Chris White, Nikhef

Higgs Boson Production with Multiple Hard Jets

In collaboration with J. Andersen, V. Del-Duca

SMLHC Workshop - UCL

Overview

How can we reliably estimate multijet final states?

- Traditional methods for calculating jets.
- Higgs physics at the LHC.
- ▶ New technique for calculating Higgs + multijets.
- Example results and outlook.

- Events at the LHC will be dominated by multijet final states.
- These arise from QCD radiation.
- In some processes, measurable properties are sensitive to this radiation. Number of jets? Hard or soft?
- Need to be able to calculate Feynman diagrams with lots of quark and gluon legs.
- Let's review existing methods...

Fixed Order Perturbation Theory

Why not just calculate all the Feynman diagrams?

- In principle, can write down Feynman diagrams at any order of α_S and calculate them.
- Real and virtual contributions are both singular, but singularities cancel when added together.
- However, calculational complexity increases stupendously with:
 - 1. Increasing order in the coupling constant (number of diagrams grows factorially).
 - 2. Number of external parton legs (number of scales in the problem increases).
- Only very low orders in α_S are known for most processes...

Parton Shower Techniques

- Can use parton showers to simulate extra radiation.
- Based on a known factorisation of matrix elements in the soft and collinear limit.
- Shower is applied to each external leg.
- Get final states with many particles.
- Can couple to hadronisation / detector simulations etc.
- Accurate only if jets are soft can increase accuracy by including higher order tree level matrix elements.

Summary of Methods for Final State Jets Exact

- Use standard perturbation theory at LO, NLO...
- Best thing to do, but very difficult.
- Limited to small numbers of final state partons and low orders in α_S.

Approximate

- Combine tree level matrix elements (e.g. from MADGRAPH) with parton showers.
- Get more realistic final states.
- However, only soft / collinear enhanced radiation included (low p_t).
- We know that parton showers are insufficient in some processes.
- \rightarrow Can we instead estimate hard radiation in the final state?

New method

- Will now introduce our new technique.
- Aim: estimate hard jets in the matrix element.
- Will start with a known factorisation formula for hard jet emission (FKL).
- Can be modified to include known features of the perturbation expansion.
- ▶ Will apply this to Higgs boson production via GGF.
- Can validate approximate matrix elements by comparing to known results at low orders in α_S.

FKL Factorisation - Overview

- In a particular kinematic limit (MRK), particular Feynman diagrams dominate the matrix element (Fadin, Kuraev & Lipatov).
- These correspond to the process:

$$\alpha + \beta \to \alpha + \beta + ng,$$

where α , $\beta \in \{q, \overline{q}, g\}$.

- The sum of such diagrams gives a factorised expression for the matrix element in terms of:
 - 1. Impact factors for the incoming jets and additional particles (e.g. Higgs, *W* bosons).
 - 2. Modified emission vertices for the outgoing gluons.
 - 3. Propagators for the (virtual) exchanged gluons.
 - 4. Leading virtual corrections.
- Let's look at this for Higgs production...

FKL factorisation

 P_{b} q_1 000000000 P1 \boldsymbol{q}_i 00000000 Pi q_{i+1} p_H q_h 000000000 Pn q_{n+1} p_a

► The FKL formula:

$$i\mathcal{M}_{\mu_{1}...\mu_{n}}^{ab \to abj_{1}...j_{n}} = 2s(g_{s})^{n+2}$$

$$\times \left(\prod_{i=1}^{n_{1}+1} \frac{1}{q_{i}^{2}} \exp[\hat{\alpha}(q_{i}^{2})(y_{i-1} - y_{i})]\right)$$

$$\times \left(\prod_{i=1}^{n_{1}} C_{\mu_{i}}(q_{i-1}, q_{i})\right) C_{H}(q_{n_{1}+1}, q_{n_{1}+2})$$

$$\times \left(\prod_{i=n_{1}+2}^{n+1} \frac{1}{q_{i}^{2}} \exp[\hat{\alpha}(q_{i}^{2})(y_{i-1} - y_{i})]\right)$$

$$\times \left(\prod_{i=n_{1}+2}^{n} C_{\mu_{i}}(q_{i-1}, q_{i})\right)$$

FKL - Comments

Formally applies only in a certain high energy limit (MRK):

 $y_1 \ll y_2 \ll \ldots y_n; \quad k_{1\perp} \sim k_{2\perp} \sim \ldots k_{n\perp}.$

- Jets strongly ordered in rapidity, but not in transverse momentum (so "hard").
- Resums (includes at each order in α_S) leading logarithms in \hat{s}/t .
- In the traditional implementation of this formula, one replaces the virtual gluon 4 -momenta:

$$q_i
ightarrow q_{i\perp}$$

and ignores any contributions which are subleading in $\ln(\hat{s}/t)$.

- Can also ignore 4-momentum conservation at LL order.
- This is known as BFKL after Balitski, Fadin, Kuraev & Lipatov.
- Will see later how this performs for Higgs production description is not good at LHC.

FKL - Comments

Advantages

- Factorised form can be applied at any order in α_s.
- Gives exclusive multijet final states with hard jets.
- Some virtual corrections built in - collinear singularities cancelled.

Disadvantages

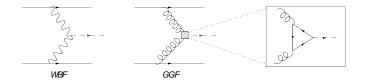
- Only works in a certain kinematic limit (MRK)
- Does not approximate matrix element well outside this limit.
- MRK kinematics not a good approximation for the Tevatron or LHC.

 Solution: Use FKL as a starting point. Modify to build in extra features.

Improved Description

- We construct approximate matrix elements from the FKL formula with the following prescription:
- 1. Impose 4-momentum conservation at emission vertices.
- 2. Use full dependence on virtual momenta instead of transverse components.
- 3. Impose gauge invariance of Lipatov vertex $(k \cdot C=0)$ over all of phase space.
- ► These modifications significantly affect the FKL description.

Improved Description - Comments


- Energy-momentum conservation is an obvious piece of physics, and should be included.
- Has been considered before, but makes numerical implementation mandatory.
- Use of full 4-momenta corresponds to including known singularity structure of amplitude, rather than shifting poles outside the MRK limit.
- ► Gauge invariance leads to local positivity of the Lipatov vertex (-C.C > 0), thus removes spurious negative contributions due to gauge-violating terms.
- These corrections are not just NLL...

Improved Description - More Comments

- Conservation of energy implements subleading corrections to FKL, but also phase space of emitted gluons.
- Thus goes beyond any logarithmic order in \hat{s}/t .
- Likewise, so does the use of full virtual momenta.
- Resulting matrix elements are much closer to fixed order perturbation theory than to the original FKL description.
- Will validate approximation by looking at a particular process (Higgs boson production via gluon-gluon fusion).
- Let's briefly review some aspects of Higgs physics at the LHC...

Higgs Production via GGF

Higgs Production at the LHC

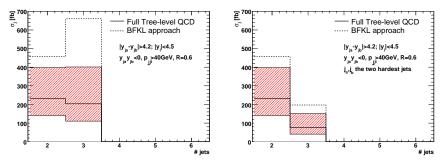
- Two main production modes both can be used as a discovery channel.
- ► WBF measure coupling of *h* to vector bosons. Is it the SM Higgs?
- ► GGF measure nature of fermion coupling. CP even or odd?
- Can use cuts to separate processes.
- \Rightarrow Need a detailed understanding of both production modes.

WBF & GGF - Differences

- No exchange of colour in WBF QCD radiation limited mainly to incoming partons.
- Colour octet exchange in GGF get lots of QCD radiation in central rapidity region.

- Understanding of jet pattern in GGF crucial for:
 - 1. Measurement of coupling of h to fermions.
 - 2. Efficient background reduction of GGF w.r.t WBF.

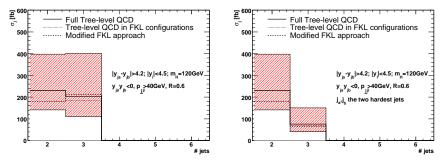
Implementation


- Have calculated GGF matrix elements using the modified FKL description.
- Factorised form can be efficiently implemented in a numerical code.
- ▶ We produced a Monte Carlo implementation of our technique.
- Generates events (with any number of final state partons) weighted by the approximated matrix elements.
- To investigate how good the new approximate matrix elements are, can compare to exact perturbation theory.
- I.e. expand approximate results order by order in α_S, and compare with known tree level results for *hjj* and *hjjj* (MADGRAPH).

Results

- Will show results for WBF cuts, designed to reduce the GGF process.
- This has been widely studied in the literature with other techniques (Zeppenfeld et. al.).

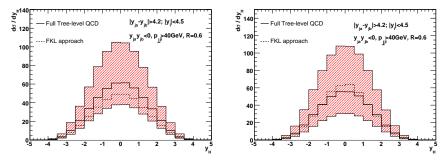
- But results are representative of those obtained for other cuts.
- First show traditional BFKL results, before the new approach...


BFKL comparison

 The BFKL description with 4-momentum conservation is shown.

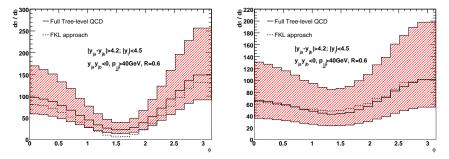
Does not work well.

Improved description

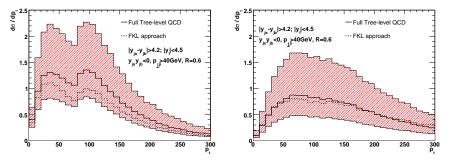


Approximation is well within scale variation!

Comments

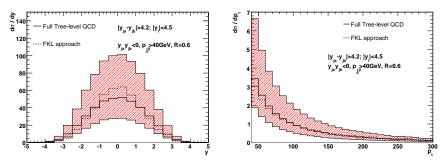

- ► Total cross-sections are well estimated by the new technique.
- However, this is only part of the story.
- Can also check differential distributions at fixed order...

Rapidity of Higgs boson


Shown for hjj (left) and hjjj (right).

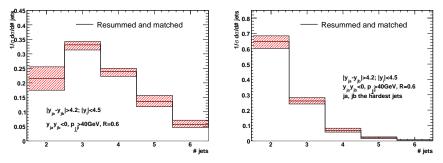
Azimuthal angle between tagging jets

Intimately related to CP nature of Higgs boson.


Transverse momentum of Higgs boson

Shape change due to azimuthal correlation...

Higgs Production via GGF


Properties of third parton in hjjj

Approximate matrix elements are working well.

 Can now turn on full resummation i.e. look at effect of multiple hard jets.

Number of hard jets

Tagging on hardest jets reduces impact of further radiation.

Still significant number of events with many hard partons.

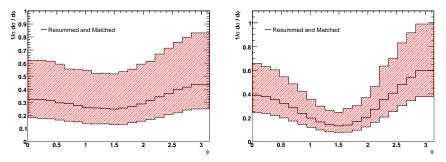
Azimuthal correlation

- We have already seen that the azimuthal angle distirubiton has a pronounced shape at fixed order.
- ► Related to CP nature of Higgs-fermion coupling.
- Whether or not it can be measured depends strongly on the extent of QCD radiation.
- Introduce (Zeppenfeld et. al.):

$$A_{\phi} = \frac{\sigma(\phi_{j_{a}j_{b}} < \pi/4) - \sigma(\pi/4 < \phi_{j_{a}j_{b}} < 3\pi/4) + \sigma(\phi_{j_{a}j_{b}} > 3\pi/4)}{\sigma(\phi_{j_{a}j_{b}} < \pi/4) + \sigma(\pi/4 < \phi_{j_{a}j_{b}} < 3\pi/4) + \sigma(\phi_{j_{a}j_{b}} > 3\pi/4)}$$

- ► |A_φ = 0| for completely uncorrelated jets, and 1 for completely correlated.
- $A_{\phi} \sim 0$ for WBF.
- In GGF, A_φ > 0 for CP even (scalar) Higgs and < 0 for CP odd (pseudoscalar).</p>

Higgs Production via GGF


 A_{ϕ} values

Inclusive cuts	A_{ϕ}	Hardest cuts	A_{ϕ}
LO 2-jet	0.456	LO 2-jet	0.456
Resummed, $= 2$ -jet	0.444	Resummed, $= 2$ -jet	0.436
LO 3-jet	0.203	LO 3-jet	0.374
Resummed	0.123	Resummed	0.372

- Cuts can efficiently be used to increase the observed correlation.
- E.g. jet vetoes, tagging jet choice.

Higgs Production via GGF

Azimuthal correlation

Distributions confirm the numbers on the previous slide...

Conclusions

- Have devised a new technique for approximating matrix elements with multiple final state hard partons.
- Useful for estimating final state jet topology, rather than the jet substructure which is better estimated by a parton shower.
- Uses FKL factorisation as a starting point, with modifications to include known features of perturbation theory.
- So far applied to Higgs production.
- Code available for simulating Higgs + multijet events.

Outlook

- More detailed Higgs phenomenology in progress.
- Can extend technique to other processes (e.g. W / Z + jets, pure multijet).
- Underlying approximation (FKL factorisation) can be systematically improved.
- Interfacing to parton showers for a more complete description of final states.