

- ALICE detector
- Diffractive gap trigger in ALICE
- Pomeron/Odderon signatures in p-p
- Pomeron signatures in Pb-Pb
- . Central diffractive production of χ_c in p-p
- Signature of gluon saturation in diffraction
- Conclusions, outlook

The ALICE experiment

Acceptance central barrel -0.9 < η < 0.9

Acceptance muon spectr. -2.5 < η < -4.

Rainer Schicker, Uni Heidelberg

ALICE diffractive gap trigger

 \rightarrow additional forward detectors (no particle identification) $1 < \eta < 5$ $-4 < \eta < -1$ \rightarrow definition of gaps $\eta_+, \eta_$ p-p luminosity $L = 5x10^{30} \text{ cm}^{-2} \text{ s}^{-1}$: \rightarrow one interaction/ 80 bunches diffractive L0 trigger (hardware): Pixel or TOF mult (central barrel): $3 < \eta < 5 \rightarrow \Delta \eta \sim 0.5$ gap η -: -2 < η < -4 $\rightarrow \Delta \eta \sim 0.5$ high level trigger (software): $-3.7 < \eta < 5$

Rainer Schicker, Uni Heidelberg

ALICE central barrel comparison to other LHC detectors

low magnetic field

η-pt acceptance

 \rightarrow good ALICE acceptance for ϕ , J/Psi, Ψ by electron decays ($p_T > 0$

MeV/C) Rainer Schicker, Uni Heidelberg

ALICE central barrel particle identification

Particle identification by dE/dx in central barrel as function of momentum In addition time of flight

information for non-relativistic

Rainer Schicker, Uni Heidelberg

Workshop early LHC data, UCL, mar 30 - apr 1, 2009

Electron-pion separation in TRD as

 \rightarrow identify vector mesons by e⁺e⁻ decay

function of momentum

ALICE forward calorimeter

- neutron calorimeter on each side
 - Placed at 116 m from interaction region
 - Measures neutral energy at 0°
- Diffractive events with and without proton breakup:
 - pp \rightarrow ppX : no energy in zero degree calorimeters
 - pp \rightarrow pN*X, N*N*X : energy in one or in both calorimeters

Identify the three topologies:

 $A \rightarrow elast \ scattering$

- $B \rightarrow single diffractive$
- $C \rightarrow disable a difference for the constraints of t$

dissociation Rainer Schicker, Uni Heidelberg

Workshop early LHC data, UCL, mar 30 - apr 1, 2009

 \rightarrow what are $f(x_i)$, $g(x_i)$, $h(x_i)$?

ALICE diffractive physics

• ALICE acceptance matched to diffractive central production:

 γ -pomeron, double pomeron, odderon-pomeron

Rainer Schicker, Uni Heidelberg

Pomeron signatures

POMERON: C = +1 part of gluon color singlet exchange amplitude Compare pomeron-pomeron fusion events to min bias inelastic events

- 1) Enhanced production cross section of glueball states: *study resonances in central region when two rapidity gaps are required*
- 2) Slope pomeron traj. α ~ 0.25GeV⁻² in DL fit, α ~ 0.1GeV⁻² in vector meson production at HERA, t-slope triple pom-vertex < 1GeV⁻²

 \rightarrow mean $k_t~$ in pomeron wave function $\alpha^{\text{`}} \sim 1/k_t^2~$ probably k_t > 1 GeV

 \rightarrow <p_7> secondaries in double pomeron > <p_7> secondaries min bias

3) $k_t > 1$ GeV implies large effective temperature

Rainer Schicker, Uni Heidelberg ratios enHanced early LHC data, UCL, mar 30 - apr 1, 2009

Central exclusive $\pi^+\pi^-$ production at $\sqrt{s} = 63$ GeV

Data taken by Axial Field Spectrometer at ISR \sqrt{s} = 63 GeV (R807) very forward drift chambers added for proton detection

Rainer Schicker, Uni Heidelberg

Signature Odderon cross section

ODDERON: C = -1 part of gluon color singlet exchange amplitude Look at exclusive processes with rapidity gaps

Examples:

diffractive pseudo scalar and tensor meson production: C = +1 states

diffractive vector meson production: C = -1 *states*

 \rightarrow measure cross sections

Rainer Schicker, Uni Heidelberg

The hunt for the Odderon

- Production cross sections in pp at LHC energies
 - diffractive production: $\pi_0, \eta, \eta_c (J^{PC} = 0^{-+}), a_2(2^{++})$
 - → contributions from Photon-Photon, Photon-Odderon, Odderon-Odderon
 - Look for diffractive J/ Ψ production: $J^{PC} = 1^{--}$
 - → Photon-Pomeron, Odderon-Pomeron contributions
 - \rightarrow such an experimental effort is a continuation of physics programs carried out at LEP ($\gamma\gamma$) and HERA (γ -Odderon)

- First estimates by Schäfer, Mankiewicz, Nachtmann 1991
- pQCD estimate by Bzdatko Motyka, Szymanowski, Cudell – Photon: t-integrated $\frac{d\sigma}{dy}\Big|_{y=0}$ ~ 15 nb (2.4 - 27 nb) – Odderon: t-integrated x = 0.9 nb (0.3 - 4 nb) At L = 5x10³⁰ cm⁻²s⁻¹:
 - \rightarrow 0.15 J/ Ψ in ALICE central barrel in 1 s, 150k in 10⁶ s

 \Rightarrow **Mentify** Photom ship **Odderon** contribution by analysing ribution (Odderon harder p_T spectrum)

Rainer Schicker, Uni Heidelberg

Signature Odderon interference

 Cross sections contain squared Odderon amplitudes

→ Odderon-Pomeron interference !

 $d\sigma \sim |A\gamma(A_P + A_O)|^2 d^N q$

Rainer Schicker, Uni Heidelberg

 $\sim |A_P|^2 + 2Re(A_PA_O^*) + |A_0^2|^2$

 \rightarrow look at final states which can be produced by Odderon or Pomeron exchange

 \rightarrow find signatures for interference of C-odd and C-even amplitude

Interference signal

- Interference effects (relative contribution *C*=–1)
 - Asymmetries in $\pi^+\pi^-$ and K^+K^- pairs (C=±1) in continuum
 - \rightarrow charge asymmetry relative to polar angle of π^+ in dipion rest frame
 - → fractional energy asymmetry in open charm diffractive photoproduction

 \rightarrow asymmetries in HERA kinematics estimated 10 % - 15 %

Rainer Schicker, Uni Heidelberg

Signatures of Pomeron in lead-lead collisions

pomeron exchange in p-p

pomeron exchange in Pb-Pb: absorption, shadowing → A-dependence reflects effects of triple pomeron couplings

Rainer Schicker, Uni Heidelberg

Central exclusive production

Diffractive Higgs production has small cross section with large uncertainties (gap survival factor, Sudakov factor) Same formalism can be used to predict $\gamma\gamma$, dijet and χ_c, χ_b

→ check uncertainties by measuring systems with larger cross section (smaller mass)

. \rightarrow measure dijets and χ_c, χ_b with rapidity gap on either side

ALICE measurement of χ_c

• Khoze, Martin, Ryskin, Stirling 2004:

χ _c at LHC √s = 14 TeV:			$\frac{\mathrm{d}\sigma_{\mathrm{excl}}}{\mathrm{d}y}\Big _{y=0} = 340 \text{ nb } \rightarrow 3.$		$\rightarrow 3.5 \cdot 10^6 \chi_c$ in 10 ⁶ s
	decay mode	BR	signal	backgnd	
	$\chi_c ightarrow \pi\pi$	$7 \cdot 10^{-3}$	$2.4 \cdot 10^4$??	
	$\chi_c \rightarrow K^+ K^-$	$6 \cdot 10^{-3}$	$2.1 \cdot 10^4$??	
	$\chi_c ightarrow J/\psi \gamma$	$1 \cdot 10^{-2}$	$3.5 \cdot 10^4$??	
,	$\chi_c \rightarrow pp$	$2 \cdot 10^{-4}$	700	??	\mathcal{X}_{c} measurement
	feasibility stu acceptance	, seems feasible 5			

Rainer Schicker, Uni Heidelberg

Gluon saturation

• Fits of parton densities xu_v, xd_v, xg, xS to HERA data

- How does gluon density behave at low x?
- Where does gluon saturation set in ?
- Are there observables which are sensitive to gluon saturation ?

Rainer Schicker, Uni Heidelberg

Heavy quark photoproduction in pp @ LHC

- Photoproduction of $Q\overline{Q}$
 - photon fluctuates into $Q\overline{Q}$,
 - Interacts as color dipole

 $\sigma_{dip}(x,r^2) = \sigma_0 \{1 - \exp(-\frac{r^2}{4R_0^2(x)})\}$

Golec-Biernat, Wuesthoff 1999

$$R_0(x) = \frac{1}{GeV} \left(\frac{x}{x_0}\right)^{\lambda/2} \quad \sigma_0, \ \lambda \text{ from fits of } F_2 \text{ with } x < 0.01$$

 $\rightarrow \sigma_{dip}$ saturates when r ~ 2R₀

 $2\overline{Q}$ -production cross section in pp-

$$\sigma(pp \to Q\overline{Q}pp) = 2 \int \frac{\partial \psi}{\partial \omega} \int \sigma_{p \to QQ(W_{ph})} d\omega$$

$Q \overline{Q}$ (LHC)	Collinear pQCD	CGC model
	16 µb	5 µb
$b\bar{b}$	230 nb	110 nb

Goncalves, Machado Phys. Rev. D71 (2005)

Rainer Schicker, Uni Heidelberg

Diffractive Photoproduction of heavy quarks

- Advantage of diffractive photoproduction
 - Clear final state defined by two rapidity gaps

Goncalves, Machado Phys. Rev. D75 (2007)

	рр	pPb	PbPb
$c \overline{c}$	92 nb	54 µb	59 mb
$b \overline{b}$	0.2	0.09	0.01
	nb	μb	mb

pPb mode: $L = 10^{29} \text{ cm}^{-2}\text{s}^{-1} \rightarrow R (\text{cc}) \sim 5 \text{ Hz}$ Acceptance ~ 10 %, Efficiency ~ 50 % $\rightarrow R(\text{cc}) \sim 20 \text{k per}$ day Heavy quarks can also be produced by central exclusive

diffraction, ie two pomeron fusion \rightarrow harder spectrum of quarks, hence could be disentangled in p_T spectrum

Rainer Schicker, Uni Heidelberg

Conclusions, outlook

- ALICE has unique opportunity to do soft diffractive physics @LHC
- Diffractive trigger defined by two rapidity gaps
- Neutral energy measurement at 0⁰
- Phenomenology of Pomeron/Odderon
- Multipomeron couplings in comparison pp AA data
- . Measurement of diffractive χ_c feasible
- . Gluon saturation in heavy quark photoproduction
- Photon-Photon physics