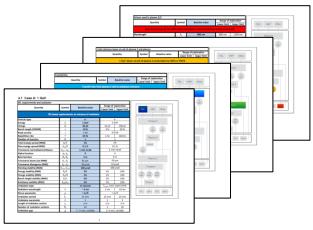
**Preliminary Study Concept** 



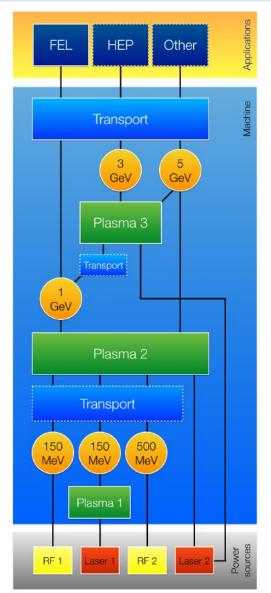

- Contains the key components of the future EuPRAXIA facility
- Input was taken from:
  - 1. SC in Paris

E<sup>ŭ</sup>PRAXIA

- Pisa workshop
- WP4 workshop (100cube laser challenge)
- Further input will come from:
  - Individual WP meetings currently planned in next few weeks (WP3, WP5, WP7, WP9, WP14, ...)

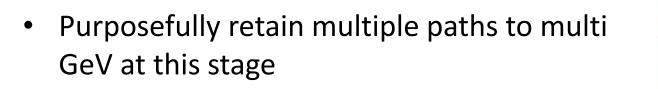




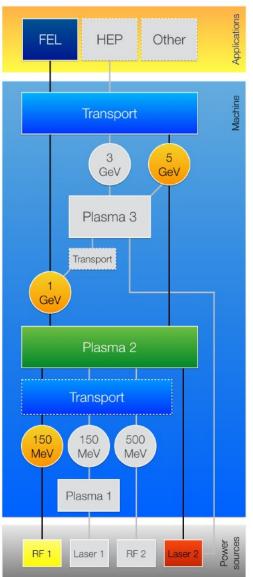





• Diagrams show:


Eůpra💥

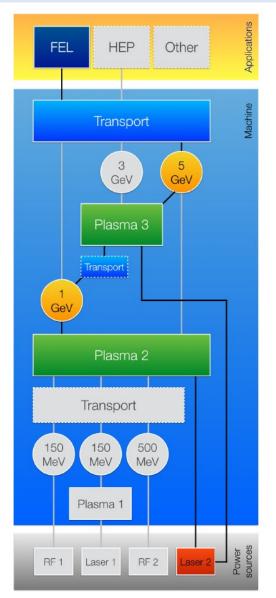
- study concepts included in EuPRAXIA
- interplay between WPs
- connection to applications
- Tables define parameters we want to deliver
- Overview diagram
  - Applications define parameters
  - Realistic RF & LWFA e-beam parameters defined
  - Plasma & transport structures are defined from need and availability
  - RF/Laser infrastructure designed around it







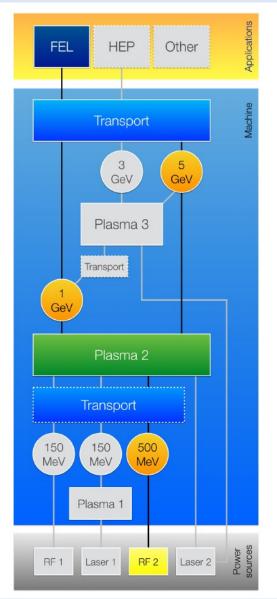




- External injection of an electron bunch into a laser-driven plasma accelerator.
- Beam generation and acceleration in a laserdriven plasma accelerator.
- External injection of an electron bunch into a beam-driven plasma accelerator.
- Hybrid schemes including both laser-driven and beam-driven plasma acceleration.





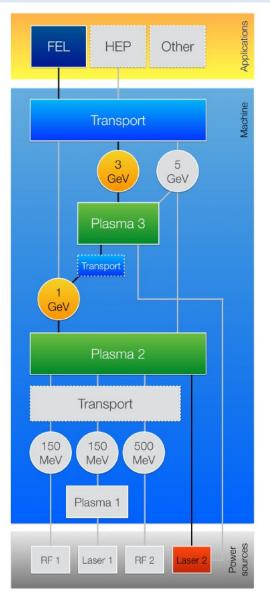



- Purposefully retain multiple paths to multi GeV at this stage
  - External injection of an electron bunch into a laser-driven plasma accelerator.
  - Beam generation and acceleration in a laserdriven plasma accelerator.
  - External injection of an electron bunch into a beam-driven plasma accelerator.
  - Hybrid schemes including both laser-driven and beam-driven plasma acceleration.





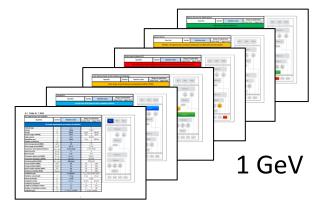



- Purposefully retain multiple paths to multi GeV at this stage
  - External injection of an electron bunch into a laser-driven plasma accelerator.
  - Beam generation and acceleration in a laserdriven plasma accelerator.
  - External injection of an electron bunch into a beam-driven plasma accelerator.
  - Hybrid schemes including both laser-driven and beam-driven plasma acceleration.

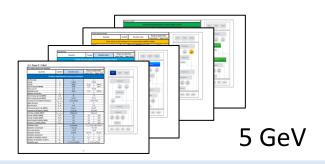







- Purposefully retain multiple paths to multi GeV at this stage
  - External injection of an electron bunch into a laser-driven plasma accelerator.
  - Beam generation and acceleration in a laserdriven plasma accelerator.
  - External injection of an electron bunch into a beam-driven plasma accelerator.
  - Hybrid schemes including both laser-driven and beam-driven plasma acceleration.








- Set of tables for 1, 3, and 5 GeV
- Tables derived from FEL requirements and goals
- Concept:
  - Start at 1 GeV (soft x-rays, easier) and then push towards 5 GeV (hard x-rays, more difficult)
  - For the study version include alternative solutions: laser-driven , beam-driven, hybrids
- To come: HEP, Other Apps







Structure







- Baseline parameter shown in blue with range
- Definitions are in bold print
- Diagram shows which element is being defined

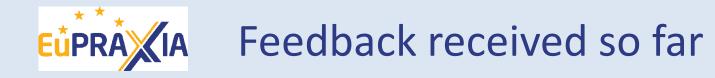
| .1 Case A: 1 GeV                                |        |                |            |                            |                |  |  |  |  |
|-------------------------------------------------|--------|----------------|------------|----------------------------|----------------|--|--|--|--|
| FEL requirements and undulator                  |        |                |            |                            |                |  |  |  |  |
| Quantity                                        | Symbol | Baseline value | Range of e | exploration<br>Upper limit | FEL HEP Other  |  |  |  |  |
| FEL beam requirements: at entrance of undulator |        |                |            |                            |                |  |  |  |  |
| Particle type                                   | -      | e-             | e-         |                            | Transport      |  |  |  |  |
| Energy                                          | E      | 1 GeV          | 1 GeV      |                            |                |  |  |  |  |
| Charge                                          | Q      | 30 pC          | 15 pC      | 100 pC                     |                |  |  |  |  |
| Bunch length (FWHM)                             | τ      | 10 fs          | 3 fs       | 30 fs                      | 3 5<br>GeV GeV |  |  |  |  |
| Peak current                                    | l l    | 3 kA           | 3-5 kA     |                            |                |  |  |  |  |
| Repetition rate                                 | f      | 10 Hz          | 1 Hz       | 100 Hz                     | Plasma 3       |  |  |  |  |



Feedback

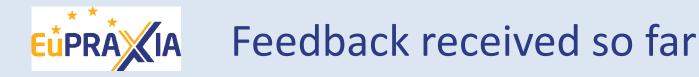


#### Initial feedback received so far


# Feedback received so far



• WP3

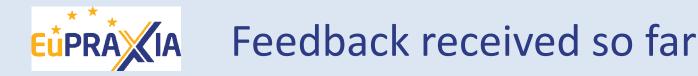

Eůpra 🏾

- Rather then having only 3 sets of tables (1, 3, 5 GeV)
- Break down tables in different cases
  - Case 1: LWFA with internal injection and acceleration to 1GeV (Case 1A) or 5 GeV (Case 1B).
  - Case 2: LWFA with external injection (LWFA) and acceleration to 1GeV (Case 2A) or 5 GeV(Case 2B).
  - Case 3: LWFA with external injection (RF) and acceleration to 1GeV (Case 3A) or 5 GeV (Case 3B).
  - Case 4: LWFA with internal injection and acceleration to 1GeV and staging to 5 GeV
  - Case 5: LWFA with external injection (LWFA) and acceleration to 1GeV and staging to 5 GeV
  - Case 6: LWFA with external injection (RF) and acceleration to 1GeV and staging to 5 GeV
  - **Case 7**: PWFA with acceleration to Case 7A:1 GeV or case7C: 5 GeV
  - **Case 8** : Hybrid scheme, LWFA with internal injection (LWFA) and acceleration to 1GeV and staging to 3 GeV





- WP4
  - Do we want to set the laser energy/pulse length?
  - What is the requirement for beam synchronization?
  - What transverse pulse shape do we need?
  - Define polarization
  - Define focal spot positions stability requirements
  - Preference for focal spot size & energy requirements, rather then Strehl ratio requirement






#### • WP5

- For current design, many transport lines are needed.
- We have to pick favourites
- Energy spread to high for beam driven case?

|                                                       |                                   |           | -         |          |  |  |  |  |
|-------------------------------------------------------|-----------------------------------|-----------|-----------|----------|--|--|--|--|
| 500 MeV - RF driver: at entrance of plasma 2 for PWFA |                                   |           |           |          |  |  |  |  |
| Energy                                                | E                                 | 500 MeV   | 300 MeV   | 500 MeV  |  |  |  |  |
| Charge                                                | Q                                 | 250 pC    | 100 pC    | 500 pC   |  |  |  |  |
| Bunch length (FWHM)                                   | τ                                 | 100 fs    | 100 fs    |          |  |  |  |  |
| Peak current per bunch                                | 1                                 | 2.5 kA    | 1 kA      | 5 kA     |  |  |  |  |
| Repetition rate                                       | f                                 | ≥ 10 Hz   | ≥ 10 Hz   |          |  |  |  |  |
| Number of bunches                                     | N                                 | ≥1        | ≥1        |          |  |  |  |  |
| Total energy spread (RMS)                             | σ <sub>E</sub> /E                 | 1%        | 1%        |          |  |  |  |  |
| Transverse normalized emittance                       | $\epsilon_{N,x}, \epsilon_{N,y}$  | 1 mm mrad | 1 mm mrad |          |  |  |  |  |
| Alpha function                                        | α <sub>x</sub> , α <sub>y</sub>   | 0         | 0         |          |  |  |  |  |
| Beta function                                         | β <sub>x</sub> , β <sub>y</sub>   | 100 mm    | 60 mm     | 100 mm   |  |  |  |  |
| Transverse beam size (RMS)                            | σ <sub>x</sub> , σ <sub>y</sub>   | 10 µm     | 10 µm     | 10 µm    |  |  |  |  |
| Transverse divergence (RMS)                           | σ <sub>x'</sub> , σ <sub>y'</sub> | 100 µrad  | 167 µrad  | 100 µrad |  |  |  |  |
| Transformer ratio                                     | R                                 | 1         | 1         | 2        |  |  |  |  |
| Jitter, beam to global reference (RMS)                | σ <sub>∆t</sub>                   | 10 fs     | 10 fs     |          |  |  |  |  |





- Stand alone comments received by email:
  - Undulator
    - No range given for the x-ray wavelength in 3 & 5 GeV table
    - Undulator length is 1.995 m (not 2m) with 15mm undulator period
    - It is sufficient to specify RMS undulator parameter. This should be enough to estimate FEL parameters
  - Electron beam
    - Can e-beam be polarized?
  - Laser/user area
    - Are HP lasers usable also in user area not only as drivers?





- This is a draft version and not yet a consistent set
- Please contribute to feedback:
  - here and now
  - via WP meeting minutes/summary
  - via email to <u>andreas.walker@desy.de</u>
- V0.1 feedback deadline: 20. September 2016
- V0.2 will be circulated: 10. October 2016
- Final version released to EU: 31. October 2016