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STANDARD MODEL

There are W/Z ‘calibration’ measurememts: Z/W ratio is the best

W and Z cross-sections should first test our understanding and then
contribute to our knowledge at greater precision

W asymmetry should bring something new
Beware that NEW low-x physics could compromise this.

BEYOND STANDARD MODEL

There are discovery channels — high ET jets- which could be obscured by
PDF uncertainties

But Jet Energy Scale Uncertainties could be more of a problem
Be smart - look at ratios W+n-jets/Z+n-jets



The Standard Model is not as well known as you might think
In the QCD sector the PDFs limit our

knowledge - transport PDFs to hadron-hadron

cross-sections using QCD factorization

theorem for short-distance inclusive processes
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where X=W, Z, D-Y, H, high-E jets, prompt-y

And o is known

» to some fixed order in pQCD and EW
® in some leading logarithm approximation
(LL, NLL, ...) to all orders via resummation
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The central rapidity range for W/Z
production AT LHC is at low-x

(6 X104 to 6 x102) at 14 TeV

(8.5 X104 to 8.5 x10-2) at 10 TeV



The general trend of PDF uncertainties is that

The u quark is much better known than the d A i T
quark

The valence quarks are much better known N

than the gluon/sea at high-x

The valence quarks are poorly known at

small-x but they are not important for (most)
physics in this region (except W asymmetry) - T
The sea and the gluon are reasonably well

known at low-x- but there is always room for Ot

improvement for precision measurements
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The sea is poorly known at high-x, but the
valence quarks are more important in this
region

Fractional Difference

The gluon is poorly known at high-x

And it can still be very important for physics
e.g.— high ET jet xsecn
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For Q2=10000 the gluon is the dominant
parton until VERY high-x



WHAT DO WE KNOW WELL?

WI/Z production have been considered as
good standard candle processes with small

theoretical uncertainty.

PDF uncertainty is THE dominant contribution
and most PDF groups quote (68% uncertainties)
<~3% (note HERAPDF ~1%)

Re do at 10 TeV
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NNLO corrections small ~ few%
NNLO residual scale dependence < 1%

useful as luminosity monitor?

PDF set Ow+ Bw_ Ow. Bw_w o,B,
(nb) (nb) (nb) BUT the central values can

ZEUS-2005 8.51+0.30 6.08+0.20 1.36+£0.04 differ by more than some of

) D D D the uncertainty estimates—
MSTWO8 855:0.15 | 6.25:0.12 | 1.38x0.025| uncertainty~5%. Could be
CTEQ66 8.77+0.18 | 6.22+0.14 1.40+0.027
HERAPDF 8.64+0.10 | 6.27+0.11 1.38%0.02 Beware Massless
CTEQS61 8.29+0.22 | 5.90+0.17 1.32+0.030 | heavy quark

treatment

NNPDF1.0 11.8310.26 | 8.41+0.20 1.95+0.04

With massive treatement heavy quarks are more suppressed at low-scale so light-quarks increase to compensate
when fitting same low-scale data. Consequence is larger W/Z cross-sections at high-scale (CTEQ61 to 66)
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WHY DO WE KNOW IT SO WELL? BECAUSE OF HERA.

Look in detail at predictions for W/Z rapidity distributions: Pre- and Post-HERA

W and Z rapidity distributions
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Of course global fits like CTEQ/MSTW include data from BOTH HERA experiments

BUT you can do this in a very ‘smart’ way

Recent development. Combining ZEUS and H1 data sets

Not just statistical improvement. Each experiment can be used to calibrate the other

wFx Y

o

since they have rather different sources of experimental systematics
Before combination the systematic errors are ~3 times the statistical for Q2< 100
After combination systematic errors are < statistical

— very consistent HERA data set can be used as sole input to PDF fits with Ax2=1
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Compare HERAPDF to CTEQ6.5 and MSTWO08 PDFs
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Experimental uncertainties are
becoming so small that model
dependence assumes greater
importance- here add model
errors to HERAPDFO0.1 from
input assumptions to PDF fitting
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Compare HERAPDF to CTEQG6.6 and MSTWO08 for W/Z predictions for 10TeV

W and Z rapidity distributions W and Z rapidity distributions
15 - 15 - - 15 - - 15 3
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The new HERA combined data -:OD 443322110011223344 -:0:0:443322110011223344
reduce the uncertainty in the central Vf —
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CTEQ/MSTW fits | - 68% CL
uncertainty
bands

0.D1 Méﬁﬁ)@é’ﬁmev

== i 1 e



Can we improve our knowledge of PDFs using LHC data itself?

generator level

electron
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We actually measure the decay
lepton spectra

Generate pseudodata at 14TeV
corresponding to 100pb-'- using
CTEQ6.1M MRST2001
PDFs with full uncertainties

At y=0 the total uncertainty is

~ 6% from ZEUS

~ 4% from MRSTO1E

~ 8% from CTEQ6.1

To improve the situation we NEED to be
more accurate than this:~4%

Statistics are no problem there will
be millions of W’s

We need to control the systematic
uncertainty

AMCS + A Tricoli
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Gan we improve the situation with early LHC data? .,

Generate W*/W- data with 4% error using CTEQ®B.1 PDF, pass througf?PATLFAST
detector simulation and fhen include this pseudo?data in the global ZEYS PDF fit
(actually use the decay Iepton spectra) Central valuézof prediction shifts®and uncertainty

is reduced " °
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BEFORE these data are included in AFTER these pseudodata are included
the PDF fit in the PDF fit

Gluon PDF uncertainties are reduced
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Now let’s look at ratios: Z/W rziio is a golden benchmark irieasurement - 10TeV
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ZOOM in on Z/W ratio — there is fantastic agreement between PDF providers

PDF uncertainty from the low-x gluon and flavour symmetric sea cancels out- and
so do luminosity errors BUT there is somewhat more PDF uncertainty than we
thought before 2008 (~1.5% rather than <1% in the central region)

There is uncertainty in the strangeness sector that does not cancel out
between Z and (W* + W-)... it was always there we just didn’t account for it

Z = _uubar + ddbar + ssbar +ccbar +bbar

YES this does translate
W* + W- ~ (udbar + csbhar) + (dubar+scbar) to the Z/lepton ratio
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Further sources of PDF uncertainty from the valence sector are revealed.
And note that when it comes to W asymmetry CTEQ do not have the most
conservative errors at central rapidity - MRST/MSTW do



Dominantly, at LO  Aw= (u dbar — d ubar) Predictions for AW are different in
(u dbar + d ubar) the central region- because
predictions for valence

distributions at small-x are
And ubar ~ dbar ~ gbar at small x different

SoAw~(u-d) = (u,—d,)

(u+d) (u,+d,+2qbar)

Actually this LO approx. is pretty

% Q@=10000Gev? good even quantitatively
ﬁ The difference in valence PDFs you
o8 ] see here does explain the difference
B vstwos oo i ] n A, between MRST and CTEQ
081 - CTEQ65M 68%CL  xu, i

X- range affecting W asymmetry
in the measurable rapidity range

at ATLAS (107e7)




Can we improve our knowledge of PDFs using ATLAS data itself?

We actually measure the decay
lepton spectra

Generate pseudodata at 14TeV

corresponding to 100pb-'- using
__ generator level CTEQ6.1M MRST2004
02 b ST e T PDFs with full uncertainties
0.1 E & T e
0 F & =
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AMCS + A Tricoli



Generate data with 4% error using MRST04 PDF and then include this pseudo-data in
the global ZEUS PDF fit (actually use the lepton asymmetry data)

The PDF uncertainty of the valence distributions is improved by the input of such data
BEFORE including A, AFTER including A,

pseudo-data pseudo-data
Result is improved accuracy of
MRST04pseudodata and change of shape of the

= ZEUVS-S precfictiojg,‘.: o | valence PDFs

ATLAS/CMS LHC asymmetry data can
measure valence distributions at x~0.005



(data-theory)/theory
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These figures show inclusive jet cross-sections compared to predictions in the
form (data - theory)/ theory

Today Tevatron jet data are considered to lie within PDF uncertainties
And the largest uncertainty comes from the uncertainty on the high x gluon



And what consequences might this have?

Such PDF uncertainties in the jet cross sections compromise the LHC potential
for discovery of any new physics which can written as a contact interaction

E.G. Dijet cross section has potential sensitivity to compactification scale of extra
dimensions (M)
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CDF Run-Il jet data compared
to HERAPDFO0.1

Tevatron Jet Cross Sections
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g L K; D=07
2 = HERAPDFO.1 (fastNLO)
% 105 corrected to hadron level
_H_S =
g -
5 w0l
i % < 0.0 (x 109)
_4j
10 ®
= 0.1< Y% <0.7 (x 109
10 '7:: 3
- 0.7< y¥<11
-1077 .
10 - 11< |y <16(x 103
-lSj
10 - 16< |y <21 (x 10°)
j\ L ‘ L Lol L ‘ L Lol L ‘ L L Lol ‘ L L L L ‘ Lol L L ‘ L L L L
0 100 200 300 400 500 600 700
P, '* [Gev/c]
L L
F D& Run Feore=0.7 1 MLO pQCD Fe=H-=P; " usa ]
13 L=070%" F +nor-perturbative corections ) + Systematic '-"'99”3'”-}'*
1 j:— . _
Eﬂ.::— 04
£ [y=04
S T P T ;
B [ s NLOscale uncertainy I —— CTECSE.5M with uncertainties I !
LCRES F-o0 MRsSTZONM  C + f
T R —
1 F ey I kL‘H
E 1 3
°¥ ocmets f16<y=20
2=yl <1,
D.-I'_ P i S e R i e 'F'Tﬁ‘l? |
100 200 300 100 200 300

Note there is now new Tevatron Run-
Il jet data

Has been used in MSTWO08 PDFs

It does not make MUCH difference to
the level of high-x gluon PDF
uncertainty

DO jet data compared to CTEQ6.5
seem to be less hard than Run-I

(CTEQS.5 fitted Run-I)



And will we be able to use LHC data itself to improve the
situation?- study of including ATLAS pseudodata in PDF fit.
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Use data at higher n > 1
and lower pt < 3TeV to
avoid new physics!

Impact of increasing
statistics
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experimental
systematic uncertainty
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experimental correlated
systematic uncertainty

Challenging!

Can we decrease Jet
Energy Scale systematic
to 1%?
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Jet energy scale also a problem in W/Z+jets channel, where SUSY signals
may show up — Jet Energy Scale of 5% gives uncertainties 5-12% on the
W + (1-6) jet cross-sections. This is larger than the PDF uncertainty (3-8%)

Comparison of measured RZ_J,es with prediction (any lepton signal)
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However BSM signals should be more  _

obvious in the R=(W+n jet) / (Z+n jet) ratio The jet energy scale is less of a

. problem in the ratio
lllustrated is MSugra SU(4) compared to

Standard Model for 200pb-' of data in the JES of 5% gives < 5%

W/Z +2 jets channel uncertainty on the ratio —very
much less than the statistical
error

H Beauchemin



BEWARE of different sort of ‘new What if low-x behaves very differently?
physics’

LHC is a low-x machine (at least for the early years of running) Is NLO (or even
NNLO) DGLAP good enough for x < 10 2. The QCD formalism may need
extending at small-x. What is SAFE x?

*BFKL In(1/x) resummation would change the deduced shape of the gluon

e MRSTO03 PDFs
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But the TOY PDFs are unlikely to be realistic - a better way could be to look at pt
spectra for W and Z production

Lack of pt ordering at low-x is a further s b/
consequence BFKL resummation AND most 010 b/
non-linear treatments. This would affect the pt
spectra for W and Z production at the LHC
(See hep-ph/0508215)

dow'dy, [nhiGeV)

And if any of this is true the W/Z cross-sections
are very different - cannot be used as a
luminosity monitor until we thoroughly understand
low-Xx physics

Conventional

Unconventional

PDF set Ow+ BW—>IV Oy BW—»Iv g, Bz—»II
(nb) (nb) (nb)

MSTWO0S8 8.55+0.15 | 6.25+0.12 1.38+£0.025

MRSTO03 6.88 5.23 1.18




Summary

STANDARD MODEL

There are W/Z standard candle measurememts: Z/W ratio is the best

W and Z cross-sections should first test our understanding- then contribute
to our knowledge at greater precision

W asymmetry should bring something new
Beware that NEW low-x physics could compromise this.

BEYOND STANDARD MODEL

There are discovery channels — high ET jets- which could be obscured by
PDF uncertainties

But Jet Energy Scale Uncertainties could be more of a problem
Be smart - look at ratios W+n-jets/Z+n-jets
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But not all discovery physics is
strongly compromised: e.g PDF
Uncertainty in High-mass Drell-Yan-
won'’t stop us seeing Zprimes
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and PDF uncertainties don’t
affect the Higgs discovery
potential too badly
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What other processes will be useful?

Direct photon production for the high-x gluon

Compton: gwk o '
(~90%)
L 7 LHC parton kinematics
Annihilation: q 1 o \:\wmw mqé X, = (M/14 TeV) exp(xy) ;
(~100/°) g Ty g 8000000000, g 103;— thz_M ) M= 10 TeV
- Z+ b-jet for Measurement of the
b-quark PDF
% 10° 1
< 10" — M= 100 GeV _
Low-mass Drell-Yan will probe low-x & |
partons but also low-x calculations — al:
LHCb can look at this 107 |
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Now let’s look at ratios: Z/W ratio is a golden benchmark measurement — 14TeV

' CTEQ6.5 pre 2008 ; CTEQ6.6 j ' MSTWO08 (MRST01)
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ZOOM in on Z/W ratio — there is fantastic agreement between PDF providers PDF
uncertainty from the low-x gluon/ flavour symmetric sea cancels out- and so do
luminosity errors BUT there is somewhat more PDF uncertainty than we thought
before 2008 (~2% rather than 1% in the central region)

There is uncertainty in the strangeness sector that does not cancel out
between Z and (W* + W-)... it was always there we just didn’t account for it

Z = _uubar + ddbar + ssbar +ccbar +bbar

YES this does translate
W* + W- ~ (udbar + csbhar) + (dubar+scbar) to the Z/lepton ratio
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Further sources of PDF uncertainty from the valence sector are revealed.
And note that when it comes to WE8ymmetry CTEQ do not ka¥e’the most
conservative errors at central rapidity - MRST/MSTW do
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But what about valence PDFs at high-x?

Look at W-/W+ ratio at large rapidity
W- =ud
W+ du

Not possible for main LHc
detectors BUT LHCDb rapidity
range 1.9 to 4.9

There is a proposal ro look at
this in LHCDb

do(W)/dy / do(W')/dy
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o
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% pdf uncertainty
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pdf uncertainty on
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at LHC using MSTW2007NLO

LHC parton kinematics
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However, this assumes perturbative
prediction of Drell-Yan production is
reliable.

As seen wvery large change in
prediction from order to order,
particularly for low M and high 1.

B,

'
ey e o

L e bty oo - i

= LdLIvVE Ld LITTTLY .
this due to partons or cross-
sections?

e TN [
POLNZTTT WILTE  pRerLud

L
=

Cross-section may be sensitive to
resummations (high and low =) at
lowest M and highest 3. In region
where measurements can be made?
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M2 rapidity distributions at LHC
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e+

In fact | have included e+/e- from W+/W- decay as well as the Z data in the fit

The Z is from CSC muons whereas the e+/e- are from the earlier ATLFAST
study (for now).

The plots show only statistical/uncorrelated errors: ~4% for W+/W-

~1% for Z BUT there is
also a correlated systematic 4% for the Z data

If you are looking at this in detail beware that the normalisation of the e+/e- plots have a bin
width included



PDF vs Jet Scale Uncertainty (A JS)

with 10% (5%) jet energy miscal.

(Note: results with tight EF cuts samples)

2.9% < A PDF < 7.3%

5.8% < A JS (10%)< 23.6%
3.6% <A JS (5 %) < 11.9%

v

PDF Uncert < Expt. Syst. Uncert

Next: Whenis JES < PDF Unc?
Try with 1,2,3% jet energy miscal.

A+ PDF |A-PDF | A+JS | A-JS
A b (%) (%) (%)

222
(10.4)




* Also studying Z+ b-jet

Measurement of the b-quark PDF

— Process sensitive to b content of the proton

A Z Q 2
9 TuEre——( 5"66 \{!J

Differences in total Z+b cross-section from current PDFs are of the order of

5%
The measurement of Z+b should be more
interesting at LHC than at Tevatron:
Signal cross-section larger (x80), and more
luminosity

Relative background contribution smaller (x5)

Z+b measurement in ATLAS will be possible
with high statistics and good purity of the
selected samples with two independent
b-tagging methods:

bb->Z @ LHC is ~5% of entire Z
production -> Knowing oZ to
about 1% requires a b-pdf
precision of the order of 20%

(nb)
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Tevatron Jet Cross Sections . Tevatron Jet Cross Sections

d’c/dy'“dp, '* [nb/(Gev/c)]
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H1 and ZEUS Combined PDF Fit
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QCD analyses of QCD analysis of QCD analysis of
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Experimental error
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But the TOY PDFs are unlikely to be realistic - a better way could be to look at pt
spectra for W and Z production

Lack of pt ordering at low-x is a further s b
consequence BFKL resummation AND most :

non-linear treatments. This would affect the pt 8
spectra for W and Z production at the LHC | .

(See hep-ph/0508215) j
Pt spectra are also used to measure M,, -- = #
dM,, from PDF uncertainties, using pt(e), is R
~20 MeV .
J | g So we'd better be Conventional
sure we’ve got the |
. o calculations for Pt Unconventional
- spectra right
Note largest shift ~25 MeV pr(W) 5 SR A
A - Same pattern
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