixed)

low- $M_{H}^{\text{alt-}}$ (155 GeV = $M_{H^{\pm}} < m_t$):

\Rightarrow green area in agreement with all data!

low- $M_{H}^{\text{alt+}}$ (180 GeV = $M_{H^{\pm}} > m_t$):

 \Rightarrow green area in agreement with all data! $M_H \sim M_h \sim 125~{\rm GeV}$ possible!

low- $M_H^{\text{altv}}(140 \text{ GeV} \le M_{H^{\pm}} \le 220 \text{ GeV})$:

\Rightarrow green area in agreement with all data!

low- $M_H^{\text{altv}}(140 \text{ GeV} \le M_{H^{\pm}} \le 220 \text{ GeV})$:

5. Complex parameters

Enlarged Higgs sector: Two Higgs doublets with \mathcal{CP} violation

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1} + i\chi_{1})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = \begin{pmatrix} \phi_{1}^{+} \\ \phi_{2}^{+} \\ \psi_{2}^{-} + (\phi_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix} e^{i\xi}$$

$$V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.})$$

$$+\underbrace{\frac{{g'}^2+g^2}{8}}_{8}(H_1\bar{H}_1-H_2\bar{H}_2)^2+\underbrace{\frac{g^2}{2}}_{2}|H_1\bar{H}_2|^2$$

gauge couplings, in contrast to SM

physical states: h^0, H^0, A^0, H^{\pm}

2 CP-violating phases: ξ , $\arg(m_{12}) \Rightarrow$ can be set/rotated to zero Input parameters: (to be determined experimentally)

$$\tan\beta = \frac{v_2}{v_1}, \qquad M_{H^{\pm}}^2$$

The Higgs sector of the cMSSM at the loop-level:

Complex parameters enter via loop corrections:

- $-\mu$: Higgsino mass parameter
- $-A_{t,b,\tau}$: trilinear couplings $\Rightarrow X_{t,b,\tau} = A_{t,b,\tau} \mu^* \{\cot\beta, \tan\beta\}$ complex
- $-M_{1,2}$: gaugino mass parameter (one phase can be eliminated)
- $-M_3$: gluino mass parameter
- \Rightarrow can induce $\mathcal{CP}\text{-violating}$ effects

Result:

$$(A, H, h) \rightarrow (h_3, h_2, h_1)$$

with

 $m_{h_3} > m_{h_2} > m_{h_1}$

 \Rightarrow strong changes in Higgs couplings to SM gauge bosons and fermions

<u>Codes:</u> Cross sections: SusHiMi (in preparation) Branching ratios: FeynHiggs, CPsuperH

\mathcal{CPV} effects on Higgs boson searches:

CPX: benchmark scenario in the cMSSM [*M. Carena, J. Ellis, A. Pilaftsis, C. Wagner '00*]

LEP Higgs production cross sections:

[LEPHiggsWG '06]

[LEPHiggsWG '06]

 $m_t = 174.3 \,\, {\rm GeV}$

The LEP analysis showed unexcluded holes in the m_{h_1} -tan β plane \Rightarrow masses below ~ 62 GeV contrained, but above ...?

Relevance for the LHCHXSWG?!

Classical benchmark scenarios in the rMSSM!

- $-m_h^{\max}$
- m_h^{mod+}
- $m_h^{n \text{mod}} -$
- light-stop
- light-stau
- tau-phobic
- \Rightarrow inclusion of complex phases?!
- \Rightarrow Time to devise scenarios for the cMSSM?!
- "*H*-*A*" interference
- $-M_{h_1} < 125 \text{ GeV}$

Conclusinos

- Recent "MSSM updates" (or neglected issues):
 - improved mass calculations
 - improved Higgs/SUSY limits
 - complex phases
- SUSY Higgs mass predictios are far behind experimental accuracy
- Higgs rate measurements can be fulfilled by
 - the light $\mathcal{CP}\text{-}even$ Higgs in the decoupling regime
 - the light \mathcal{CP} -even Higgs in the alignment w/o decoupling regime
 - the heavy \mathcal{CP} -even Higgs with $M_h < 125 \text{ GeV}$
- Update for benchmark scenarios necessary?
 - classical scenarios updated?!
 - new low- M_H scenarios \Rightarrow exist already!
 - new alignment scenario
 - scenario with complex phases: "H-A" mixing, $M_{h_1} < 125 \text{ GeV}$

For Reisaburo: HiggsCouplings 2017: 6.-10. Nov. (Heidelberg)

Further Questions?

Best-fit point rates in the two Higgs cases:

Light-Higgs case: preferred rates

 $\begin{aligned} R_{VV}^{h} &= 0.99_{-0.08}^{+0.09}, \quad R_{\gamma\gamma}^{h} = 1.02_{-0.10}^{+0.16}, \quad R_{bb}^{Vh} = 1.00_{-0.05}^{+0.02}, \quad R_{\tau\tau}^{h} = 1.00_{-0.20}^{+0.06} \\ \Rightarrow \text{ all very SM-like (no surprise ...)} \\ \Rightarrow \text{ but some (BSM) spread is allowed!} \end{aligned}$

Light-Higgs case: preferred parameters in the \tilde{t} sector

 $\Rightarrow \text{ light stops down to } m_{\tilde{t}_1} \sim 300 \text{ GeV possible} \\ \text{(even lighter stops possible with } M_{\tilde{t}_L} \neq M_{\tilde{t}_R})$

 \Rightarrow exclusion of light $M_{H^{\pm}}$ in the m_h^{\max} scenario! ... low- M_H ?

Application of charged Higgs limits on low- M_H scenario:

 \Rightarrow that (particular incarnation of the) low- M_H scenario is excluded!

 \Rightarrow flavor constraints fulfilled!

The Higgs sector of the cMSSM at tree-level:

• phase of m_{12} :

 $m_{12} = 0$ and $\mu = 0 \Rightarrow$ additional U(1) (PQ) symmetry reality: $m_{12} \neq 0$, $\mu \neq 0$

 \Rightarrow perform PQ transformation with ϕ_{PQ}

$$m_{12}^{2\prime} = |m_{12}^2|e^{i(\phi_{m_{12}}-\phi_{PQ})}$$

$$\mu' = |\mu|e^{i(\phi_{\mu}-\phi_{PQ})}$$

 \Rightarrow m_{12} can always be chosen real

• phase of H_2 : ξ :

mixing between CP-even and CP-odd states:

$$\mathcal{M}_{\mathcal{CP}-\text{even},\mathcal{CP}-\text{odd}} = \begin{pmatrix} 0 & m_{12}^2 \sin \xi \\ -m_{12}^2 \sin \xi & 0 \end{pmatrix}$$

Tadpoles have to vanish: $T_A^{\text{tree}} \propto \sin \xi m_{12}^2 \stackrel{!}{=} 0$
 $\Rightarrow \xi = 0 \Rightarrow \text{no } \mathcal{CPV}$ at tree-level