The TOTEM experiment at LHC

Stefano Lami
INFN Pisa
on behalf of the
TOTEM Collaboration

TOTEM Physics Overview

Physics Motivation (1)

Dispersion relation fit
Best fit $\sigma_{\text {TOT }}$ pp rises as $\sim \ln ^{2} \mathrm{~S}$

Predictions at 14 TeV : $90-130 \mathrm{mb}$

- Available data not decisive
- Aim of TOTEM: ~1\% accuracy

It will distinguish between several models

COMPETE Collaboration fits all available hadronic data and predicts:
$\mathrm{LHC}(14 \mathrm{TeV}): \sigma_{\text {tot }}=111.5 \pm 1.2_{-2.1}^{+4.1} \mathrm{mb}$

Physics Motivation (2)...

3-gluon exchange at large |t|:

Big uncertainties at large $|t|$: Models differ by ~ 3 orders of magnitude!

$$
\frac{d \sigma}{d t} \sim t^{-8}
$$

TOTEM will measure the

p-p Interactions

GOAL: understand the QCD nature of the diffractive exchange

Dominant Event Classes in p-p Collisions

TOTEM Experimental Apparatus

- Physics requirements: forward proton detectors and large pseudorapidity coverage Roman Pots \& tracking telescopes T1 and T2 (inelastic evts + Vtx reco)
- all detectors symmetrically on both sides of IP5
- all detectors L1 trigger capable

TOTEM Coverage

TOTEM Roman Pots

Protons at few μ rad angles w. RPs at $10 \sigma+d$ from beam
'Edgeless' detectors to minimize d ($\sigma^{\text {beam }} \sim 80 \mu \mathrm{~m}$ at RP220 w. $\beta^{*}=1540 \mathrm{~m}$)

Each RP station has 2 units, 4 m apart Each unit has 2 vertical insertions ('pots') + 1 horizontal

T1 Telescope

1 station per side of IP5

- each station: 5 planes
- each plane: 6 trapezoidal CSC detectors
- L1 trigger capability
- Cathode Strip Chamber detector
- 3 coordinates: 2 cathode strips, 1 anode wire
- Resolution $\approx 1 \mathrm{~mm}$
- Primary Vtx reconstruction to discriminate background (not beam-beam events) for the measurement of $\mathrm{N}_{\text {inel }}$
- Multiplicity measurement

Installation foreseen for May/June:
One arm eventually in September

T2 Telescope

1 station on each side of IP5

- each station: two halves (left/right)
- each half: 10 (5×2 back-to-back mounted) GEM detectors
- L1 trigger capability
- Triple Gas Electron Multiplier detectors
- double readout: strips (radial) and pads (coarse radial and azimuthal)
- resolution: radial $100 \mu \mathrm{~m}$, azimuthal 0.8°
- Vtx reco. + Multiplicity measurement

TOTEM Physics and LHC Optics

Feasible physics depends on running scenarios:

- luminosity
- beam optics (β^{*})
\Rightarrow acceptance of proton detectors
\Rightarrow precision in the measurement of scattering angle / beam divergence $\propto \sqrt{1 / \beta^{*}}$

$\sigma_{\text {tot }}(\sim 5 \%)$, low t elastic, (semi)-hard diffraction

high t elastic, hard diffraction luminosity

Details on Optics

optical functions

Proton transport equations:

$$
\begin{aligned}
& x=L_{x} \theta_{x}^{*}+v_{x} x^{*}+D \xi \\
& y=L_{y} \theta_{y}^{*}+v_{y} y^{*}
\end{aligned}
$$

Optical functions:

L (effective length); \boldsymbol{v} (magnification);
D (machine dispersion)

Describe the explicit path of particles through the magnetic elements as a function of the particle parameters at IP.
\Rightarrow Define t and ξ rance (Acceptance)

Example

Same sample of diffractive protons at different β^{*}

- low $\beta^{*}: p$ detected by momentum loss (ξ)
- high $\beta^{*}: p$ detected by trans. momentum (t_{y})

Diffractive Proton Acceptance in (t, ξ):
(contour lines at $\mathrm{A}=10 \%$)

Proton Acceptance

Detector distance to the beam: $10 \sigma+0.5 \mathrm{~mm}$

Det. dist. 1.3 mm

Total Cross-Section and Elastic Scattering at low |t|

Measure the exp. slope B in the t-range $0.002-0.2 \mathrm{GeV}^{2}$, extrapolate $d \sigma / d t$ to $t=0$, Measure total inelastic and elastic rates (all TOTEM detectors provide L1 triggers):

$$
\left.\begin{array}{l}
\mathrm{L} \sigma_{\text {tot }}^{2}=\frac{16 \pi}{1+\rho^{2}} \times\left.\frac{d N_{\text {elastic,nctear }}}{d t}\right|_{t=0} \\
\mathrm{~L} \sigma_{\text {tot }}=N_{\text {elastic,nuclear }}+N_{\text {inelastic }}
\end{array}\right\} \sigma_{\text {tot }}=\frac{16 \pi}{1+\rho^{2}} \times \frac{\left.\left(d N_{\text {elastic, nuclear }} / d t\right)\right|_{t=0}}{N_{\text {elastic }, \text { nuclear }}+N_{\text {inelastic }}}
$$

Measurement of the Inelastic Rate

Inelastic double arm trigger: robust against background, inefficient at small M Inelastic single arm trigger: suffers from beam-gas + halo background, best efficiency Inelastic triggers and proton (SD, DPE): cleanest trigger, proton inefficiency to be extrapolated Trigger on non-colliding bunches to determine beam-gas + halo rates.
Vertex reconstruction with T1, T2 to suppress background
Extrapolation of diffractive cross-section to large $1 / \mathrm{M}^{2}$ assuming do/dM ${ }^{2} \sim 1 / \mathrm{M}^{2}$

Loss at low diffractive masses M

	$\sigma[\mathrm{mb}]$	trigger loss $[\mathrm{mb}]$	systematic error after extrapolations [mb]
Non-diffractive inelastic	58	0.06	0.06
Single diffractive	14	3	0.6
Double diffractive	7	0.3	0.1
Double Pomeron	1	0.2	0.02
Total	80	3.6	0.8

Combined Uncertainty in $\sigma_{\text {tot }}$

$$
\sigma_{t o t}=\frac{16 \pi}{1+\rho^{2}} \frac{d N_{e l} /\left.d t\right|_{t=0}}{N_{e l}+N_{\text {inel }}}
$$

$$
\mathcal{L}=\frac{1+\rho^{2}}{16 \pi} \frac{\left(N_{e l}+N_{\text {inel }}\right)^{2}}{d N_{e l} /\left.d t\right|_{t=0}}
$$

- Extrapolation of elastic cross-section to $\mathrm{t}=0$:

$$
\begin{array}{rlr}
\beta^{*}=90 \mathrm{~m} & 1540 \mathrm{~m} \\
& \pm 4 \% & \pm 0.2 \% \\
& \pm 2 \% & \pm 0.1 \%
\end{array}
$$

- Total elastic rate (strongly correlated with extrapolation):
- Total inelastic rate:
(error dominated by Single Diffractive trigger losses)
- Error contribution from ($1+\rho^{2}$)
using full COMPETE error band $\delta \rho / \rho=33 \%$
\rightarrow Total uncertainty in $\sigma_{\text {tot }}$ including correlations in the error propagation:

$$
\beta^{*}=90 \mathrm{~m}: \pm 5 \%, \quad \beta^{*}=1540 \mathrm{~m}: \pm(1 \div 2) \% .
$$

Slightly worse in $\mathcal{L}(\sim$ total rate squared!) : $\pm 7 \%(\pm 2 \%)$.

Precise Measurement with $\beta^{*}=1540 \mathrm{~m}$ requires:

- . improved knowledge of optical functions
- alignment precision $<50 \mu \mathrm{~m}$

Early Physics with TOTEM $\left(E_{p}=5 \mathrm{TeV} \& \beta^{*}=3 \mathrm{~m}\right)$

RP220 Acceptance:

- elastic scattering $1<|t|<12 \mathrm{GeV}^{2}$
- diffractive protons $0.02<\xi<0.18$
- resolution: $\sigma(\xi)<\sim 6 \cdot 10^{-3}$
very similar to $E_{p}=7 \mathrm{TeV}$!!

Very first measurements with low β * optics

- Using horizontal RPS

- dos ${ }^{\text {SD/dM (SD events with high mass) }}$
$-0.02<\xi<0.18 \Rightarrow 2<\mathrm{M}<6 \mathrm{TeV}$
- $\sigma(M) / M=2-4 \%$

SD

- do ${ }^{\text {DPE/dM (DPE high mass) }}$
- $250<\mathrm{M}<2500 \mathrm{GeV}$
- $\sigma(M) / M=2.1-3.5 \%$

DPE

Rapidity Gap $-\ln \xi_{1}$	$M_{x}{ }^{2}=\xi_{1} \xi_{2} s$	Rapidity Gap

- Using vertical RPs: high t elastic scattering
$-\mathrm{do}^{\text {Elastic } / \mathrm{dt}} \quad 1<|\mathrm{t}|<12 \mathrm{GeV}^{2} \quad \sigma(\mathrm{t}) \approx 0.2 \cdot \sqrt{ }|\mathrm{t}|$

T1/T2: charged multiplicity

Measurement of charged multiplicity for different processes

 Important also for cosmic ray physics (e.g. for MC generator validation)Identification and measurement of rapidity gaps

Acceptance:
$3.1<\eta<4.7$ (T1) \& $5.3<\eta<6.5$ (T2)
$\sigma(\eta)=0.04-0.2$, no mom. \& ϕ info

Conclusions

\$ TOTEM ready for LHC restart
will run under all beam conditions
will need high β^{*} optics \rightarrow will require $\beta^{*}=90 \mathrm{~m}$ optics for early running
XEarly measurements
\Rightarrow low β :

- study of SD and DPE at high masses
- elastic scattering at high |t|
- measurement of forward charged multiplicity
$\beta^{*}=90 \mathrm{~m}$:
- first measurement of $\sigma_{\text {tot }}$ (and \mathscr{L}) with a precision of $\sim 5 \%(\sim 7 \%)$
- elastic scattering in a wide $|t|$ range
- inclusive studies of diffractive processes
- measurement of forward charged multiplicity
\times Later

2. Measurement of total pp cross-section (and \mathscr{L}) with a precision of $1 \div 2 \%(2 \%)$ with $\beta^{*}=1540 \mathrm{~m}$ (dedicated short runs).
3. Measurement of elastic scattering in the range $10^{-3}<|\mathrm{t}|<10 \mathrm{GeV}^{2}$

P An extensive CMS/TOTEM Physics Programme

The TOTEM experiment at LHC

Backup Slides

Si CTS edgeless detectors

Proton detection down to $10 \sigma_{\text {beam }, \perp}+d\left(\sigma_{\text {beam }, \perp}=80-600 \mu \mathrm{~m}\right)$
To minimize d : detectors with highly reduced inactive edge ("edgeless")

Optics and Beam Parameters

Parameters			
Crossing angle	$\beta^{*}=2 \mathrm{~m}$ (standard step in LHC start-up)	$\beta^{*}=90 \mathrm{~m}$ (early TOTEM optics)	$\beta^{*}=1540 \mathrm{~m}$ (final TOTEM optics)
N of bunches	0.0	0.0	0.0
N of part./bunch	156	156	43
Emittance $\varepsilon_{\mathrm{n}}[\mu \mathrm{m} \cdot \mathrm{rad}]$	$(4-9) \times 10^{10}$	$(4-9) \times 10^{10}$	3×10^{10}
$10 \sigma_{\mathrm{y}}$ beam width at RP220 [mm]	3.75	3.75	1
Luminosity $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	$(2-11) \times 10^{31}$	$(5-25) \times 10^{29}$	1.6×10^{28}

$\beta^{*}=90 \mathrm{~m}$ ideal for early running:

- fits well into the LHC start-up running scenario;
- uses standard injection $\left(\beta^{*}=11 \mathrm{~m}\right) \rightarrow$ easier to commission than 1540 m optics
- wide beam \rightarrow ideal for training the RP operation (less sensitive to alignment)
$\beta^{*}=90 \mathrm{~m}$ optics proposal submitted to the LHCC and well received.

Level-1 Trigger Schemes

Extrapolation to the Optical Point $(t=0)$ at $\beta^{*}=90 \mathrm{~m}$

(extrapol. - model) / model in do/dt lten

Statistical extrapolation uncertainty

Common bias due to beam divergence :-2 \% (angular spread flattens $\mathrm{dN} / \mathrm{dt}$ distribution) Spread between most of the models: $\pm 1 \%$
Systematic error due to uncertainty of optical functions: $\pm 3 \%$
Different parameterizations for extrapolation tested (e.g. const. B , linear continuation of $\mathrm{B}(\mathrm{t})$): negligible impact

Diffractive scattering is a unique laboratory of confinement \& QCD:

A hard scale + protons which remain intact in the scattering process Forward protons observed, independent of their momentum losses

Valence quarks in a bag with $r \sim 0.2 \mathrm{fm}$

Rapidity gap survival \& "underlying" event structures are intimately connected with a geometrical view of the scattering - eikonal approach!

Diffractive Scattering large b \&mall b Cross sections are large Measure $\sigma(\mathrm{M}, \xi, \mathrm{t})$

29 mb ?

10 mb ? -impact parameter picture.

Hard processes: Jet momenta correlated with the initial parton momenta.

Possibilities of ρ measurement

Try to reach the Coulomb region and measure interference:

- move the detectors closer to the beam than $10 \sigma+0.5 \mathrm{~mm}$
- run at lower energy @ $\sqrt{ } \mathrm{s}<8 \mathrm{TeV}$

Optical Functions ($\beta^{*}=90 \mathrm{~m}$)

CNY Idea: L_{y} large $\quad L_{x}=0$
 $\mathrm{x}=L_{\mathrm{x}} \theta_{\mathrm{x}}^{*}+\mathrm{v}_{\mathrm{x}} \mathrm{x}^{*}+\mathrm{D} \xi$ $y=L_{y} \theta_{y}{ }^{*}+y_{y} y^{*}$
$\xi=\Delta p / p$
($\mathrm{x}^{*}, \mathrm{y}^{*}$): vertex position at IP $\left(\theta_{\mathrm{x}}^{*}, \theta_{\mathrm{y}}^{*}\right)$: emission angle at IP
$\mathrm{t}=\mathrm{t}_{\mathrm{x}}+\mathrm{t}_{\mathrm{y}}$
$\mathrm{t}_{\mathrm{i}} \sim-\left(\mathrm{p} \theta_{\mathrm{i}}^{*}\right)^{2}$

Optical functions:

- L (effective length)
- v (magnification)
defined by β (betatron function) and μ (phase advance);
- D (machine dispersion)
\Rightarrow describe the explicit path of particles through the magnetic elements as a function of the particle parameters at IP

Forward Physics: VHE Cosmic Ray Connection

Machine Induced Background

T1/T2 Detectors:

beam-gas interactions: prel. ext. $\sim 14 \mathrm{~Hz}$ per beam;
$\sim 19 \mathrm{KHz}$ for MB events $\left(\sigma \mathrm{MB}=80 \mathrm{mb}, \mathrm{L}=2.4 \cdot 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$
\Rightarrow reduced by vertex reconstruction muon halo (expected to be very small, not yet quantified)

Roman Pot Detectors:

beam halo (protons out of design orbit): ext. ($\beta \%=1540 \mathrm{~m}$) $\sim 12 \cdot 10^{-4} / \mathrm{bunch}$ \Rightarrow reduced by requiring coincidence between RP arms
beam-gas interactions: ext. $(\beta \%=1540 \mathrm{~m}) \sim 3 \cdot 10^{-4} /$ bunch after cuts
\Rightarrow reduced with cuts on track angles and multiplicities
p-p collision (at IP) background: ext $(\beta *=1540 \mathrm{~m}) \sim(0.4 \div 2) \cdot 10^{-4} /$ bunch after cuts
\Rightarrow reduced with cuts on track angles and hit multiplicities
Tot. elast. evts $\sim 3 \mathrm{KHz}\left(\mathrm{L}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$; prel. expt. $\mathrm{S} / \mathrm{B} \sim(0.6 \div 0.7) \cdot 10^{3}$

Expected Radiation Dose in CMS/TOTEM

