

CERN Open Lab Summer Student Lecture
July 25, 2016

Outline

- What is Machine Learning
- in Theory
- in Practice

Machine Learning Basics

What is Machine Learning?

 Study of algorithms that improve their <u>performance</u> P for a given <u>task</u> T with more <u>experience</u> E

Sample tasks: identifying faces, Higgs bosons

In Computer Science

Machine learning already preferred approach:

- Speech recognition, Natural language processing
- Computer vision, Robot control
- Medical outcomes analysis

Machine Learning field is growing fast

- Improved algorithms
- Increased data capture
- Software too complex to write by hand

A Little History

1950s First methods invented

1960-80s Slow growth, focus on knowledge

1990s Computing power growth, new learning

methods, data-centric focus

2000-10s Wide use of machine learning in all

spheres of research and industry

2010s Improvement of learning, high

parallelism, deep learning

Diving Deeper

Machine Learning Theory

General Approach:

Given training data T_D = {y, x} = (y,x)₁
 (y,x)_N, function space {f} and a
 constraint on these functions, teach a
 machine to learn the
 mapping y = f(x)

Choose

Function space $F = \{f(x, w)\}$

Constraint

Loss function*

 $f(x, w^*) \leftarrow$

Method

Find f(x) by minimizing the empirical risk R(w)

$$R[f_w] = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i, w))$$
 subject to the constraint $C(w)$

*The loss function measures the cost of choosing badly

C(w)

Many methods (e.g., neural networks, boosted decision trees, rule-based systems, random forests,...) use the quadratic loss

$$L(y, f(x, w)) = [y - f(x, w)]^{2}$$

and choose $f(x, w^*)$ by minimizing the

constrained mean square empirical risk

$$R[f_{w}] = \frac{1}{N} \sum_{i=1}^{N} [y_{i} - f(x_{i}, w)]^{2} + C(w)$$

Classification Theory

Optimality criterion: minimize the error rate, $\alpha + \beta$

Machine Learning in Practice

How Big is Big Data?

Sloan Digital Sky Survey

Collected more data in the first two weeks

than was collected in the history of astronomy

7/25/16 Sergei V. Gleyzer Open Lab Summer Student Lecture

16

Large Synoptic Survey Telescope

7/25/16 Sergei V. Gleyzer Open Lab Summer Student Lecture 17

Big Data

Project Expected Data Period

SDSS 100 Tb 2000 - 2015

LSST 100 000 Tb 2022 - 2032

LHC 15 000 000 Tb 2010 - 2035

How do LHC Experiments Use Machine Learning?

LHC Applications

Classification

- Particle identification
 - Is this particle a photon or a jet?

- Is this a Higgs/SUSY event or background

Function Estimation

- Energy/Momentum estimation
 - Better estimate using Machine Learning regression

Higgs Challenge

- · Big success!
- 1785 teams (1942 people) have participated
- 6517 people have downloaded the data
- Most popular challenge on the Kaggle platform (until spring 2015)
- 35772 solutions uploaded
- 136 forum topics with 1100 posts
- Similar challenge by LHCb

Types of Learning

- Supervised:
 - All training data are labeled
- Unsupervised
 - All training data are not labeled
- Semi-supervised
 - Some training data is not labeled

Classification

Goal:

Achieve lowest probability of error on unseen cases $\{\langle x^{(i)}, y^{(i)} \rangle\}$

Approach:

Inductively **learn** from labeled **examples** where classes are known

Classification

Distinguish f(x), g(x) using Training set of observations

{inputs, outputs}

Pass observations to a learning algorithm neural network, decision tree

that produces outputs in response to inputs

Use another set of observations to evaluate

Training

- Split data into at least two sets
 - Keep training and testing sets separated

- Monitor training and testing error rates
 - Watch out for overtraining

Popular Methods

Incomplete list of learning algorithms:

- Fisher (Linear) Discriminant
- Quadratic Discriminant
- Support Vector Machines
- Decision Trees
- Neural Networks
- Bayesian Neural Networks
- Genetic Algorithms
- Random Forest

< 349.3

CONSTRUCTING CLASSIFIERS

Linear and Quadratic

Decision trees is a simple Classifier

Building a tree:

- Scan along each variable
 - propose a **DECISION**
 - A splitting value that maximizes class separation (binary branching)

- Choose a **decision** that leads to greatest separation between classes **A** and **B**
 - Build regions of increasing purity $\frac{N_A}{N_A + N_B}$
 - Stop when no further improvement from additional splitting
 - Reach terminal node (leaf)
 - Assign purity-based class

Proceed to Hands-On I (c5.0)

Part I: Decision Trees

Hands-On Part I

- 1. Login to CERNBox: http://cernbox.cern.ch
- 2. Open Swan: http://swan001.cern.ch
- 3. Open new terminal: new → terminal
- 4. Clone the code: git clone https://github.com/iml-wg/c50.git
- 5. Go to c50 directory: cd c50/

C5.0

- Classic ML tool for
 - decision trees
 - rules
 - boosted classifiers
- Written by J.R. Quinlan
 - Name: ID3 \rightarrow C4.5 \rightarrow C5.0
 - Use c5.0 to familiarize with decision tree based classifiers

Hands-On Part I

Examples: playing golf, breast-cancer

- Create your first classifiers
 - Decision trees
 - c5.0 –f golf
 - c5.0 –f breast-cancer

Needed:

.names file that includes the names of classes and variables, and variable types(continuous/discrete).data file with values for each variable and class

Tutorial Part I

- Look at Decision Tree structure(s)
- Consider accuracy of predictions
 - Prediction errors
 - on training examples
 - on testing examples
 - Understand confusion matrix

```
(a) (b) <-classified as

125 5 (a): class 2
6 63 (b): class 4
```


Rules

Decision Rules:

- Deconstruct Decision Tree
- Set of if then else rules
 - Example of "weak" learners (better than random guessing)
 - Become a competitive classifier in an ensemble
 - RuleFit: Friedman, Popescu, 2005

Proceed to Tutorial (c5.0)

Part II: Rules

Tutorial Part II

Examples: playing golf, breast-cancer

- Create your first classifiers
 - Rules
 - c5.0 –r –f golf
 - c5.0 –r –f breast-cancer
 - Compare Rule(s) to Decision Tree(s)
 - Note: all decision trees are rules but not all rules are trees

Classifier Performance

Classifier Performance

Receiver Operating Characteristic (ROC)

Commonly used metric

Shows the **relationship** between correctly classified positive cases (sensitivity) and incorrectly classified negative cases (1-effectivity)

Perfect Classifier

Over-Training

Over-training or over-fitting sometimes occurs when too many parameters for data size

Diagnose with

- Divergent training-testing error slopes
- Kolmogorov-Smirnov tests of classifier output

Treat with

- Reduce number of parameters
- Prune decision trees

Pruning

Decision trees can become large and complex and risk over-fitting the data

Pruning removes less powerful or possibly noisy parts of the tree

- start from the leaves and work back up
- Pruned trees smaller in size, easier to interpret

ML Today

- Large ensembles of classifiers
- Deep vs. shallow learning
 - Neural networks with many more hidden layers
- Combination of semi/un-supervised learning with supervised learning

Summary

- Machine Learning is a very powerful field with an expanding number of applications in high energy physics
 - Basic Methods: Linear, Quadratic, Decision
 Trees, Decision Rules
 - More methods on Wednesday
 - Many methods available: good to experiment

UF Classifier Performance

Receiver Operating Characteristic (ROC)

