

Gaps between jets at the LHC

Simone Marzani University of Manchester SM discoveries with early LHC data UCL 30th March 2009

In collaboration with Jeff Forshaw and James Keates

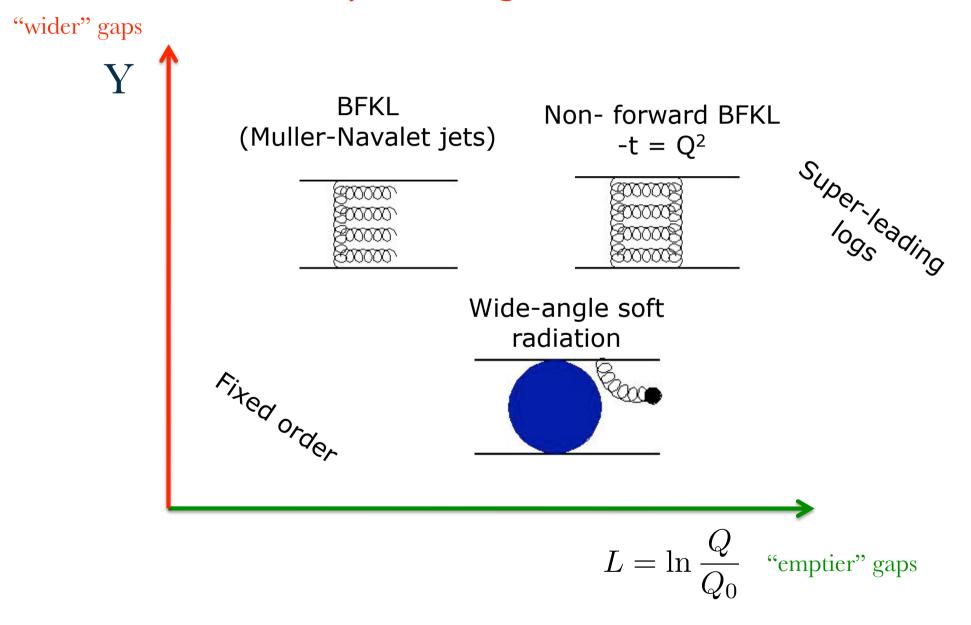
Outline

- Importance of rapidity gaps for LHC physics
- Soft gluons
- Discovery of super-leading logarithms
- Some phenomenological studies
- Conclusions and Outlook

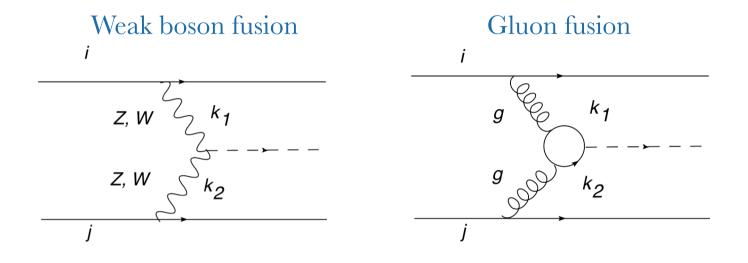
The observable

Production of two jets with

- transverse momentum Q
- rapidity separation Y


Y Separation 1

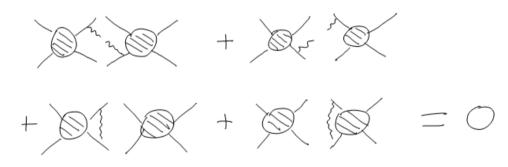
jet radius R


• Emission with $k_T > Q_0$

forbidden in the inter-jet region

Plenty of QCD effects

Higgs +2 jets


- Different QCD radiation in the inter-jet region
- To enhance the WBF channel, one can make a veto Q_0 on additional radiation between the tagged jets
- QCD radiation as in dijet production

Forshaw and Sjödahl

• Important in order to extract the VVH coupling

Soft gluons in QCD

- What happens if we dress a hard scattering with soft gluons?
- Sufficiently inclusive observables are not affected: real and virtual cancel via Bloch-Nordsieck theorem

- Soft gluon corrections are important if the real radiation is constrained into a small region of phase-space
- In such cases BN fails and miscancellation between real and virtual induces large logarithms

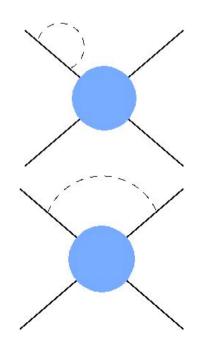
$$-\alpha_s \int_0^{Q_0} \frac{dE}{E}\Big|_{\text{real}} + \alpha_s \int_0^Q \frac{dE}{E}\Big|_{\text{virtual}} = \alpha_s \int_{Q_0}^Q \frac{dE}{E}\Big|_{\text{virtual}} = \alpha_s \ln \frac{Q}{Q_0}$$

Soft gluons in gaps between jets

- Naive application of BN:
 - real and virtual contributions cancel everywhere except within the gap region for $k_T > Q_0$
 - One only needs to consider virtual corrections with $Q_0 < k_T < Q$
- Leading logs (LL) are resummed by iterating the oneloop result:

$$\mathcal{M} = e^{-\alpha_s L\Gamma} \mathcal{M}_0$$
 soft anomalous dimension

Oderda and Sterman


Born

Colour evolution (I)

• The anomalous dimension can be written as

$$\Gamma = \frac{1}{2}YT_t^2 + i\pi T_1 \cdot T_2 + \frac{1}{4}\rho(T_3^2 + T_4^2)$$

- Forshaw Kyrieleis Seymour
- T_i is the colour charge of parton i
- T_i^2 is a Casimir
- $T_t^2 = (T_1^2 + T_3^2 + 2T_1 \cdot T_3)$ is the colour exchange in the *t*-channel

Colour evolution (II)

• The $i\pi$ term is due to Coulomb gluon exchange

$$i\pi T_1 \cdot T_2 \mathcal{M} = \bigcirc \mathcal{M}$$

• It doesn't play any role for processes with less than 4 coloured particles (e.g. DIS or DY)

$$T_1 + T_2 + T_3 = 0 \Longrightarrow T_1 \cdot T_2 = \frac{1}{2} \left(T_3^2 - T_1^2 - T_2^2 \right)$$

leading to an unimportant overall phase

• Coulomb gluon contributions are *not* implemented in parton showers

Non-global effects

- However this naive approach completely ignores a whole tower of LL
- Virtual contributions are not the whole story because real emissions out of the gap are forbidden to remit back into the gap
- The full LL result is obtained by dressing the $2 \rightarrow n$ (i.e. *n*-2 out of gap gluons) scattering with virtual gluons (and not just $2 \rightarrow 2$)
- Resummation can be done (so far) only in the large \mathcal{N}_c limit

One gluon outside the gap

• As a first step we compute the tower of logs coming from only one out-of-gap gluon:

$$\sigma^{(1)} = -\frac{2\alpha_s}{\pi} \int_{Q_0}^Q \frac{dk_T}{k_T} \int_{\text{out}} (\Omega_R + \Omega_V)$$

Real contribution:

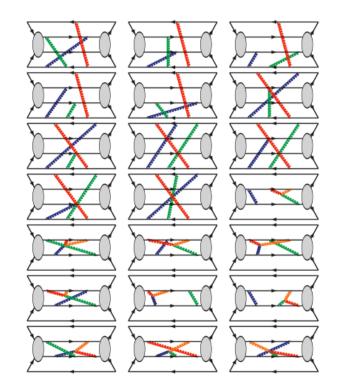
- \bullet real emission vertex D^{μ}
- 5 parton anomalous dimension Λ

Sjödahl

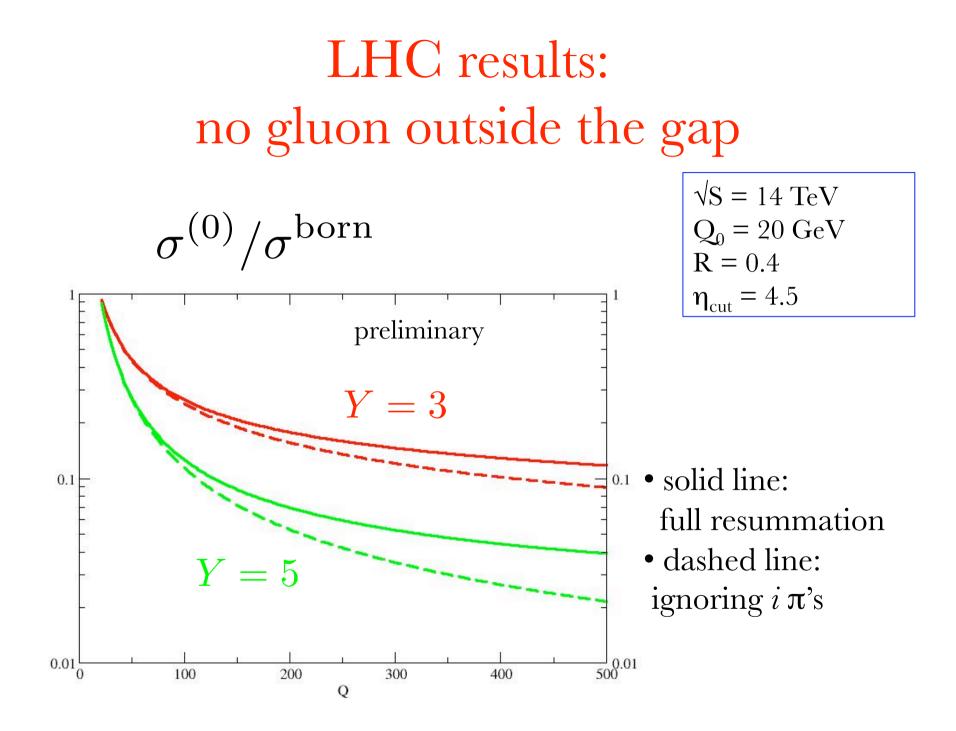
Virtual contribution:

- virtual eikonal emission γ
- 4-parton anomalous dimension Γ

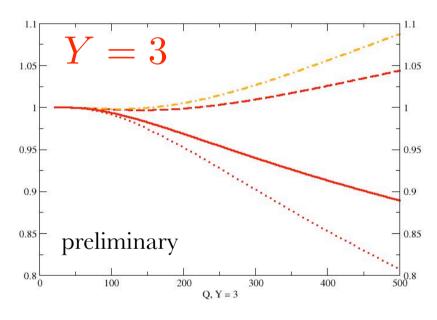
A big surprise

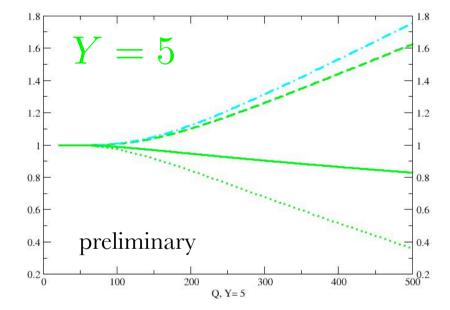

Conventional wisdom ("plus prescription" of DGLAP) when the out of gap gluon becomes collinear with one of the external partons the real and virtual contributions should cancel

- It works when the out-of-gap gluon is collinear to one of the outgoing partons
- But it fails for initial state collinear emission
- Cancellation *does* occur for up to 3rd order relative to the Born, but fails at 4th order
- The problem is entirely due to the emission of Coulomb gluons
- As result we are left with super-leading logarithms (SLL)


$$\sigma^{(1)} \sim -\alpha_s^4 L^5 \pi^2 + \dots$$

Fixed order calculation


- Gluons are added in all possible ways to trace diagrams and colour factors calculated using COLOUR
- Diagrams are then cut in all ways consistent with strong ordering
- At fourth order there are 10,529 diagrams and 1,746,272 after cutting.
- SLL terms are confirmed at fourth order and computed for the first time at 5th order



Keates and Seymour

Phenomenology of SLL $(\sigma^{(0)} + \sigma^{(1)} + \sigma^{(2)})/\sigma^{(0)}$

- dotted, one gluon, α_s^4
- dashed: one gluon, up to α_s^{5}
- solid: one gluon resummed
- dash-dotted: one+two gluons, up to α_s^{5} (only fixed order)
- fixed order expansion unstable
- $\sigma^{(2)}$ less important than $\sigma^{(1)}$
- Y = 3, ~ 5 %
- Y = 5, ~10 %
- no effect for Higgs, unless $Q_0 < 10 \text{ GeV}$

Conclusions

- Early data: there is plenty of interesting QCD physics in gaps between jets
- More data: Higgs coupling to weak bosons
- Coulomb gluons play an important role
- Dijet cross-section could be sensitive to SLL at large Y and L (e.g. 300 GeV and Y = 5, $\sim 15\%$)
- There is an interesting link between non-global logs and BK equation Banfi, Marchesini and Smye

Banfi, Marchesini and Smye Avsar, Hatta and Matsuo

Outlook (pheno)

Collect all the possible information and build up the best theory prediction for LHC:

- matching with NLO
- complete one gluon outside the gap
- non-global (large \mathcal{N}_c)
- jet algorithm dependence
- BFKL resummation

Outlook (theory)

- Understanding the origin of SLL
- k_t ordering ?
- interactions with the remnants ?