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Issues Addressed

* What is simulation?

» Are particle interactions properly simulated?

* How can we use early data to improve simulation?
* Are the detector descriptions accurate?

+ Overlaid events
- Cosmics
- Cavern background
- Pileup events

- Fast Simulations

* Why am I mostly talking about Atlas?
- Default unless CMS is explicitly stated
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What is simulation?

Simulation is the means to take generated
physics events and provide output as close as
possible to the detector output during data-
taking

Typically done in two stages (both using Geant4)

+ simulate energy deposited from particle
interactions with detector material

- simulate the detector response to deposited
energy (digitization)
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What is simulation?

Atlas Simulation Options

- Full Geant4 simulation
- 1990s per ttbar event, full detail
- ~80% of time spent simulating particles in calorimeter
- ~75% of time spent simulating EM particles
Fast Geant4
- Frozen showers replace low energy EM particles in calorimeter
- 757s per ttbar event
Fast calorimeter simulation (Atlfast-2A)
- Parameterised shower for each particle hitting the calorimeter face
- 101s per ttbar event
Fast calorimeter + inner detector simulation (Atlfast-2F)
- Track hit distribution parameterised
- 7.41s per ttbar event
Fully parameterized fast simulation (Atlfast-1)
- Particle kinematics modelled, most detector effects not modelled
- 0.097s per ttbar event (includes reco)

Timing measurements from upcoming publication "The ATLAS Monte Carlo Project”

Simon Dean Standard Model with early LHC data workshop 31/03/2009




& Simulation and Early LHC Data 5
Introduction to Ph»tsics Lists
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How can we use early data to improve
simulation?

» Early non-LHC data is already being used to tune
simulation
- 2004 and 2006 test beams
» This work will continue into LHC data-taking
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How can we use early data to improve

simulation?
* CMS results - lateral and longitudinal

profile of pion shower
- Shows good agreement

CMS HCAL group
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How can we use early data to improve
simulation?
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How can we use early data to improve

simulation?
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Margar Simonyan, LAPP
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How can we use early data to improve
simulation?
* Pion resolution G5
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How can we use early data to improve
simulation?

» Pion longitudinal shower profile
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How can we use early data to improve

simulation?

* Pion lateral spread
in tile calorimeter

- Bertini cascade & ool R
makes shower wider, 3 | Lo
which is in better i ‘
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but data are still a I "
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How can we use early data to improve
simulation?

ATLAS and CMS have both taken the decision to use
QGSP_BERT as default physics lists for simulation of
first collision data.

- Great for consistency!

10 TeV data-taking will

- tell us about more specific detector problems
- allow better calibration using resonances, eg.. Drell-Yan
Z(—ee, uu) for ECAL calibration / Muon system alignment
Possible further improvements
- Fritiof model testing, may improve on QGSP..
- Birk's Law
- saturation of response in LAr for particles with large dE/dx
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Are the detector descriptions accurate?

Example: pixel sensor thickness

Amount of charge deposited depends on the amount

of silicon traversed

- Assumed 250 um in
simulation

- Thickness as measured in
the lab shown

Eventually, with higher

track statistics, one could

try relating the MPV per

module back to the data

to determine corrections
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Heather Gray, CIT,
Columbia University
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Overlaid Events

It is possible to "overlay" events at the digitization
stage
- add hits from additional events into simulated physics events

Cosmics

For correct angular and energy dependence of the
simulated cosmics, need to simulate propagation
through the rock above ATLAS (because of the large
effect of the shafts)

Also need to simulate over a large area on the ground
above ATLAS

- This means that most generated cosmic rays completely miss
the detector and are not useful

- These are filtered to improve performance
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Overlaid Events - Cosmics

Maria Moreno Llacer (IFIC-Valencia)
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Overlaid Events - Cavern Background

* Neutrons fly around the ATLAS cavern for a few
seconds until they are thermalised, thus pr'oducing a
kind of permanent neutron-photon "bath" resulting in
a steady rate of Compton electron and spallation
protons, which are observed in the muon system.

- Simulation

- parellel geometries in G4.9.1 allow the G4 implementation of
pileup events

- done by adding "scoring volumes" to typical physics event
- records and removes neutrons and photons

- can be used as cavern background events

- so far, GEANT3/GCALOR used for these events
(inconsistent)

- will allow for far higher-statistics cavern background
samples than we have so far

- considerable testing and validation still needed
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Overlaid Events - Pileup

» Currently overlaying events in order to
simulate pileup

» Study shown here overlays MC (minimum bias)
and MC (cosmics)

- These mixed

Yingchun Zhu, Wisconsin
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Pileup and Cavern Background

* Important to obtain samples of pileup + cavern
background events in early LHC data because
- we can use these to tune our simulations

- we can overlay these directly on top of simulated
hard events for better realism
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Fast Simulations

- Fast Calorimeter Simulation is at the heart of
Atlfast-2

- Tuning

Evelyn Schmidt, Freiburg

- Reweighting of =
shower E B [
parameterisation| |
based on gapr N i
comparison with Nil= 7§
full-sim for now g }

- Proof of L e )
principle for F1

tuning in data
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Fast Simulation

S

21

* Hadronic Endcap sector problem (electronic

readout) modelled in Atlfast-1
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Fast Simulations

| Kt Jet Reconstruction for HEC with 70% Efficiency Kt Jet Eta for HEC with Full, 70% and 40% Efficiency
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