Non perturbative QCD of jets at hadron colliders

Mrinal Dasgupta

University of Manchester

with L. Magnea, G.P. Salam (2008) and Y. Delenda (2009)

Mrinal Dasgupta Non-perturbative QCD of jets at hadron colliders

(I)

Outline

Introduction.

- Non-perturbative effects at hadron colliders.
- Analytical studies of hadronisation contribution to jet energy.
- Monte Carlo studies.
- Two-loop enhancement factor for k_t jets.
- Tests and future studies

(日) (圖) (E) (E)

Outline

- Introduction.
- Non-perturbative effects at hadron colliders.
- Analytical studies of hadronisation contribution to jet energy.
- Monte Carlo studies.
- Two-loop enhancement factor for k_t jets.
- Tests and future studies

Outline

- Introduction.
- Non-perturbative effects at hadron colliders.
- Analytical studies of hadronisation contribution to jet energy.
- Monte Carlo studies.
- Two-loop enhancement factor for k_t jets.
- Tests and future studies

- Introduction.
- Non-perturbative effects at hadron colliders.
- Analytical studies of hadronisation contribution to jet energy.
- Monte Carlo studies.
- Two-loop enhancement factor for k_t jets.
- Tests and future studies

- Introduction.
- Non-perturbative effects at hadron colliders.
- Analytical studies of hadronisation contribution to jet energy.
- Monte Carlo studies.
- Two-loop enhancement factor for k_t jets.
- Tests and future studies

- Introduction.
- Non-perturbative effects at hadron colliders.
- Analytical studies of hadronisation contribution to jet energy.
- Monte Carlo studies.
- Two-loop enhancement factor for k_t jets.
- Tests and future studies

(口)

PT tools

- Fixed order calculations $\sigma = \sigma_0 \left(1 + c_1 \alpha_s + c_2 \alpha_s^2 + \cdots \right)$
- Resummation for corners of phase space $\sum \alpha_s^n L^m$
- Parton Showers.
- NP tools (since jets are hadron jets !)
 - MC models (HERWIG, PYTHIA

PT tools developing steadily. NP improvement, restricted to MC.

PT tools

• Fixed order calculations $\sigma = \sigma_0 (1 + c_1 \alpha_s + c_2 \alpha_s^2 + \cdots)$.

Resummation for corners of phase space $\sum lpha_s^n L^n$

Parton Showers.

• NP tools (since jets are hadron jets !)

• MC models (HERWIG, PYTHIA

PT tools developing steadily. NP improvement, restricted to MG.

- PT tools
 - Fixed order calculations $\sigma = \sigma_0 \left(1 + c_1 \alpha_s + c_2 \alpha_s^2 + \cdots \right)$.
 - Resummation for corners of phase space $\sum \alpha_s^n L^m$.
 - Parton Showers.
- NP tools (since jets are hadron jets !)
 - MC models (HERWIG, PYTHIA)

PT tools developing steadily. NP improvement, restricted to MG

PT tools

- Fixed order calculations $\sigma = \sigma_0 \left(1 + c_1 \alpha_s + c_2 \alpha_s^2 + \cdots \right)$.
- Resummation for corners of phase space $\sum \alpha_s^n L^m$.
- Parton Showers.

NP tools (since jets are hadron jets !)
 MC models (HERWIG, PYTHIA)

PT tools developing steadily. NP improvement, restricted to MG

- PT tools
 - Fixed order calculations $\sigma = \sigma_0 \left(1 + c_1 \alpha_s + c_2 \alpha_s^2 + \cdots \right)$.
 - Resummation for corners of phase space $\sum \alpha_s^n L^m$.
 - Parton Showers.
- NP tools (since jets are hadron jets !)
 - MC models (HERWIG, PYTHIA)

PT tools developing steadily. NP improvement, restricted to MC

- PT tools
 - Fixed order calculations $\sigma = \sigma_0 (1 + c_1 \alpha_s + c_2 \alpha_s^2 + \cdots)$.
 - Resummation for corners of phase space $\sum \alpha_s^n L^m$.
 - Parton Showers.
- NP tools (since jets are hadron jets !)
 - MC models (HERWIG, PYTHIA)
- PT tools developing steadily. NP improvement restricted to MC.

- hadronisation (ubiquitous, familiar from LEP, HERA.)
- underlying event (UE,specific to hadron colliders, messy, large at the LHC)

- hadronisation (ubiquitous, familiar from LEP, HERA.)
- underlying event (UE,specific to hadron colliders, messy, large at the LHC)

(ロ) (同) (E) (E)

- hadronisation (ubiquitous, familiar from LEP, HERA.)
- underlying event (UE,specific to hadron colliders, messy, large at the LHC)

- hadronisation (ubiquitous, familiar from LEP, HERA.)
- underlying event (UE,specific to hadron colliders, messy, large at the LHC)

Why bother when we have MC ?

- MC (many tunable parameters) does not reflect understanding of physics of hadronisation. Analytical studies can.
- MC studies do not provide any detailed parametric understanding of NP effects. How much pt from UE vs hadronisation ? As a function of jet flavour, pt, size ??

- MC (many tunable parameters) does not reflect understanding of physics of hadronisation. Analytical studies can.
- MC studies do not provide any detailed parametric understanding of NP effects. How much pt from UE vs hadronisation ? As a function of jet flavour, pt, size ??

- MC (many tunable parameters) does not reflect understanding of physics of hadronisation. Analytical studies can.
- MC studies do not provide any detailed parametric understanding of NP effects. How much p_t from UE vs hadronisation ? As a function of jet flavour, p_t, size ??

- MC (many tunable parameters) does not reflect understanding of physics of hadronisation. Analytical studies can.
- MC studies do not provide any detailed parametric understanding of NP effects. How much p_t from UE vs hadronisation ? As a function of jet flavour, p_t, size ??

- Lack of parametric understanding \implies myths: e.g. cone jets said to suffer from large hadronisation while k_t jets from UE. But cant compare $R_{\text{cone}} = 0.4$ with $R_{k_t} = 1$!
- MC hadronisation taken from difference between hadron level and parton shower, then added to NLO sometimes without cross-checks.

Analytical insight sorely needed !

- Lack of parametric understanding \implies myths: e.g. cone jets said to suffer from large hadronisation while k_t jets from UE. But cant compare $R_{\text{cone}} = 0.4$ with $R_{k_t} = 1$!
- MC hadronisation taken from difference between hadron level and parton shower, then added to NLO sometimes without cross-checks.

Analytical insight sorely needed !

- Lack of parametric understanding \implies myths: e.g. cone jets said to suffer from large hadronisation while k_t jets from UE. But cant compare $R_{\text{cone}} = 0.4$ with $R_{k_t} = 1$!
- MC hadronisation taken from difference between hadron level and parton shower, then added to NLO sometimes without cross-checks.

Analytical insight sorely needed !

・ 同 ト ・ ヨ ト ・ ヨ ト …

Analytical tools for NP physics

Renormalon inspired techniques : Infrared region of dressed Feynman Graphs \implies NP effects.

Most succesful phenomenology for event shapes in DW model.

- NP corrections associated to hadronisation are triggered by a soft gluon k_t ~ Λ_{QCD}.
- Such an emission is ill-defined in PT. Force it to have a meaning α^{PT}_s(k_t) → α_s(k_t).

Assume universal IR finite QCD coupling. Only a single NP parameter enters

$$A(\mu_l) = \int_0^{\mu_l} \frac{dk_t}{k_t} \alpha_s(k_t) k_t$$

Dokshitzer and Webber 1995, Dokshitzer, Khoze and Troyan 1996 unload

Renormalon inspired techniques : Infrared region of dressed Feynman Graphs \implies NP effects. Most succesful phenomenology for event shapes in DW model.

- NP corrections associated to hadronisation are triggered by a soft gluon k_t ~ Λ_{QCD}.
- Such an emission is ill-defined in PT. Force it to have a meaning α^{PT}_s(k_t) → α_s(k_t).

Assume universal IR finite QCD coupling. Only a single NP parameter enters

$$A(\mu_l) = \int_0^{\mu_l} \frac{dk_l}{k_l} \alpha_s(k_l) k_l$$

Dokshitzer and Webber 1995, Dokshitzer, Khoze and Troyan 1996 unloss

Renormalon inspired techniques : Infrared region of dressed Feynman Graphs \implies NP effects.

Most succesful phenomenology for event shapes in DW model.

- NP corrections associated to hadronisation are triggered by a soft gluon k_t ~ Λ_{QCD}.
- Such an emission is ill-defined in PT. Force it to have a meaning α^{PT}_s(k_t) → α_s(k_t).

Assume universal IR finite QCD coupling. Only a single NP parameter enters

$$A(\mu_l) = \int_0^{\mu_l} \frac{dk_t}{k_t} \alpha_s(k_t) k_t$$

Dokshitzer and Webber 1995, Dokshitzer, Khoze and Troyan 1996 unloge

・ロン ・回 と ・ ヨン

Renormalon inspired techniques : Infrared region of dressed Feynman Graphs \implies NP effects.

Most succesful phenomenology for event shapes in DW model.

- NP corrections associated to hadronisation are triggered by a soft gluon k_t ~ Λ_{QCD}.
- Such an emission is ill-defined in PT. Force it to have a meaning α^{PT}_s(k_t) → α_s(k_t).

Assume universal IR finite QCD coupling. Only a single NP parameter enters

$$A(\mu_l) = \int_0^{\mu_l} \frac{dk_t}{k_t} \alpha_s(k_t) k_t$$

Dokshitzer and Webber 1995, Dokshitzer, Khoze and Troyan 1996 urlog

・ロン ・四 ・ ・ ヨン ・ ヨン

Renormalon inspired techniques : Infrared region of dressed Feynman Graphs \implies NP effects.

Most succesful phenomenology for event shapes in DW model.

- NP corrections associated to hadronisation are triggered by a soft gluon k_t ~ Λ_{QCD}.
- Such an emission is ill-defined in PT. Force it to have a meaning α^{PT}_s(k_t) → α_s(k_t).

Assume universal IR finite QCD coupling. Only a single NP parameter enters

$$A(\mu_I) = \int_0^{\mu_I} \frac{dk_t}{k_t} \alpha_s(k_t) k_t$$

Dokshitzer and Webber 1995, Dokshitzer, Khoze and Troyan 1996 molecular

(日) (四) (E) (E) (E) (E)

Universality

Observed to generally work well at LEP and HERA

Can we take over to hadron collider jets ?

Mrinal Dasgupta Non-perturbative QCD of jets at hadron colliders

・ロン ・回 と ・ ヨン ・ ヨン

Jet transverse momenta

To work out average shift in jet p_t due to hadronisation:

First compute change in p_t due to gluon emission. E.g. for dijet production near threshold in hadron collisions

$$\delta p_t = p_t - rac{\sqrt{s}}{2} = -\left(rac{M_j^2}{\sqrt{s}} + rac{M_r^2}{\sqrt{s}}
ight) = \delta p_t^+ + \delta p_t^-$$
 ur-logo

Jet transverse momenta

To work out average shift in jet p_t due to hadronisation: First compute change in p_t due to gluon emission. E.g. for dijet production near threshold in hadron collisions

$$\delta p_t = p_t - rac{\sqrt{s}}{2} = -\left(rac{M_j^2}{\sqrt{s}} + rac{M_r^2}{\sqrt{s}}
ight) = \delta p_t^+ + \delta p_t^-$$
 undego

Jet transverse momenta

To work out average shift in jet p_t due to hadronisation: First compute change in p_t due to gluon emission. E.g. for dijet production near threshold in hadron collisions

$$\delta p_t = p_t - \frac{\sqrt{s}}{2} = -\left(\frac{M_j^2}{\sqrt{s}} + \frac{M_r^2}{\sqrt{s}}\right) = \delta p_t^+ + \delta p_t^- \qquad \text{urlog}$$

Mrinal Dasgupta Non-perturbative QCD of jets at hadron colliders

Now average over soft gluon emission probability One has

$$\begin{split} \langle \delta p_t \rangle &= \sum_{ij} C_{ij} I_{ij} \\ I_{ij} &= I_{ij}^+ + I_{ij}^- \\ I^{\pm}(R) &\equiv \int_{\pm} d\eta \frac{d\phi}{2\pi} d\kappa_T^{(ij)} \,\delta\alpha_s \left(\kappa_T^{(ij)}\right) \, k_T \left| \frac{\partial k_T}{\partial \kappa_T^{(ij)}} \right| \, \frac{p_i \cdot p_j}{p_i \cdot k \, p_j \cdot k} \, \delta p_t^{\pm} \,, \end{split}$$
with
$$\left(\kappa_T^{(ij)}\right)^2 &= \frac{2 \, p_i \cdot k \, p_j \cdot k}{p_i \cdot p_i} \,, \end{split}$$

 $p_i \cdot p_j$

v

Mrinal Dasgupta Non-perturbative QCD of jets at hadron colliders

Image: A math a math

▶ < ≣ ▶

Our results are

$$\langle \delta \boldsymbol{p}_t \rangle^h = -C_i \frac{2}{R} A(\mu_I) + \mathcal{O}(R)$$

Value for $2C_F A(\mu_I) \approx 0.5$ GeV from e^+e^- event shapes. Testable prediction (more cleanly at HERA).

$$\langle \delta p_t \rangle^{\mathrm{UE}} = \frac{\Lambda_{\mathrm{UE}}}{2} R J_1(R) = \frac{\Lambda_{\mathrm{UE}}}{2} \left(R^2 - \frac{R^4}{8} + \mathcal{O}(R^6) \right)$$

No handle on Λ_{UE} except MC studies.

Mrinal Dasgupta Non-perturbative QCD of jets at hadron colliders

・ロト ・回ト ・ヨト ・ヨト

Our results are

$$\langle \delta \boldsymbol{p}_t \rangle^h = -C_i \frac{2}{R} A(\mu_I) + \mathcal{O}(R)$$

Value for $2C_FA(\mu_I) \approx 0.5$ GeV from e^+e^- event shapes. Testable prediction (more cleanly at HERA).

$$\langle \delta p_t \rangle^{\mathrm{UE}} = \frac{\Lambda_{\mathrm{UE}}}{2} R J_1(R) = \frac{\Lambda_{\mathrm{UE}}}{2} \left(R^2 - \frac{R^4}{8} + \mathcal{O}(R^6) \right)$$

No handle on Λ_{UE} except MC studies.

Mrinal Dasgupta Non-perturbative QCD of jets at hadron colliders

・ロ・・ (日・・ ほ・・ (日・)
Our results are

$$\langle \delta \boldsymbol{p}_t \rangle^h = -\boldsymbol{C}_i \frac{2}{R} \boldsymbol{A}(\mu_I) + \mathcal{O}(\boldsymbol{R})$$

Value for $2C_FA(\mu_I) \approx 0.5$ GeV from e^+e^- event shapes. Testable prediction (more cleanly at HERA).

$\langle \delta p_t \rangle^{\mathrm{UE}} = \frac{\Lambda_{\mathrm{UE}}}{2} R J_1(R) = \frac{\Lambda_{\mathrm{UE}}}{2} \left(R^2 - \frac{R^4}{8} + \mathcal{O}(R^6) \right)$

No handle on Λ_{UE} except MC studies.

Mrinal Dasgupta Non-perturbative QCD of jets at hadron colliders

Our results are

$$\langle \delta \boldsymbol{p}_t \rangle^h = -C_i \frac{2}{R} A(\mu_I) + \mathcal{O}(R)$$

Value for $2C_FA(\mu_I) \approx 0.5$ GeV from e^+e^- event shapes. Testable prediction (more cleanly at HERA).

$$\langle \delta \boldsymbol{p}_t \rangle^{\mathrm{UE}} = \frac{\Lambda_{\mathrm{UE}}}{2} R J_1(R) = \frac{\Lambda_{\mathrm{UE}}}{2} \left(R^2 - \frac{R^4}{8} + \mathcal{O}(R^6) \right)$$

No handle on Λ_{UE} except MC studies.

Mrinal Dasgupta Non-perturbative QCD of jets at hadron colliders

・ロ・・ (日・・ ほ・・ (日・)

Our results are

$$\langle \delta \boldsymbol{p}_t \rangle^h = -C_i \frac{2}{R} A(\mu_I) + \mathcal{O}(R)$$

Value for $2C_FA(\mu_I) \approx 0.5$ GeV from e^+e^- event shapes. Testable prediction (more cleanly at HERA).

$$\langle \delta p_t \rangle^{\mathrm{UE}} = \frac{\Lambda_{\mathrm{UE}}}{2} R J_1(R) = \frac{\Lambda_{\mathrm{UE}}}{2} \left(R^2 - \frac{R^4}{8} + \mathcal{O}(R^6) \right)$$

No handle on Λ_{UE} except MC studies.

・ロ・・ (日・・ (日・・ (日・))

Origin and generality of 1/R

The 1/R piece comes from collinear singularity associated to gluon emission from massless partons:

$$\langle \delta \boldsymbol{p}_t \rangle = C_i \int d\boldsymbol{k}_t \frac{\alpha_s(\boldsymbol{k}_t)}{2\pi} \frac{\omega d\omega}{\omega} \int_{R^2}^1 \frac{d\theta^2}{\theta^2} \delta\left(\omega\theta - \boldsymbol{k}_t\right)$$

Comparisons to Monte Carlo

Similar behaviour for all algorithms. Differences in UE between MC's.

< ≣⇒

Comparisons to Monte Carlo models (contd.)

Mrinal Dasgupta Non-perturbative QCD of jets at hadron colliders

< ≣⇒

Comparisons to Monte Carlo models (contd.)

LHC underlying event is enormous effect.

- Different algorithms show a similar sensitivity to NP effects.
- UE depends on collider energy and MC model as well as *R*.
- Hadronization on jet "colour factor" and differently on R.
- $\Lambda_{UE}(1.96 \text{TeV}) \approx 2 4 \text{ GeV}$ and $\Lambda_{UE}(14 \text{TeV}) \approx 10 \text{ GeV}$. Large scale at LHC order of magnitude bigger than hadronisation.
- More info in variable R analytical studies than fixed R MC analysis.

• Different algorithms show a similar sensitivity to NP effects.

- UE depends on collider energy and MC model as well as *R*.
- Hadronization on jet "colour factor" and differently on R.
- $\Lambda_{UE}(1.96 \text{TeV}) \approx 2 4$ GeV and $\Lambda_{UE}(14 \text{TeV}) \approx 10$ GeV. Large scale at LHC order of magnitude bigger than hadronisation.
- More info in variable R analytical studies than fixed R MC analysis.

- Different algorithms show a similar sensitivity to NP effects.
- UE depends on collider energy and MC model as well as *R*.
- Hadronization on jet "colour factor" and differently on R.
- $\Lambda_{UE}(1.96 \text{TeV}) \approx 2 4$ GeV and $\Lambda_{UE}(14 \text{TeV}) \approx 10$ GeV. Large scale at LHC order of magnitude bigger than hadronisation.
- More info in variable *R* analytical studies than fixed *R* MC analysis.

- Different algorithms show a similar sensitivity to NP effects.
- UE depends on collider energy and MC model as well as *R*.
- Hadronization on jet "colour factor" and differently on R.
- $\Lambda_{UE}(1.96 \text{TeV}) \approx 2 4 \text{ GeV}$ and $\Lambda_{UE}(14 \text{TeV}) \approx 10 \text{ GeV}$. Large scale at LHC order of magnitude bigger than hadronisation.
- More info in variable *R* analytical studies than fixed *R* MC analysis.

- Different algorithms show a similar sensitivity to NP effects.
- UE depends on collider energy and MC model as well as *R*.
- Hadronization on jet "colour factor" and differently on R.
- $\Lambda_{UE}(1.96 \text{TeV}) \approx 2 4 \text{ GeV}$ and $\Lambda_{UE}(14 \text{TeV}) \approx 10 \text{ GeV}$. Large scale at LHC order of magnitude bigger than hadronisation.
- More info in variable *R* analytical studies than fixed *R* MC analysis.

(I)

- Different algorithms show a similar sensitivity to NP effects.
- UE depends on collider energy and MC model as well as *R*.
- Hadronization on jet "colour factor" and differently on R.
- $\Lambda_{UE}(1.96 \text{TeV}) \approx 2 4 \text{ GeV}$ and $\Lambda_{UE}(14 \text{TeV}) \approx 10 \text{ GeV}$. Large scale at LHC order of magnitude bigger than hadronisation.
- More info in variable *R* analytical studies than fixed *R* MC analysis.

(I)

A significant problem plagues the previous estimates. We used $\alpha_s(k_l)$ in single gluon calc. However running of coupling only emerges when one considers gluon decay. For many observables not inclusive over gluon decay cannot simply absorb gluon branching into running coupling ! Also the case for LEP and HERA event shapes. Nason and Seymour 1995

BUT one-loop numbers explain data beautifully !

Mrinal Dasgupta Non-perturbative QCD of jets at hadron colliders

A significant problem plagues the previous estimates. We used $\alpha_s(k_t)$ in single gluon calc. However running of coupling only emerges when one considers gluon decay.

For many observables not inclusive over gluon decay cannot simply absorb gluon branching into running coupling ! Also the case for LEP and HERA event shapes. Nason and Seymour 1995

BUT one-loop numbers explain data beautifully !

A significant problem plagues the previous estimates. We used $\alpha_s(k_t)$ in single gluon calc. However running of coupling only emerges when one considers gluon decay. For many observables not inclusive over gluon decay cannot simply absorb gluon branching into running coupling ! Also the case for LEP and HERA event shapes. Nason and Seymour 1995 BUT one-loop numbers explain data beautifully.

A significant problem plagues the previous estimates. We used $\alpha_s(k_t)$ in single gluon calc. However running of coupling only emerges when one considers gluon decay.

For many observables not inclusive over gluon decay cannot simply absorb gluon branching into running coupling ! Also the case for LEP and HERA event shapes. Nason and Seymour 1995

BUT one-loop numbers explain data beautifully !

A significant problem plagues the previous estimates. We used $\alpha_s(k_t)$ in single gluon calc. However running of coupling only emerges when one considers gluon decay.

For many observables not inclusive over gluon decay cannot simply absorb gluon branching into running coupling ! Also the case for LEP and HERA event shapes. Nason and Seymour 1995

BUT one-loop numbers explain data beautifully !

$$\begin{split} \langle \delta \boldsymbol{p}_t \rangle &= \frac{C_F}{\pi} \int \frac{d^2 k_t}{\pi k_t^2} \left\{ \alpha_s(0) + 4\pi \chi(k_t^2) \right\} \delta \boldsymbol{p}_t(k) + \\ &+ 4C_F \int \left(\frac{\alpha_s}{4\pi}\right)^2 d\Gamma_2 \frac{M^2}{2!} \delta \boldsymbol{p}_t(k_1, k_2) \end{split}$$

For event shape variables a two-loop analysis was carried out. Dokshitzer, Marchesini, Lucenti and Salam 1997,1998

(ロ) (同) (E) (E) (E)

A remarkable result emerged :

$$\delta \mathbf{v}^{\mathrm{NP},2} = \boldsymbol{M} \, \delta \mathbf{v}^{\mathrm{NP},2}$$

$$\frac{\delta v_2^{\text{NP,2}}}{\delta v_1^{\text{NP,2}}} = \frac{(\delta v_2)^{\text{NP,1}}}{(\delta v_1)^{\text{NP,1}}}$$

Linear dependence of event shape on soft particle transverse momenta crucial :

$$v = \sum_{i} k_{ti} f(\eta_i)$$

Value of M = 1.49 (Universal Milan factor) also for eP event shapes, and σ_L in e^+e^- annihilation. Dasgupta and Webber 1998, Dasgupta, Maggea and Synye 1,992

A remarkable result emerged :

$$\delta \mathbf{v}^{\mathrm{NP},2} = \boldsymbol{M} \, \delta \mathbf{v}^{\mathrm{NP},2}$$

$$\frac{\delta \mathbf{v}_2^{\text{NP},2}}{\delta \mathbf{v}_1^{\text{NP},2}} = \frac{(\delta \mathbf{v}_2)^{\text{NP},1}}{(\delta \mathbf{v}_1)^{\text{NP},1}}$$

Linear dependence of event shape on soft particle transverse momenta crucial :

$$v = \sum_{i} k_{ti} f(\eta_i)$$

Value of M = 1.49 (Universal Milan factor) also for eP event shapes, and σ_L in e^+e^- annihilation. Dasgupta and Webber 1998, Dasgupta, Maggea and Smye 1,999

A remarkable result emerged :

$$\delta \mathbf{v}^{\mathrm{NP},2} = \boldsymbol{M} \, \delta \mathbf{v}^{\mathrm{NP},2}$$

$$\frac{\delta \mathbf{v}_2^{\text{NP},2}}{\delta \mathbf{v}_1^{\text{NP},2}} = \frac{(\delta \mathbf{v}_2)^{\text{NP},1}}{(\delta \mathbf{v}_1)^{\text{NP},1}}$$

Linear dependence of event shape on soft particle transverse momenta crucial :

$$\mathbf{v} = \sum_{i} \mathbf{k}_{ti} f(\eta_i)$$

Value of M = 1.49 (Universal Milan factor) also for eP event shapes, and σ_L in e^+e^- annihilation. Dasgupta and Webber 1998, Dasgupta, Maggea and Symye 1,999

A remarkable result emerged :

$$\delta \mathbf{v}^{\mathrm{NP},2} = \boldsymbol{M} \, \delta \mathbf{v}^{\mathrm{NP},2}$$

$$\frac{\delta \mathbf{v}_2^{\text{NP},2}}{\delta \mathbf{v}_1^{\text{NP},2}} = \frac{(\delta \mathbf{v}_2)^{\text{NP},1}}{(\delta \mathbf{v}_1)^{\text{NP},1}}$$

Linear dependence of event shape on soft particle transverse momenta crucial :

$$\mathbf{v} = \sum_{i} \mathbf{k}_{ti} f(\eta_i)$$

Value of M = 1.49 (Universal Milan factor) also for eP event shapes, and σ_L in e^+e^- annihilation. Dasgupta and Webber 1998, Dasgupta, Magnea and Smye 1999.

Jet algorithms and non-linearity

Non-linearity in emitted transverse momenta introduced by clustering and/or split-merge procedures. No successful calculations for such observables. Threatens universality.

Cannot obtain correct normalisation of result till two-loop results are obtained.

Jet algorithms and non-linearity

Non-linearity in emitted transverse momenta introduced by clustering and/or split-merge procedures. No successful calculations for such observables. Threatens universality. Cannot obtain correct normalisation of result till two-loop results are obtained.

Kinematic dependence on offspring partons in different algorithms

k_t algorithm

$$\delta \boldsymbol{p}_t(\boldsymbol{k}_1, \boldsymbol{k}_2) = \delta \boldsymbol{p}_t(\boldsymbol{k}_1) \Xi_{\text{out}}(\boldsymbol{k}_1) + \delta \boldsymbol{p}_t(\boldsymbol{k}_2) \Xi_{\text{out}}(\boldsymbol{k}_2)$$

$$\begin{split} \Xi_{\rm out}(k_1) &= \Theta_{\rm out}(k_1) \left[1 - \Theta_{\rm out}(k_2) \Theta_{12}(k_1, k_2) \Theta_{\rm in}(k) \right] + \\ &+ \Theta_{\rm in}(k_1) \Theta_{\rm out}(k_2) \Theta_{12}(k_1, k_2) \Theta(d_{1j} - d_{12}) \Theta_{\rm out}(k) + \\ &- \Theta_{\rm out}(k_1) \Theta_{\rm in}(k_2) \Theta_{12}(k_1, k_2) \Theta(d_{2j} - d_{12}) \Theta_{\rm in}(k), \end{split}$$

$$\Theta_{\rm out}(k_1) = \theta \left(\delta \eta^2 - \delta \phi^2 - R^2 \right)$$

(口)

• The anti- k_t algorithm:

$$\Xi_{\rm out}(k_1) = \Theta_{\rm out}(k_1)$$

where

$$\Theta_{\mathrm{out}}(k_1) = \Theta\left(\delta\eta^2 + \delta\phi^2 - R^2\right)$$

Non-linear dependence on gluon emission in k_t algorithm. In

contrast anti-*k_t* algorithm like a perfect cone. Dasgupta and Delenda 2009, Cacciari, Salam and Soyez 2008.

• The anti- k_t algorithm:

$$\Xi_{\rm out}(k_1) = \Theta_{\rm out}(k_1)$$

where

$$\Theta_{\mathrm{out}}(k_1) = \Theta\left(\delta\eta^2 + \delta\phi^2 - R^2\right)$$

Non-linear dependence on gluon emission in k_t algorithm. In contrast anti- k_t algorithm like a perfect cone. Dasgupta and Delenda 2009, Cacciari, Salam and Soyez 2008.

Non-linearity of k_t algorithm breaks universality of M factor ! A new factor emerges $M_{k_t} = 1.01$ to be compared to 1.49 for event shapes.

Dasgupta and Delenda 2009 The universal *M* factor emerges for jets in anti- k_t .

 $\frac{\delta p_t^{k_t}}{\delta p_t^{\text{anti}-k_t}} = \frac{1.01}{1.49}$

Hadronisation in the k_t algorithm 70 percent that of the anti- k_t . Also emerges in MC studies. We have for the first time a calculation of power-corrections to a non-linear observable. Result should be of theoretical interest too.

Extensions to other algorithms (SISCONE, Cambridge/Aachen) is in progress.

・ロット (四) (日) (日)

Non-linearity of k_t algorithm breaks universality of M factor ! A new factor emerges $M_{k_t} = 1.01$ to be compared to 1.49 for event shapes.

Dasgupta and Delenda 2009

・ロ・・ (日・・ ほ・・ (日・)

The universal M factor emerges for jets in anti- k_t .

 $\frac{\delta p_t^{k_t}}{\delta p_t^{\text{anti}-k_t}} = \frac{1.01}{1.49}$

Hadronisation in the k_t algorithm 70 percent that of the anti- k_t . Also emerges in MC studies. We have for the first time a calculation of power-corrections to a non-linear observable. Result should be of theoretical interest too.

Extensions to other algorithms (SISCONE, Cambridge/Aachen) is in progress.

Non-linearity of k_t algorithm breaks universality of M factor ! A new factor emerges $M_{k_t} = 1.01$ to be compared to 1.49 for event shapes.

Dasgupta and Delenda 2009 The universal *M* factor emerges for jets in anti- k_t .

 $\frac{\delta p_t^{k_t}}{\delta p_t^{\text{anti}-k_t}} = \frac{1.01}{1.49}$

Hadronisation in the k_t algorithm 70 percent that of the anti- k_t .

Also emerges in MC studies. We have for the first time a calculation of power-corrections to a non-linear observable. Result should be of theoretical interest too.

Extensions to other algorithms (SISCONE, Cambridge/Aachen is in progress.

・ロット 小田 マイロマー

Non-linearity of k_t algorithm breaks universality of M factor ! A new factor emerges $M_{k_t} = 1.01$ to be compared to 1.49 for event shapes.

Dasgupta and Delenda 2009 The universal *M* factor emerges for jets in anti- k_t .

 $\frac{\delta p_t^{k_t}}{\delta p_t^{\text{anti}-k_t}} = \frac{1.01}{1.49}$

Hadronisation in the k_t algorithm 70 percent that of the anti- k_t . Also emerges in MC studies. We have for the first time a calculation of power-corrections to a non-linear observable. Result should be of theoretical interest too. Sterman and Lee 2007 Extensions to other algorithms (SISCONE, Cambridge/Aachen) is in progress.

Non-linearity of k_t algorithm breaks universality of M factor ! A new factor emerges $M_{k_t} = 1.01$ to be compared to 1.49 for event shapes.

Dasgupta and Delenda 2009 The universal *M* factor emerges for jets in anti- k_t .

 $\frac{\delta \boldsymbol{p}_t^{\boldsymbol{k}_t}}{\delta \boldsymbol{p}_t^{\text{anti}-k_t}} = \frac{1.01}{1.49}$

Hadronisation in the k_t algorithm 70 percent that of the anti- k_t . Also emerges in MC studies. We have for the first time a calculation of power-corrections to a non-linear observable. Result should be of theoretical interest too.

Sterman and Lee 2007

(日) (四) (E) (E) (E) (E)

Extensions to other algorithms (SISCONE, Cambridge/Aachen) is in progress.

Non-linearity of k_t algorithm breaks universality of M factor ! A new factor emerges $M_{k_t} = 1.01$ to be compared to 1.49 for event shapes.

Dasgupta and Delenda 2009 The universal *M* factor emerges for jets in anti- k_t .

 $\frac{\delta \boldsymbol{p}_t^{\boldsymbol{k}_t}}{\delta \boldsymbol{p}_t^{\text{anti}-k_t}} = \frac{1.01}{1.49}$

Hadronisation in the k_t algorithm 70 percent that of the anti- k_t . Also emerges in MC studies. We have for the first time a calculation of power-corrections to a non-linear observable. Result should be of theoretical interest too.

Extensions to other algorithms (SISCONE, Cambridge/Aachen) is in progress.

Sterman and Lee 2007

(日) (四) (E) (E) (E) (E)

- Knowing *R* dependence gives rise to idea of optimal *R* for various studies.
- The ideas presented here can be directly tested in measurement.

・ロト ・回ト ・ヨト ・ヨト

- Knowing *R* dependence gives rise to idea of optimal *R* for various studies.
- The ideas presented here can be directly tested in measurement.

(口)
For studies reconstructing e.g. mass-peaks want to minimse dispersion

$$\left\langle \delta \boldsymbol{p}_{t}^{2} \right\rangle = \left\langle \delta \boldsymbol{p}_{t} \right\rangle_{h}^{2} + \left\langle \delta \boldsymbol{p}_{t} \right\rangle_{\mathrm{UE}}^{2} + \left\langle \delta \boldsymbol{p}_{t} \right\rangle_{\mathrm{PT}}^{2}$$

Perturbative R dependence is ln R at small R (dominant effect). For pQCD studies just total NP (UE and hadronisation) :

$$\mathsf{R} = \sqrt{2} \left(\frac{C_i A(\mu_l)}{\Lambda} \right)^{1/3}$$

Mrinal Dasgupta Non-perturbative QCD of jets at hadron colliders

・ロト ・回ト ・ヨト ・ヨト

For studies reconstructing e.g. mass-peaks want to minimse dispersion

$$\left\langle \delta \boldsymbol{\rho}_{t}^{2} \right\rangle = \left\langle \delta \boldsymbol{\rho}_{t} \right\rangle_{h}^{2} + \left\langle \delta \boldsymbol{\rho}_{t} \right\rangle_{\mathrm{UE}}^{2} + \left\langle \delta \boldsymbol{\rho}_{t} \right\rangle_{\mathrm{PT}}^{2}$$

Perturbative *R* dependence is ln *R* at small *R* (dominant effect). For pQCD studies just total NP (UE and hadronisation) :

・ロ・・ (日・・ (日・・ (日・)

For studies reconstructing e.g. mass-peaks want to minimse dispersion

$$\left\langle \delta \boldsymbol{\rho}_{t}^{2} \right\rangle = \left\langle \delta \boldsymbol{\rho}_{t} \right\rangle_{h}^{2} + \left\langle \delta \boldsymbol{\rho}_{t} \right\rangle_{\mathrm{UE}}^{2} + \left\langle \delta \boldsymbol{\rho}_{t} \right\rangle_{\mathrm{PT}}^{2}$$

Perturbative R dependence is $\ln R$ at small R (dominant effect). For pQCD studies just total NP (UE and hadronisation) :

$$\mathsf{R} = \sqrt{2} \left(\frac{C_i A(\mu_l)}{\Lambda} \right)^{1/3}$$

At high p_t one should use a larger R -minimises perturbative effect. Likewise for gluon jets a larger R is suggested. At LHC smaller R values than at Tevatron.

ur-logo

æ

< < > < < > >

At high p_t one should use a larger R -minimises perturbative effect. Likewise for gluon jets a larger R is suggested. At LHC smaller R values than at Tevatron.

ur-iogo

臣

< < > < < > >

At high p_t one should use a larger R -minimises perturbative effect. Likewise for gluon jets a larger R is suggested. At LHC smaller R values than at Tevatron.

ur-logo

At high p_t one should use a larger R -minimises perturbative effect. Likewise for gluon jets a larger R is suggested. At LHC smaller R values than at Tevatron.

ur-logo

Direct tests

Direct experimental measurements of $\delta p_t(R)$. Can be compared to NLO + NP corrected results. Used to extract Λ_{UE} directly ?

Apply results to single-inclusive jet *p*_t spectra

・ロ・・ 日本・ ・ 日本・

Direct tests

Direct experimental measurements of $\delta p_t(R)$. Can be compared to NLO + NP corrected results. Used to extract Λ_{UE} directly ?

Apply results to single-inclusive jet p_t spectra.

$$\frac{d\sigma}{dp_t} = \frac{d\sigma}{dp_t}_{\text{pert}} (p_t - \langle \delta p_t \rangle_{\text{NP}})$$

Summary

 A set of IRC safe jet algorithms now available. Anti k_t recently introduced. Cacciari Salam and Soyez 2008

- Features of jet algorithms being analytically and systematically understood. Radius dependence an important aspect of NP effects.
- Two-loop enhancement factor (crucial to establish size) computed for k_t algorithm. Calculations for other algorithms on the way.
- Can expect development of optimal tools to handle jets at hadron colliders.

A D A A B A A B A A B

- A set of IRC safe jet algorithms now available. Anti k_t recently introduced.
 Cacciari Salam and Soyez 2008
- Features of jet algorithms being analytically and systematically understood. Radius dependence an important aspect of NP effects.
- Two-loop enhancement factor (crucial to establish size) computed for k_t algorithm. Calculations for other algorithms on the way.
- Can expect development of optimal tools to handle jets at hadron colliders.

(ロ) (同) (E) (E)

- A set of IRC safe jet algorithms now available. Anti k_t recently introduced.
 Cacciari Salam and Soyez 2008
- Features of jet algorithms being analytically and systematically understood. Radius dependence an important aspect of NP effects.
- Two-loop enhancement factor (crucial to establish size) computed for k_t algorithm. Calculations for other algorithms on the way.
- Can expect development of optimal tools to handle jets at hadron colliders.

Mrinal Dasgupta Non-perturbative QCD of jets at hadron colliders

- A set of IRC safe jet algorithms now available. Anti k_t recently introduced.
 Cacciari Salam and Soyez 2008
- Features of jet algorithms being analytically and systematically understood. Radius dependence an important aspect of NP effects.
- Two-loop enhancement factor (crucial to establish size) computed for k_t algorithm. Calculations for other algorithms on the way.
- Can expect development of optimal tools to handle jets at hadron colliders.