

at LHC

Stefano Lami INFN Pisa

on behalf of the **TOTEM** Collaboration

[PRL 89 201801 (2002)]

Physics Motivation (2) ...

GOAL: understand the QCD nature of the diffractive exchange

TOTEM Experimental Apparatus

 Physics requirements: forward proton detectors and large pseudorapidity coverage Roman Pots & tracking telescopes T1 and T2 (inelastic evts + Vtx reco)

 all detectors symmetrically on both sides of IP5

 all detectors L1 trigger capable

TOTEM Coverage

London Workshop 30.03.2009

Stefano Lami

T1 Telescope

1 station per side of IP5

- each station: 5 planes
- each plane: 6 trapezoidal CSC detectors
- L1 trigger capability
- Cathode Strip Chamber detector
- 3 coordinates: 2 cathode strips, 1 anode wire
- Resolution ≈ 1 mm
- \bullet Primary Vtx reconstruction to discriminate background (not beam-beam events) for the measurement of N_{inel}
- Multiplicity measurement

London Workshop 30.03.2009

Stefano Lami

10/21

¹/₄ of T1

T2 Telescope

1 station on each side of IP5

- each station: two halves (left/right)
- each half: 10 (5×2 back-to-back mounted) GEM detectors
- L1 trigger capability
- Triple Gas Electron Multiplier detectors
- double readout: strips (radial) and pads (coarse radial and azimuthal)
- resolution: radial 100 μ m, azimuthal 0.8°
- Vtx reco. + Multiplicity measurement

Ongoing installation: fully done by May

London Workshop 30.03.2009

Stefano Lami

11/21

TOTEM Physics and LHC Optics

Feasible physics depends on running scenarios:

- luminosity
- beam optics (β*)
 - \Rightarrow acceptance of proton detectors
 - \Rightarrow precision in the measurement of scattering angle / beam divergence $\propto \sqrt{1/eta^*}$

Total Cross-Section and Elastic Scattering at low [t] Related by the Optical Theorem: 1000 d o/dt [mb / GeV²] elastic pp scattering at 14 TeV 900 (BSW model) $d\sigma_{=}$ 800 Coulomb scattering dt 700 $\frac{4\pi\alpha^2\left(\hbar c\right)^2 G^4\left(t\right)}{|z|^2} +$ Coulomb-Nuclear interference 600 $\frac{\alpha(\rho-\alpha\phi)\sigma_{tot}G^{2}(t)}{dt}e^{-B|t|/2} +$ Nuclear scattering 500 $\sigma_{tot}^{2} \left(1+\rho^{2}\right)$ $e^{-B|t|}$ 400 $16\pi(\hbar c)$ = fine structure constant α = relative Coulomb-nuclear phase **(** 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 $G(t) = nucleon em form factor = (1 + |t|/0.71)^{-2}$ |t| [GeV²] = Re/Im $f(\mathbf{p} \rightarrow \mathbf{p})$ ρ

TOTEM Approach:

Measure the exp. slope B in the t-range 0.002 - 0.2 GeV², extrapolate $d\sigma/dt$ to t=0, Measure total inelastic and elastic rates (all TOTEM detectors provide L1 triggers):

$$L\sigma_{tot}^{2} = \frac{16\pi}{1+\rho^{2}} \times \frac{dN_{elastic,nuclear}}{dt}\Big|_{t=0}$$

$$\sigma_{tot} = \frac{16\pi}{1+\rho^{2}} \times \frac{(dN_{elastic,nuclear} / dt)\Big|_{t=0}}{N_{elastic,nuclear} + N_{inelastic}}$$

Measurement of the Inelastic Rate

Inelastic double arm trigger: robust against background, inefficient at small M Inelastic single arm trigger: suffers from beam-gas + halo background, best efficiency Inelastic triggers and proton (SD, DPE): cleanest trigger, proton inefficiency to be extrapolated Trigger on non-colliding bunches to determine beam-gas + halo rates. Vertex reconstruction with T1, T2 to suppress background Extrapolation of diffractive cross-section to large 1/M² assuming d**o**/dM² ~ 1/M²

MANAN SI	σ [mb]	trigger loss [mb]	systematic error after extrapolations [mb]
Non-diffractive inelastic	58	0.06	0.06
Single diffractive	14	3	0.6
Double diffractive	7	0.3	0.1
Double Pomeron		0.2	0.02
Total	80	3.6	0.8

16/21

Combined Uncertainty in σ_{tot}

$$\sigma_{tot} = \frac{16\pi}{1+\rho^2} \frac{dN_{el} / dt|_{t=0}}{N_{el} + N_{inel}}$$

$$\mathcal{L} = \frac{1+\rho^2}{16\pi} \frac{\left(N_{el} + N_{inel}\right)^2}{dN_{el} / dt|_{t=0}}$$

		<u>β* = 90 m</u>	<u>1540 m</u>
◆	Extrapolation of elastic cross-section to $t = 0$:	±4%	± 0.2 %
•	Total elastic rate (strongly correlated with extrapolation):	± 2 %	± 0.1 %
♦	Total inelastic rate: (error dominated by Single Diffractive trigger losses)	±1%	± 0.8 %
♦	Error contribution from $(1+\rho^2)$ using full COMPETE error band $\delta\rho/\rho = 33 \%$	± 1.	2 %

Total uncertainty in σ_{tot} including correlations in the error propagation: $\beta^* = 90 \text{ m} : \pm 5 \%, \qquad \beta^* = 1540 \text{ m} : \pm (1 \div 2) \%.$

Slightly worse in \mathcal{L} (~ total rate squared!) : \pm 7 % (\pm 2 %).

Precise Measurement with $\beta^* = 1540$ m requires:

- improved knowledge of optical functions
 - alignment precision $< 50 \ \mu m$

Early Physics with TOTEM ($E_p = 5 \text{ TeV } \& \beta^* = 3m$)

RP220 Acceptance:

- elastic scattering $1 < |t| < 12 \text{ GeV}^2$

- diffractive protons $0.02 < \xi < 0.18$
- resolution: $\sigma(\xi) < \sim 6 \cdot 10^{-3}$

London Workshop 30.03.2009

Stefano Lami

Very first measurements with low β* optics Using horizontal RPs • $d\sigma^{SD}/dM$ (SD events with high mass) • $0.02 < \xi < 0.18 \implies 2 < M < 6 \text{ TeV}$ • $\sigma(M)/M = 2-4 \%$ SD **Rapidity Gap** р $M_x^2 = \xi s$ -In ξ • $d\sigma^{DPE}/dM$ (DPE high mass) n 250 < M < 2500 GeV</p> • $\sigma(M)/M = 2.1 - 3.5 \%$ DPE Rapidity **Rapidity Gap** $\xi_2 p$ $\xi_1 p$ p_1 p_2 Gap $M_{x}^{2} = \xi_{1} \xi_{2}s$ 0 $-\ln \xi_2$ p₂ p_1 X -In ξ₁ η Using vertical RPs: high t elastic scattering • $d\sigma^{\text{Elastic}}/dt$ 1 < |t| < 12 GeV² $\sigma(t) \approx 0.2 \cdot \sqrt{|t|}$

19/21

T1/T2: charged multiplicity

Measurement of charged multiplicity for different processes Important also for <u>cosmic ray physics</u> (e.g. for MC generator validation) Identification and measurement of rapidity gaps

Acceptance: $3.1 < \eta < 4.7$ (T1) & $5.3 < \eta < 6.5$ (T2) $\sigma(\eta) = 0.04 - 0.2$, no mom. & ϕ info

20/21

Conclusions

TOTEM ready for LHC restart

will run under all beam conditions will need high β^* optics \rightarrow will require $\beta^* = 90m$ optics for early running

Early measurements

- **Ιοw** β*:
 - study of SD and DPE at high masses
 - elastic scattering at high |t|
 - measurement of forward charged multiplicity
- β* = 90 m:
 - first measurement of σ_{tot} (and \mathscr{L}) with a precision of ~ 5% (~ 7%)
 - elastic scattering in a wide |t| range
 - inclusive studies of diffractive processes
 - measurement of forward charged multiplicity

Later

- Measurement of *total pp cross-section* (and \mathscr{L}) with a precision of **1**÷**2** % (**2** %) with $\beta^* = 1540$ m (dedicated short runs).
- Measurement of *elastic scattering* in the range 10⁻³ < |t| < 10 GeV²
- An extensive CMS/TOTEM Physics Programme

at LHC

Backup Slides

Si CTS edgeless detectors

Proton detection down to $10\sigma_{\text{beam},\perp} + d (\sigma_{\text{beam},\perp} = 80 - 600 \,\mu\text{m})$ To minimize *d* : detectors with highly reduced inactive edge ("edgeless")

Micro-strip Si detectors designed to reduce the inefficiency at the edge. Inefficient edge $\sim 50 \ \mu m$

Optics and Beam Parameters

Parameters	$\beta^* = 2 \text{ m}$ (standard step in LHC start-up)	$\beta^* = 90 \text{ m}$ (early TOTEM optics)	$\beta^* = 1540 \text{ m}$ (final TOTEM optics)	
Crossing angle	0.0	0.0	0.0	
N of bunches	156	156	43	
N of part./bunch	(4 – 9) x 10 ¹⁰	(4 – 9) x 10 ¹⁰	3 x 10 ¹⁰	
Emittance ε _n [μm · rad]	3.75	3.75	1	
10 σ_y beam width at RP220 [mm]	~ 3	6.25	0.8	
Luminosity [cm ⁻² s ⁻¹]	(2 – 11) x 10 ³¹	(5 – 25) x 10 ²⁹	1.6 x 10 ²⁸	

- $\beta^* = 90$ m ideal for early running:
- fits well into the LHC start-up running scenario;
- uses standard injection ($\beta^* = 11m$) \rightarrow easier to commission than 1540 m optics
- wide beam \rightarrow ideal for training the RP operation (less sensitive to alignment)
- $\beta^* = 90$ m optics proposal submitted to the LHCC and well received.

Level-1 Trigger Schemes

Extrapolation to the Optical Point (t = 0) at β^* =90m

(extrapol. - model) / model in $d\sigma/dt |_{t=0}$ Statistical extrapolation uncertainty (%) extrapolation - model) / model (%) 5 Islam deviation in do/dt extrapolation uncertainity etrov-Predazzi-Prokudin, 2 pomerons etrov-Predazzi-Prokudin, 3 pomerons Bourrely-Soffer-Wu Block-Halzer exponential (reference -5 $(5 \text{ hours } @ 10^{29} \text{ cm}^{-2} \text{ s}^{-1})$ -6 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.05 0.06 0.07 0.08 0.04 lower bound of fit (GeV⁻²) lower bound of fit (GeV²)

Common bias due to beam divergence : -2 % (angular spread flattens dN/dt distribution) Spread between most of the models: $\pm 1\%$

Systematic error due to uncertainty of optical functions: $\pm 3\%$

Different parameterizations for extrapolation tested (e.g. const. B, linear continuation of B(t)): negligible impact

Diffractive scattering is a unique laboratory of confinement & QCD: A hard scale + protons which remain intact in the scattering process Forward protons observed, independent of their momentum losses

Forward Physics: VHE Cosmic Ray Connection

Machine Induced Background

T1/T2 Detectors:

- beam-gas interactions: prel. ext. ~ 14 Hz per beam;
 - ~ 19 KHz for MB events (σ MB = 80 mb, L = 2.4 · 10²⁹ cm⁻² s⁻¹)
 - \Rightarrow reduced by vertex reconstruction

muon halo (expected to be very small, not yet quantified)

Roman Pot Detectors:

beam halo (protons out of design orbit): ext. (β* = 1540m) ~ 12·10⁻⁴/bunch ⇒ reduced by requiring coincidence between RP arms
 beam-gas interactions: ext. (β* = 1540m) ~ 3·10⁻⁴/bunch after cuts ⇒ reduced with cuts on track angles and multiplicities
 p-p collision (at IP) background: ext (β* = 1540m) ~ (0.4 ÷ 2)·10⁻⁴/bunch after cuts after cuts

 \Rightarrow reduced with cuts on track angles and hit multiplicities

Tot. elast. evts ~ 3 KHz (L = 10^{29} cm⁻² s⁻¹); prel. expt. S/B ~ (0.6 ÷ 0.7)· 10^3

