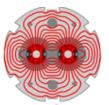


Richard Hawkings (CERN)

London Standard Model discovery workshop, UCL 31/3/09

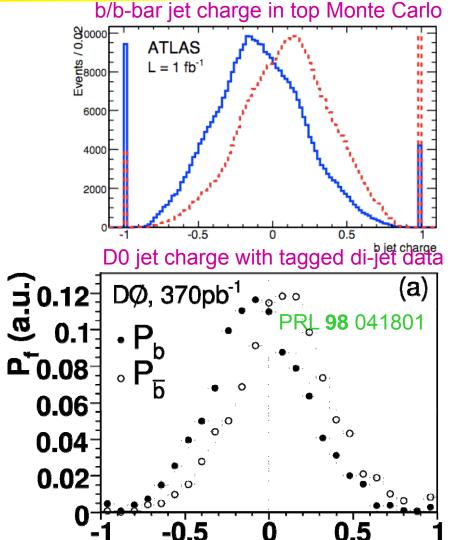
- Introduction/motivation
 - Top quark charge
 - t-tbar spin correlations
 - W polarisation and the Wtb vertex
- Summary / outlook
- ATLAS results from CERN-OPEN-2008-20 ('CSC book')
- CMS results from CMS Physics TDR
- Some Tevatron results for comparison...



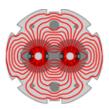
- Top exists! Measure its fundamental parameters (mass, charge, couplings,...)
 - Heaviest known quark, least studied, some peculiar properties
 - Decays involve real rather than virtual W
 - Decays before hadronises spin/polarisation information is preserved
- Top quark beyond the Standard Model
 - Top may be produced in new particle decays (t-tbar resonances, heavy H ...)
 - Top quarks may decay in peculiar ways, e.g. $t \rightarrow H^+b$
 - Careful measurement of the top quark properties may reveal deviations from the SM expectation, signaling new physics
- LHC is a top quark factory
 - At 10³³ cm⁻²s⁻¹ ('nominal' low luminosity), get 1 top pair/second, or 8M/year
 - 30% of these decay to {e/μ}vb jjb or {e/μ}vb{e/μ}vb final states, good trigger efficiency
 - At 10³⁴ cm⁻²s⁻¹ (full LHC design luminosity before SLHC upgrade), get 10 Hz top pairs ... O(100M)/year
 - But background from pileup at 10³⁴ will make precision studies difficult
 - Analyses of top properties concentrate on 10³³ scenario (and 14 TeV Ecm)

Top quark charge - SM or exotic?

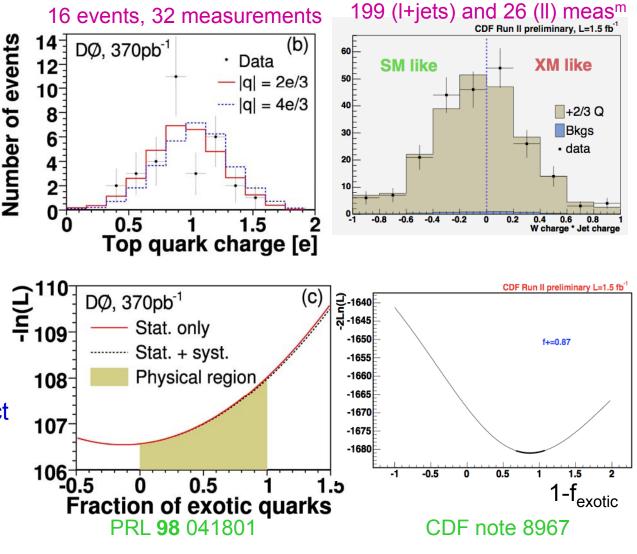
Object with mass 173 GeV, decays to Wb


+1

+2/3 -1/3


+4/3+1/3+1

- Some scenarios with an exotic 4/3e charge object at 175 GeV, real m_{top}>230 GeV
- Measure the top charge (its decay products)
 - Charge of the lepton $(\pm 1) \Rightarrow$ charge of W
 - Charge of the b-quark $(\pm 2/3)$... infer from jet charge of the b-jet
 - Technique familiar from B-oscillation and CPviolation studies, e.g.
 - $Q_{jet} = \sum (\mathbf{p}_{trk} \mathbf{p}_{jet})^{\kappa} Q_{trk} / \sum (\mathbf{p}_{trk} \mathbf{p}_{jet})^{\kappa} \text{ with } \kappa$ optimised to give best b / b-bar separation
 - Challenges are to **calibrate** jet charge (from b-flavour enhanced dijet data) and pair the lepton(s) and b-jet(s) correctly



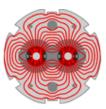
Jet charge [e]

- Tevatron stat-limited results:
 - D0+CDF using I+jet events
 - B-tagging to identify b-jets
 - Association to correct lepton . using kinematic fit of t-tbar
 - CDF also using dileptons
 - No b-tagging, use M(bl) of different assignments to determine correct ones
- Both favour SM scenario
 - D0 excludes that whole sample is exotic at 92% CL
 - CDF excludes same at 87%, with a 1% prob to falsely reject SM... different interpretation
 - D0 f_{exotic}<0.8 at 90% CL</p>
 - CDF f_{exotic}<0.6 at 95% CL</p>
 - SM highly favoured over XM
 31st March 2009

Richard Hawkings

Events /0.1 200

150


100

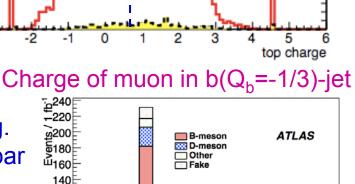
50

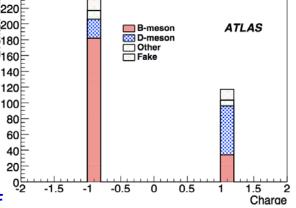
-3

ATLAS

 $L = 1 \text{ fb}^{-1}$

•S + E


B


 $Q_{top} = Q_{jet} C_b + C$

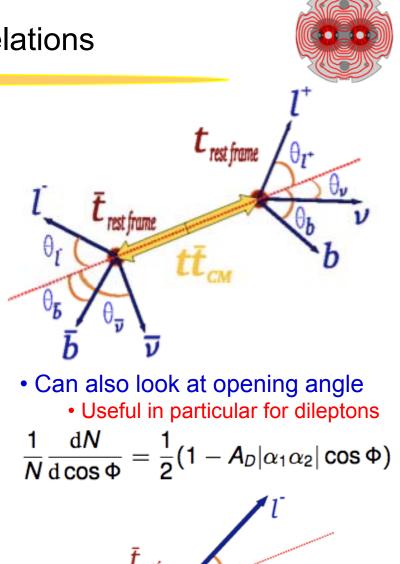
- Statistics good (~6000 l-jet pairs per fb⁻¹)
 - Simple selection, require two b-tags in event
 - Using I-bjet pairing based on M(lb) cuts, with 30% efficiency and 86% correct pairing fraction
 - Simple Q_{jet} with κ =0.5; \geq 2 tracks p_T >1.5 GeV
 - Can also use b-jets with muons to get Q_b
- Measure $Q_{comb} = Q_{jet} Q_{l}$ and $Q_{top} = Q_{jet} C_{b} + Q_{l}$
 - C_b calibrates jet charge: Q_b=Q_{jet}*C_b
 - Expect Q_{comb}<0 with 20σ statistical in 1 fb⁻¹
 Largely data-driven e.g.

Svetemati	(%)	
Source	Q(jet)	muon
jet scale	0.7	0.3
b-jet scale	1.9	6
Δm_i	1.3	7
PDF	0.6	-
ISR	2.8	15
FSR	7.8	8
Pile-up	-	1.8
Background asymmetry	1	-
S/B ratio	9	-
total	12.5	19.3
Odet Merch OO(

- Largely data-driven e.g. understanding of non-ttbar background
- Eventually use tagged di-jet data to measure Q_{jet} performance (C_b) with data
- Will be sensitive to mixture of SM and XM scenarios ...

31st March 2009

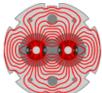
Richard Hawkings



Top-anti-top spin correlations

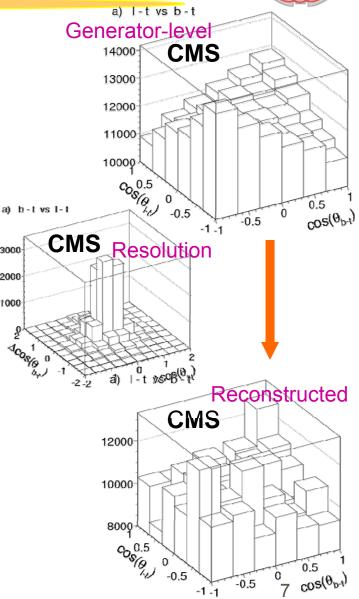
- Top quarks produced ~unpolarized in SM
 - But spin of t and t-bar are correlated depends on production mechanism (qq vs gg) and energy
 - Measuring spin correlation gives info on production
- Parameterise with an asymmetry A

 $\boldsymbol{A} = \frac{\sigma(t_{\uparrow}\overline{t}_{\uparrow}) + \sigma(t_{\downarrow}\overline{t}_{\downarrow}) - \sigma(t_{\uparrow}\overline{t}_{\downarrow}) - \sigma(t_{\downarrow}\overline{t}_{\uparrow})}{\sigma(t_{\uparrow}\overline{t}_{\uparrow}) + \sigma(t_{\downarrow}\overline{t}_{\downarrow}) + \sigma(t_{\downarrow}\overline{t}_{\downarrow}) + \sigma(t_{\downarrow}\overline{t}_{\uparrow})}$


- Since top decays before hadronisation, spin information is preserved in decay product angles
 - Angle θ defined between top quark direction in ttbar rest frame, and decay product in t rest frame $\frac{1}{N} \frac{d^2 N}{d \cos \theta_1 d \cos \theta_2} = \frac{1}{4} (1 - A |\alpha_1 \alpha_2| \cos \theta_1 \cos \theta_2)$
 - θ₁, θ₂ measured using a decay product from each top quark 1,2; α₁, α₂ are analysing powers
 - α: Correlation between top and decay product
 - 1 for lepton; -0.41 for b, 0.51 for lower E q from W
 31st March 2009
 Richard Hawkings

6

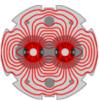
Angular reconstruction



- Experimentally, choose two 'analyser particles'
 - E.g. lepton and lower-energy quark from W decay
 - Need to fully reconstruct event (t/tbar 4-vectors)
 - Including estimate of neutrino from missing E_{T} vector
 - Typically require lepton+≥4 jets, 2-b-tagged jets, using mass requirements and/or kinematic fits to ensure good event reconstruction
 - CMS study shows S/B of 4.5, background dominated by mis-reconstructed top decays
 - Expect around 10k reconstructed events per fb⁻¹ @ 14TeV¹⁰⁰
- Resolution and acceptance effects modify the expected distributions
 - Correct using a 6x6 matrix (CMS approach)
 - Ratio of reconstructed to selected events in each bin
 - Background must also be subtracted ... then fit distribution according to

$$\frac{1}{N}\frac{\mathrm{d}^2 N}{\mathrm{d}\cos\theta_1\mathrm{d}\cos\theta_2}=\frac{1}{4}(1-A|\alpha_1\alpha_2|\cos\theta_1\cos\theta_2)$$

31st March 2009

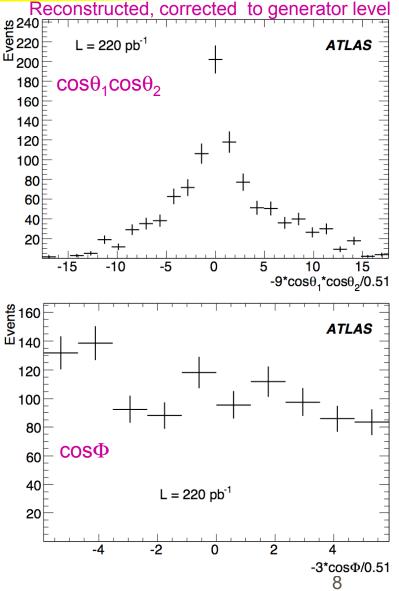

Richard Hawkings

3000

2000

Angular reconstruction and results

Alternative approach based on means (ATLAS)


- Means of cosθ₁cosθ₂ and cosΦ distributions are estimators of A and A_D
- Make 1D-distributions and correct bin-by-bin back to generator level to extract spin correlation

Estimated statistical/systematic uncertainties

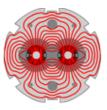
Expt	Measurement	Int L	stat	syst
ATLAS	$A(q-I) \approx 0.42$	1 fb ⁻¹	0.17	0.18
ATLAS	$A_D(q-l) \approx -0.29$	1 fb ⁻¹	0.11	0.09
CMS	A(b-l)	10 fb ⁻¹	0.027	0.076
CMS	A(q-I)	10 fb ⁻¹	0.021	0.041

- Good control of systematics will be essential
 - B-tagging efficiency, jet energy scale, ISR/FSR ...
 - Need time and data to understand t-tbar reconstrⁿ

F_{0:}

+1/2

W polarisation in top quark decays


F_R≠0 only

if m_b>0

-1/2

F_{R:}

+1/2

 ℓ^{\pm}

 $\theta^*_{\ell} = \pi - \theta_{\ell h}$

W in top decay produced with different helicities

F_{L:} **(b)** ↓ -1/2

Can be measured using the angle θ_1^*

+1/21

+1/2

Angle between W in top frame and lepton in W frame

1+1

 $\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}\cos\theta_{\ell}^{*}} = \frac{3}{2}\left[F_{0}\left(\frac{\sin\theta_{\ell}^{*}}{\sqrt{2}}\right)^{2} + F_{\mathrm{L}}\left(\frac{1-\cos\theta_{\ell}^{*}}{2}\right)^{2} + F_{\mathrm{R}}\left(\frac{1+\cos\theta_{\ell}^{*}}{2}\right)^{2}\right]$

- In SM, $F_0 \approx 0.695$, $F_1 \approx 0.305$, $F_R \approx 0.001$
 - Driven by m_t/m_w and V-A structure of weak interaction
 - Extensions to SM can result in enhanced F_{I} and/or F_{R}
- Attempt to reconstruct the $\cos\theta_{1}^{*}$ distribution and fit the fractions of longitudinal, left and right polarised W

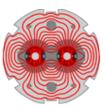
V₁=1 and g_R=g₁=V_R=0 SM $F_0 = \Gamma_0 / \Gamma_{tot}$ $F_p = \Gamma_p / \Gamma_{rot}$ 0.5 03 0.20.1

.0.5

0.75

-0.25

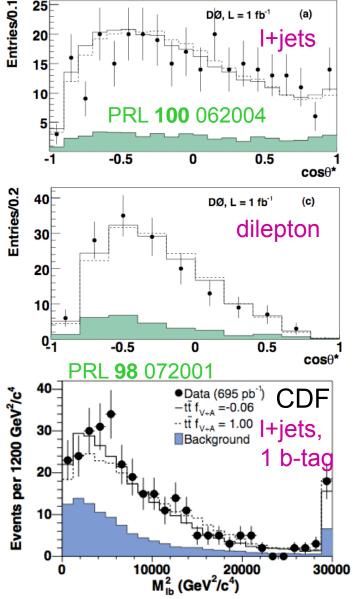
cos0*


0.75

0.25

05

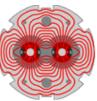
(rescaled)



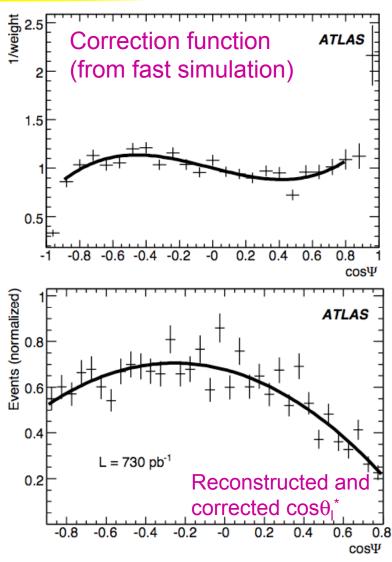
(a)

 $D\emptyset, L = 1 fb^{-1}$

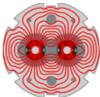
- Various methods used to measure W polarisation
 - Reconstruction of $\cos \theta_{l}^{*}$ (extract F_{0} and F_{R})
 - Needs full event reconstruction, including missing E_{τ}
 - As for spin correlations, can fit reconstructed $\cos\theta_{1}^{*}$ distribution to Monte Carlo templates for F_0 , F_1 , F_R , or correct for detector effects and fit at 'generator' level
 - Measurements done with I+jets and dilepton events
 - Some 'marginal' consistency $(2-3\sigma)$ between channels (in both CDF and D0)
 - Can also use jet from hadronic W boson decay measure $|\cos\theta^*|$ - information on F₀
 - Other techniques used to avoid using missing E_{T}
 - Charged lepton p_T spectrum and m_{lb} have sensitivity to the F_R fraction - difficult to fit all simultaneously
 - Full 'matrix element' fit as used for the top mass. varying F_0 with F_R fixed to zero
- Samples typically O(100s) events limited statistics
 - Systematics dominated by signal/bkg modelling



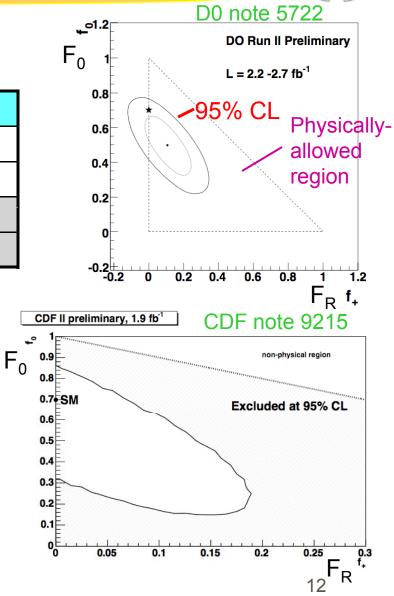
25


31st March 2009

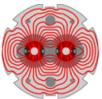
Richard Hawkings



- Studies concentrated on the $\cos\theta_{l}^{*}$ method
 - ATLAS combined analysis with spin correlations
 - Select events with lepton + ≥4 jets and missing E_T, with two jets b-tagged
 - Expect around 10k events per fb⁻¹
 - Main background from t-tbar decays involving τ (around 10%); single top and W+jets < 5%
 - Reconstruct cosθ^{*}_I distribution and correct back to 'generator' level with correction weight function
 - Exclude extremes of distribution where correction is largest
 - Uncertainty / control of correction function is significant source of systematics
 - Also exploring template-based methods to perform fit directly to reconstructed distributions
 - With enough statistics, can extract F_0 and F_R
 - And hence F_L via F₀+F_L+F_R=1



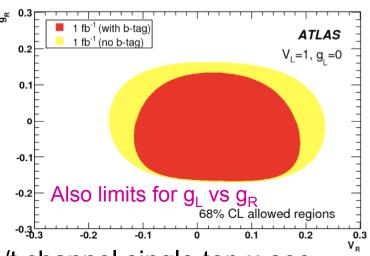
Some representative results and expectations


• Using $\cos\theta_{l}^{*}$, other methods also used

Expt	fb⁻¹	F ₀	FL	F _R
CDF lj	1.9	±0.16		±0.07
D0 lj+ll	2.7	±0.11 ±0.09		±0.06±0.05
ATLAS lj	1	±0.02 ±0.03	±0.04 ±0.03	±0.02 ±0.02
CMS lj	10	±0.02 ±0.02		

- Tevatron results already providing significant constraints ... but statistics limited
 - LHC should give precision measurements (in particular for F_R)
 - Ultimate precision will depend on careful control of systematics

More general parameterisation of Wtb vertex:


$$\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{\rm L} P_{\rm L} + \frac{V_{\rm R}}{P_{\rm R}}) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{M_W} (g_{\rm L} P_{\rm L} + g_{\rm R} P_{\rm R}) t W_{\mu}^{-}$$

- Anomalous couplings sensitive to ratios $\rho_{L,R}$ =F_{L,R}/F₀
- Can also study asymmetries in the $\cos\theta_{l}^{*}$ distribution, A_{FB} , A_{+} and A_{-}
 - Each asymmetry insensitive to one parameter F₀, F_L, F_R
- Measure using corrected cosθ^{*}_I distribution in 1 fb⁻¹ of ATLAS I+jet events; statistical and systematic errors: ^{se 0.3}

	ρ_L	ρ_{R}	A _{FB}	A ₊	A_
No	±0.05	±0.008	±0.025	±0.024	±0.012
b-tag	±0.27	±0.017	±0.080	±0.074	±0.021
b-tag	±0.05	±0.007	±0.026	±0.028	±0.014
	±0.16	±0.012	±0.033	±0.052	±0.027

B-tagging helps reduce systematic errors

V_L=1 and g_g=g_g=V_g=0 SM $F_0 = \Gamma_0 / \Gamma_{rec}$ $F_p = \Gamma_p / \Gamma_{re}$ rescaled) \mathbf{F}_{i} A_{FB} 0.7 425 0.5 0.25 0.5 0.75 cos0*

Combined fit for couplings, eventually also include s/t channel single top x-sec

- The LHC 'top factory' offers an excellent opportunity for precision studies of top quark properties
 - Comprehensively exclude the q=4/3e exotic 'top quark' with < 1 fb⁻¹
 - Sensitivity to small add-mixtures of exotic states as the luminosity increases
 - Studies of top spin correlations and the Wtb vertex require good detector understanding and 1-10 fb⁻¹ to reach maturity
 - With O(1 fb⁻¹), can substantially improve on Tevatron constraints on W polarisation
 - Start to measure more parameters, add in constraints from single top
 - Will need > 1 fb⁻¹ to make unambiguous observation of t-tbar spin correlations
- Most of these studies require full reconstruction of t-tbar final state
 - Can start to refine techniques, understand resolution and systematics as soon as a significant sample of t-tbar events is recorded and isolated
 - Can also greatly benefit from large samples of e.g. Z events for calibration purposes
 - 100-200 pb⁻¹ data is certainly enough to make good progress first year of data will be very valuable
 - ... Top properties studies can start from the beginning of LHC data taking