

Forward physics with early ATLAS data

Andrew Pilkington
The University of Manchester

Talk given at the London Workshop on Early LHC SM Measurements, UCL, London, 30th March 2009.

Overview

- 1) Forward physics using the ATLAS detector
- 2) Soft and hard diffraction
- 3) Central exclusive production
- 4) Gaps-between-jets

The ATLAS forward detector system

Forward physics processes at the LHC

- Forward physics processes are characterized by 'rapidity gaps' in the detector
 - Need to identify gaps using calorimeter and charged track information.
 - Have to measure before pile-up becomes a problem, or correct for pile-up.
 - Best time to do this physics is with early data. Expect approx 200pb⁻¹ by end of 2010.

Fig.8: Detector acceptance of different subdetectors for PYTHIA generated nondiffractive events

Soft diffraction

- Single and double diffractive dissociation have large cross section [O(mb)]
- First measurement of rapidity gap processes at LHC study of underlying event/soft survival. Impacts on understanding pile-up at high luminosity.

The University

Soft single diffraction (II)

- Most ATLAS studies have focused on using ALFA during special 'luminosity' runs to measure soft-SD proton spectrum.
- Require hits in LUCID and energy in ZDC to tag the diffractive dissociation.
- Proton tag in ALFA measure proton ξ.
- 1.2-1.8 million events with 100hrs at L=10²⁷cm⁻²s⁻¹.
- BUT, ALFA requires special running conditions

Efficiency [%]	Pythia	Phojet
Preselection		
ξ<0.2	97.1	94.8
ZDC [E>1 TeV]	53.9	38.7
LUCID [1 track]	45.2	57.3
Total preselection	75	74
RP selection		
ALFA (Relative to preselection)	60.1	54.2
Total acceptance	45.0	40.1

 Want to measure the diffractive ξ distribution:

$$\xi = 1 - \frac{|p_z'|}{|p_z|}$$

- p_z = beam momentum
- $p_{7}' = outgoing proton momentum$

Soft diffraction (III)

- Can measure SD without proton tag using same LUCID/ZDC requirements but using a rapidity gap to infer an outgoing proton.
 - Measure the diffractive mass, M_X , of the dissociative system rather than ξ:

$$\xi = \frac{\mathbf{M_X^2}}{\mathbf{s}}$$

- M_X measured using calorimeter clusters and tracking information.
- Events retained using the Minimum Bias Trigger Scintillators (MBTS).
 - The MBTS are rings of trigger scintillators covering 2.09< $|\eta|$ <3.84.
 - Particles from soft-SD events with ξ <0.05 can be found in both MBTS stations.

Diffractive di-jet production

- Diffractive di-jet production:
 - Measure single diffractive to non-diffractive di-jet ratio, R(SD/ND).
 - Also look for double pomeron exchange (DPE) di-jet production, measure R(DPE/SD).
 - Allows study of soft-survival, diffractive PDFs.
- Impose one (or two) rapidity gaps in forward detectors to search for SD (DPE).
 - Expect a few thousand SD di-jet events in $100pb^{-1}$ with $E_T>20$ GeV (after trigger pre-scale and gap requirement).
 - New trigger possibilities being examined to increase rate.

(No trigger prescale)

					(140 trigger presente)
$p_T(GeV)$	x_{pom}	σ (pb)	gap type	efficiency	Events in 100 pb^{-1}
20	< 0.01	7.2×10^{5}	FCAL	0.4	2.9×10^{7}
20	< 0.1	3.6×10^{6}	FCAL	0.08	2.9×10^{7}
40	< 0.1	$2.1{ imes}10^{5}$	FCAL	0.05	1.0×10^{6}
40	< 0.1	$2.1{ imes}10^{5}$	LUCID,ZDC	0.44	9×10^{6}

Central exclusive di-jet production (I)

- Protons remain intact during interaction.
- Observable: Two jets and no other hadronic activity
- Allows study of theoretical framework, such as Sudakov effects and unintegrated PDFs.
- Early testing ground for exclusivity variables needed to observe exclusive Higgs production using new proposed forward proton detectors at ATLAS/CMS (arXiv: 08061097).
- CDF have observed a 6σ excess of events at Rjj≈1.
 - Rjj is an exclusivity variable that compares the invariant mass of the di-jets to the invariant mass of everything in the calorimeters.
 - Similar measurement possible at ATLAS.

The University of Manchester

Central exclusive di-jet production (II)

- Standard jet triggers at ATLAS are heavily prescaled:
 - At L1, the L1_18 trigger (1 or more jets with $E_T>18GeV$) will have a prescale of 6000 at L= 10^{31} cm⁻² s⁻¹ (70-100 pb⁻¹ per year).
 - Less than 1 CEP di-jet event per 10pb⁻¹ of data.
- New trigger developed: L1_J18_MV:
 - At least one jet with E_T>18GeV, plus an empty MBTS on one side of ATLAS
 - MBTS covers 2.09<|n|<3.84
- Expect that:
 - 65% of exclusive events retained by trigger with respect to the L1_J18 item.
 - Only 1 in 15000 inclusive events pass trigger.
 - Un-prescaled trigger rate of 0.5Hz at L=10³¹ cm⁻² s⁻¹.
 - Approximately 400 CEP di-jet events per pb⁻¹ of data.

Gaps-between-jets (I)

- Events containing two forward jets, separated by a large rapidity interval containing little hadronic activity.
 - Colour singlet exchange (CSE). No colour flow between jets
 - Observed by Tevatron and HERA, but exact nature of exchange not determined.
- Search through inclusive two-jet events for those that contain a rapidity gap (reduced activity) between the jets:
 - If CSE exchange is BFKL-like, then expect the fraction of events that contain a rapidity gap to increase with the separation of the jets.

Gaps-between-jets (II)

- H1 method used to identify events that have reduced activity between the jets:
 - K_T algorithm used to cluster calorimeter energy deposits into mini-jets.
 - Two leading jets identified (E_T>30GeV)
 - E_T of mini-jets between leading jets summed to give E_T^{gap} .

- Expect CSE events to have $E_t^{gap} \approx 0$.
 - But get many events with higher values due to multiple parton-parton interactions
 - Extract events with E_T^{gap} < 10GeV to obtain the gap fraction.
 - Measurement possible with around 10pb⁻¹ of data.

Gaps-between-jets (III)

- Parallel inclusive forward jet studies pursued at ATLAS:
 - Mueller-Navelet jets and QCD evolution.
 - Radiation between jets see also latest theory predictions by Simone Marzani.

Summary

Soft and hard diffraction

- 1) Soft single and double diffractive processes can be studied with very early data. Further studied with ALFA in special runs.
- 2) Single diffractive to non-diffractive di-jet ratio should be measured with 10-100pb⁻¹

Central exclusive production

3) New jet-plus-gap trigger will yield a few thousand CEP events in 10pb⁻¹ of data.

Gaps-between-jets

- 4) Nature of hard colour singlet exchange studied with around 10pb⁻¹ of data.
- 5) Mueller-Navelet jets and QCD radiation between jets studied in parallel.