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Mono-Jet

9A. Madsen - Direct search for dark matter in the mono-X final state with 13 TeV data | Rencontres de Moriond EW 2017 

Precise background modelling needed -
achieved through normalization of 
simulated samples in control regions.

Crucially, γ+jets (CMS) and W+jets 
(ATLAS & CMS) events are used to 
constrain the dominant and irreducible 
Z⇨νν+jets background.
 
Compared to Z⇨ll control regions alone, 
this strategy benefits from higher 
statistics, which is paid for with 
modeling uncertainties from PDF, scale 
choices, EW corrections...
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V+jets backgrounds in monojet/MET/X + jets searches

pp→Z(→νν)̅+jets  ⟹  MET + jets

irreducible backgrounds:

pp→W(→lv)+jets  ⟹  MET + jets  (lepton lost)
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Determine V+jets backgrounds
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 global fit of Z(→l l)̅+jets, W(→lν)̅+jets and ɣ+jets measurements 

•to determine Z(→νν̅)+jet 

•and the visible channels at high-pT

•theory systematics (scales, etc.) via nuisance parameters in fit 

• hardly any systematics (just QED dressing)
• very precise at low pT
• but: limited statistics at large pT

• fairly large data samples at large pT
• systematics from transfer factors

pTV

Z(→l l)̅+jets,

ɣ+jets

Z(→νν̅)+jet

W(→lν)̅+jets

dσ
/d

pT
V

1 TeV
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Goal of the ongoing study
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• Combination of state-of-the-art predictions: (N)NLO QCD+(N)NLO EW 
in order to match (future) experimental sensitivities 
(1-10% accuracy in the few hundred GeV-TeV range)  
 
 
 
 
 
 
 
 

[1] TODO (later): extend introduction:

• review of NLO EW literature: [1–4]

• review of NNLO QCD literature: [5–8]

• Add

39

2 Reweighting of Monte Carlo samples40

The reweighting of MC samples is a natural way of combining (N)LO MC sim-41

ulations with (N)NLO QCD+EW perturbative calculations and to account for42

the respective uncertainties in a systematic way. The following formula de-43

scribes the one-dimensional reweighting of MC samples for V+ jet production44

(V = �, Z,W±) in a generic variable x,45

d

dx

d

d~y
�(V )

(~"MC, ~"TH) :=
d

dx

d

d~y
�
(V )
MC(~"MC)

"
d
dx�

(V )
TH (~"TH)

d
dx�

(V )
MC(~"MC)

#
. (1)46

In the case at hand, i.e. V+ jet production, the one-dimensional parameter x47

should be understood as the vector-boson transverse momentum, x = p
(V )
T ,48

while ~y generically denotes the fully differential kinematic dependence of the49

accompanying QCD activity, and includes also extra photon radiation, as well50

as leptons and neutrinos from hadron decays. It is implicitly understood that51
d
dx

d
d~y� depends on x and ~y, while in d

dx� the variables ~y are integrated out.52

The labels MC and TH in (1) refer to Monte Carlo and higher-order theo-53

retical predictions, respectively, and the related uncertainties are parametrised54

through nuisance parameters ~"TH, ~"MC. Our recommendations for theory un-55

certainties in Sect. 4 are formulated in terms of intervals for the related nuisance56

parameters,57

"min,k < "k < "max,k, (2)58

which should be understood as 1� Gaussian uncertainties.59

[2] DISC (JL+SP): 1� or 2� Gaussian uncertainties?
========== DISCUSSED AT CERN =============
We adopt 1� but we should define the relation between nuisance
parameter and scale variation more precisely.

60

Monte Carlo uncertainties, described by ~"MC, must be correlated in the numer-61

ator and denominator on the r.h.s of (1), while they can be kept uncorrelated62

across different processes (apart from Z(⌫⌫̄) + jet and Z(`+`�) + jet).63

We note that, as opposed to an approach based only on ratios of pT distribu-64

tions, where theory is used for extrapolations across different processes at fixed65

pT, MC reweighting is more powerful as it supports all possible extrapolations66
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• Robust uncertainty estimates including 
‣ Pure QCD uncertainties 
‣ Pure EW uncertainties
‣ Mixed QCD-EW uncertainties

• Prescription for correlation of these uncertainties
‣ within a process (between low-pT and high-pT) 
‣ across processes

be directly compared to the corresponding result directly calculated from �
(V )
TH .2158

Finally, it is crucial to check that state-of-the art predictions for absolute159

d�/dpT distributions agree with data for the various visible final states.160

3 Higher-order QCD and EW predictions161

Precise theory predictions for V+ jet production require QCD and EW high-162

order corrections, mixed QCD–EW contributions, as well as photon-induced163

contributions,164

d

dx
�
(V )
TH =

d

dx
�
(V )
QCD +

d

dx
�
(V )
mix +

d

dx
��

(V )
EW +

d

dx
�
(V )
��ind.. (7)165

State-of-the art QCD and EW predictions are discussed in Sects. 3.1 and 3.2,166

while Sect. 3.3 is devoted to photon-induced channels. Mixed contributions are167

addressed in Sect. 3.5 by means of a factorised combination of QCD and EW168

corrections.169

Besides the general theoretical framework, in this section we present various170

plots that illustrate the effect of higher-order corrections and uncertainties for171

pp ! V+ jet at a centre-of-mass energy of 13 TeV. The input parameters, as well172

as the relevant selection criteria for observables involving leptons and photons,173

are specified in Section 4. As is well known, photon isolation plays a critical174

role for the behaviour of QCD corrections in �+ jet production, and for the175

correlation of QCD uncertainties between �+ jet and Z/W+ jet production.176

The issue of photon isolation is discussed in detail in Section 4.1, where we177

propose a dynamic cone isolation prescription that renders the QCD dynamics178

of pp ! �+ jet and pp ! Z/W+ jet very similar at large transverse momenta.179

This feature provides a very convenient basis for a systematic modelling of180

the correlation of QCD uncertainties between the various V+ jet production181

processes as discussed in Sects. 3.1 and 4.1.182

For the sake of a complete documentation, we present the spectra of gauge183

bosons in the range of transverse momenta above 30 GeV. We stress, however,184

that in the region of pT <⇠ 100 GeV there are potential sources of systematics185

that we are not discussing, as they would require a separate study. These arise186

from the resummation of QCD Sudakov logarithms or from non-perturbative187

effects (e.g. an order ⇤QCD average shift of the vector boson p
T

associated with188

the asymmetry of colour flow in the final state). Furthermore, as shown later, a189

reliable correlation between the W/Z spectra and the photon spectrum requires190

pT to be large enough so that vector boson mass effects become negligible.191

We also expect that in the pT regions up to few hundred GeV the statistics is192

sufficient to guarantee that experimental analyses of missing-ET backgrounds193

can entirely rely on the direct measurement of the Z spectrum measured via194

Z ! `+`�. As a result, we believe that our conclusions on the systematics195

uncertainties are most reliable, and useful for experimental applications, in the196

region of p
T

larger than 100–200 GeV.197

2This procedure should be restricted to variables x

0 that can be described with decent
accuracy both in perturbative calculations and in the MC simulations.

5

with



 
QCD effects: scale issues
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 QCD effects: scale issues

However, in order to fulfill (5), the Sudakov region (p(V )
T ⌧ MV ) should be105

excluded from the reweighting procedure. Moreover, in order to simultaneously106

fulfill conditions (5) and (6), any aspect of the reconstructed vector-boson pT107

that is better described at MC level should be excluded from the definition of108

x and included in ~y. This applies, as discussed in Sect. 6, to multiple photon109

emissions off leptons, and to possible isolation prescriptions for the soft QCD110

radiation that surrounds leptons or photons. In general, purely non-perturbative111

aspects of MC simulations, i.e. MPI, UE, hadronisation and hadron decays,112

should be systematically excluded form the definition of the reweighting variable113

x. Thus, impact and uncertainties related to this non-perturbative modelling114

will remain as in the unweighted MC samples.115

It should be stressed that the above considerations are meant for dark-matter116

searches based on the inclusive MET distribution, while more exclusive searches117

that exploit additional informations on hard jets may involve additional sub-118

tleties. In particular, for analyses that are sensitive to multi-jet emissions, using119

the inclusive vector-boson pT as reweighting variable would still fulfill (5), but120

the lack of QCD and EW corrections to V +2jet production in MC simulations121

could lead to a violation of (6). In analyses that are sensitive to the tails of122

inclusive jet-pT and HT distributions this issue is very serious, and QCD+EW123

corrections should be directly implemented at MC level using multi-jet merg-124

ing [4]. At the same time such an approach allows for a natural investigation of125

shape uncertainties.126

In general, as a sanity check of the reweighting procedure, we recommend to127

verify that, for reasonable choices of input parameters and QCD scales, (N)NLO128

QCD calculations and (N)LO merged MC predictions for vector-boson pT dis-129

tributions are in reasonably good agreement within the respective uncertainties.130

In this way one could exclude sources of MC mismodelling that could affect also131

the ratio (

d
dx

d
d~y�

(V )
MC)/(

d
dx�

(V )
MC) in (1). In addition, it is crucial to check that132

state-of-the art predictions for absolute d�/dpT distributions agree with data133

for the various visible final states.134

3 Combination of QCD and EW corrections135

A strict fixed-order implementation of QCD and EW corrections corresponds to136

d

dx
�
(V )
TH =

d

dx
�
(V )
QCD +

d

dx
�
(V )
EW +

d

dx
�
(V )
��ind., (7)137

where the QCD contribution should contain at least the LO QCD part of O(↵↵S)138

and the NLO QCD part of O(↵↵2
S), and where available also the NNLO QCD139

part of O(↵↵3
S),2140

d

dx
�
(V )
QCD =

d

dx
�
(V )
LOQCD +

d

dx
�
(V )
NLOQCD +

d

dx
�
(V )
NNLOQCD. (8)141

[3] NNLO QCD discussion still missing. See a few first comments and
considerations in see Section 8.3.

142

2In this power counting we do not include the extra factor ↵ associated with vector-boson
decays.
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this is a ‘good’ scale for V+jets  
• at large pTV: HT’/2 ≈ pTV  
• modest higher-order corrections 
• sufficient convergence

scale uncertainties due to 7-pt variations  

yields  
    O(20%) uncertainties at LO   
    O(10%) uncertainties at NLO  
    O(5%) uncertainties at NNLO

All unstable particles are treated in the complex-mass scheme [51], where width effects are
absorbed into the complex-valued renormalised masses

µ2
i = M2

i � i�iMi for i = W,Z, t,H. (2.8)

The electroweak couplings are derived from the gauge-boson masses and the Fermi constant, Gµ =
1.16637⇥ 10�5 GeV�2, using

↵ =

�����

p
2s2wµ

2
WGµ

⇡

����� , (2.9)

where the W-boson mass and the squared sine of the mixing angle,

s2w = 1� c2w = 1� µ2
W

µ2
Z

, (2.10)

are complex-valued. The Gµ-scheme guarantees an optimal description of pure SU(2) interactions
at the electroweak scale. It is the scheme of choice for W+ jets production, and it provides a very
decent description of Z+ jets production as well.

The CKM matrix is assumed to be diagonal, while colour effects and related interferences are
included throughout, without applying any large-Nc expansion.

For the calculation of hadron-level cross sections we employ the NNPDF2.3 QED parton distri-
butions [89] which include NLO QCD and LO QED effects, and we use the PDF set corresponding
to ↵S(MZ) = 0.118.3 Matrix elements are evaluated using the running strong coupling supported by
the PDFs, and, consistently with the variable flavour-number scheme implemented in the NNPDFs,
at the top threshold we switch from five to six active quark flavours in the renormalisation of ↵S.
All light quarks, including bottom quarks, are treated as massless particles, and top-quark loops
are included throughout in the calculation. The NLO PDF set is used for LO as well as for NLO
QCD and NLO EW predictions.

In all fixed-order results the renormalisation scale µR and factorisation scale µF are set to

µR,F = ⇠R,Fµ0, with µ0 = Ĥ 0
T/2 and

1

2
 ⇠R, ⇠F  2, (2.11)

where Ĥ 0
T is the scalar sum of the transverse energy of all parton-level final-state objects,

Ĥ 0
T =

X

i2{quarks,gluons}

pT,i + pT,� + ET,V . (2.12)

Also QCD partons and photons that are radiated at NLO are included in Ĥ 0
T, and the vector-boson

transverse energy, ET,V , is computed using the total (off-shell) four-momentum of the corresponding
decay products, i.e.

E2
T,Z = p2T,`` +m2

``, E2
T,W = p2T,`⌫ +m2

`⌫ . (2.13)

In order to guarantee infrared safeness at NLO EW, the scale (2.12) must be insensitive to collinear
photon emissions off quarks and leptons. To this end, all terms in (2.12)–(2.13) are computed in
terms of dressed leptons and quarks, while the pT,� term in (2.12) involves only photons that have
not been recombined with charged fermions.

Our default scale choice corresponds to ⇠R = ⇠F = 1, and theoretical fixed-order uncertainties
are assessed by applying the scale variations (⇠R, ⇠F) = (2, 2), (2, 1), (1, 2), (1, 1), (1, 0.5), (0.5, 1),
(0.5, 0.5), while theoretical uncertainties of our MEPS predictions are assessed by applying the scale
variations (⇠R, ⇠F) = (2, 2), (1, 1), (0.5, 0.5). As shown in [14–19] the scale choice (2.11) guarantees
a good perturbative convergence for V+multijet production over a wide range of observables and
energy scales.

3To be precise we use the NNPDF23_nlo_as_0118_qed set interfaced through the Lhapdf library 5.9.1 (Munich)
and 6.1.5 (Sherpa) [90].
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T is the scalar sum of the transverse energy of all parton-level final-state objects,
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Correlation of scale variations
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Correlation of scale variations

consider Z+jet / W+jet pT,V-ratio @ LO

uncorrelated treatment yields  
O(40%) uncertainties

correlated treatment yields tiny  
O(<~ 1%) uncertainties

check against NLO QCD!
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Correlation of scale variations

consider Z+jet / W+jet pT,V-ratio @ LO

uncorrelated treatment yields  
O(40%) uncertainties

correlated treatment yields tiny  
O(<~ 1%) uncertainties

check against NLO QCD!

NLO QCD corrections remarkably flat 
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Correlation of scale variations

consider Z+jet / W+jet pT,V-ratio @ LO

uncorrelated treatment yields  
O(40%) uncertainties

correlated treatment yields tiny  
O(<~ 1%) uncertainties

check against NLO QCD!

NLO QCD corrections remarkably flat 
in Z+jet / W+jet ratio!
→ supports correlated treatment of 
uncertainties!

Also holds for higher jet-multiplicities
→ indication of correlation also in 
higher-order corrections beyond NLO!
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QCD uncertainties

pT/pT,0 e�2 e�1 1 e e2

pT[TeV] 0.09 0.24 0.65 1.77 4.80

!shape(pT) -0.96 -0.75 0 0.75 0.96

Table 1: Characteristic values of the function !shape(pT) defined in (18).

where i = 0, . . . 6. The choice of doubling the rescaling factor at NNLO is234

motivated by the particularly small scale dependence at that order. Nominal235

predictions and related uncertainties are defined as the central value and the236
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Constant scale variations mainly affect the overall normalisation of pT-distribu-244

tions and tend to underestimate shape uncertainties, which play an important245

role in the extrapolation of low-pT measurements to high pT. Thus, for a rea-246

sonably conservative estimate of shape uncertainties, we introduce an additional247

variation,248

�(2)K
(V )
NkLO(x) = !shape(x) �

(1)K
(V )
NkLO(x), (17)249

where the standard scale uncertainty (17) is supplemented by a shape distortion250

!shape(x), with |!shape(x)|  1 and !shape(x) ! ±1 at high and small transverse251
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and as reference transverse momentum we choose the value pT,0 = 650GeV,254

which corresponds (in logarithmic scale) to the middle of the range of inter-255

est, 0.2–2 TeV. As illustrated in Table 1, the function !shape(x) induces asym-256

metric variations that cover ±75% of the standard scale variation band for257

pT 2 [250, 1750]GeV.258

From the viewpoint of QCD interactions, the various V+ jet production259

processes are quite similar to each other at pT,V

� M
W,Z

. However, due to the260

presence of q ! q� collinear singularities and the need to suppress them with an261

appropriate photon-isolation prescription, QCD corrections in �+ jet production262

can feature significant differences as compared to the case of pp ! W/Z+ jet. In263

Section 4.1 we introduce a dynamic photon isolation prescription that renders264

the QCD dynamics of pp ! V+ jet processes almost independent on the vector265

7

boson mass at large pT. With this dynamic photon isolation, which is used as266

default in this study, QCD K-factors and related uncertainties are very strongly267

correlated across all V+ jet processes, i.e. K(V )
NkLO(x) and �(i)K

(V )
NkLO(x) depend268

only very weakly on V at high pT.4269

The correlation of QCD uncertainties across V+ jet processes plays a key270

role in fits of the Z(! ⌫⌫̄)+ jet dark-matter background, and the quantita-271

tive understanding of such process correlations belongs to the most important272

theoretical aspects in dark matter searches. To this end, as explained in the273

following, we introduce a specific uncertainty based on the process dependence274

of the highest available term in the perturbative expansion,275

�K
(V )
NkLO(x) = K

(V )
NkLO(x)/K

(V )
Nk�1LO(x)� 1. (19)276

Specifically, as a conservative estimate of unknown process correlation effects,277

we take the difference of the known QCD K-factors with respect to Z+ jet278

production,279

�(3)K
(V )
NkLO(x) = �K

(V )
NkLO(x)��K

(Z)
NkLO(x). (20)280

In general, we do not assume that the various V+ jet production processes are281

all known at the same perturbative order, and NkLO in (20) should be under-282

stood as the highest available order for pp ! V+ jet. The process correlation283

uncertainty (20) can be assessed using the central scale (10) throughout, and284

Z+ jet production is chosen as reference process since it is strongly correlated to285

at least one other process (pp ! W+ jet) and is available up to NNLO.5 Note286

that, since the V+ jet K-factors of the same order k are strongly correlated,287

the small process-dependent parts of K-factors, �(3)K(V )
NkLO(x) ⌧ �K

(V )
NkLO, are288

downgraded from the status of known higher-order corrections to uncertain-289

ties without excessive losses of accuracy in the nominal NkLO predictions for290

individual processes.291

This modelling of process correlations assumes a close similarity of QCD292

effects between all pp ! V+ jet processes. This is achieved by means of the293

dynamic photon isolation prescription of Section 4.1, while the fact that exper-294

imental analyses employ a quite different photon isolation approach requires an295

additional �+ jet specific uncertainty discussed in Section 4.1.296

The above uncertainties can be parametrised through a set of independent297

nuisance parameters, ~"QCD, and combined using298
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NkLOQCD(~"QCD) =
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The nuisance parameters "QCD,1, "QCD,2 and "QCD,3 should be Gaussian dis-301

tributed with one standard deviation corresponding to the range "QCD,i

2302

4For what concerns process correlations, it is crucial that (apart from the MV dependence)
all V+ jet processes are evaluated using similar dynamical scales.

5Based on these criteria, W+ jet production or the average of W+ jet and Z+ jet production
are also a natural reference to measure the process dependence of QCD K-factors. However,
changing the reference process has very little impact on process correlations as the resulting
overall shift in �

(3)
K
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(x) cancels to a large extent in ratios of V+ jet cross sections.
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this modelling of process correlations assumes a close similarity of QCD 
effects between different V+jets processes
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Figure 1: Higher-order QCD predictions and uncertainties for Z(! `+`�)+jet,
W±(! `⌫)+jet, and �+jet production at 13 TeV. Absolute predictions at LO,
NLO and NNLO QCD are displayed in the main frame. In the ratio plots all re-
sults are normalised to NLO QCD, and the bands correspond to the three types
of QCD uncertainties, �(i)KNkLO, i.e. scale uncertainties according to eq. (15),
shape uncertainties according to eq. (17), and process-correlation uncertainties
according to eq. (20). Note: f2/f4 denotes factor-2 and factor-4 scale variations
at NNLO respectively. 10

pT/pT,0 e�2 e�1 1 e e2

pT[TeV] 0.09 0.24 0.65 1.77 4.80

!shape(pT) -0.96 -0.75 0 0.75 0.96

Table 1: Characteristic values of the function !shape(pT) defined in (18).

where i = 0, . . . 6. The choice of doubling the rescaling factor at NNLO is234

motivated by the particularly small scale dependence at that order. Nominal235

predictions and related uncertainties are defined as the central value and the236

width of the band resulting from the above variations. In terms of K-factors237

this corresponds to238

K
(V )
NkLO(x) =
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h

K
(V,max)
NkLO (x) +K

(V,min)
NkLO (x)

i

, (14)239

�(1)K
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NkLO(x) =
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h

K
(V,max)
NkLO (x)�K

(V,min)
NkLO (x)

i

, (15)240

with241

K
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K
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NkLO(x, ~µ

(k)
i
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o

,242
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K
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NkLO(x, ~µ

(k)
i

)|0  i  6
o

. (16)243

Constant scale variations mainly affect the overall normalisation of pT-distribu-244

tions and tend to underestimate shape uncertainties, which play an important245

role in the extrapolation of low-pT measurements to high pT. Thus, for a rea-246

sonably conservative estimate of shape uncertainties, we introduce an additional247

variation,248

�(2)K
(V )
NkLO(x) = !shape(x) �

(1)K
(V )
NkLO(x), (17)249

where the standard scale uncertainty (17) is supplemented by a shape distortion250

!shape(x), with |!shape(x)|  1 and !shape(x) ! ±1 at high and small transverse251

momentum, respectively. The function !shape is defined as252

!shape(x) = tanh



ln

✓

pT
pT,0

◆�

=
p2T � p2T,0

p2T + p2T,0

, (18)253

and as reference transverse momentum we choose the value pT,0 = 650GeV,254

which corresponds (in logarithmic scale) to the middle of the range of inter-255

est, 0.2–2 TeV. As illustrated in Table 1, the function !shape(x) induces asym-256

metric variations that cover ±75% of the standard scale variation band for257

pT 2 [250, 1750]GeV.258

From the viewpoint of QCD interactions, the various V+ jet production259

processes are quite similar to each other at pT,V

� M
W,Z

. However, due to the260

presence of q ! q� collinear singularities and the need to suppress them with an261

appropriate photon-isolation prescription, QCD corrections in �+ jet production262

can feature significant differences as compared to the case of pp ! W/Z+ jet. In263

Section 4.1 we introduce a dynamic photon isolation prescription that renders264

the QCD dynamics of pp ! V+ jet processes almost independent on the vector265

7

• 

• 

with !shape(x) =
p

2
T � p

2
T,0

p

2
T + p

2
T,0

✏(Z)
QCD,i = ✏(W

±)
QCD,i = ✏(�)QCD,i = ✏QCD,i

• fully correlated across processes
• correlated across pT bins

• 
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QCD uncertainties in pT-ratios
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as unresolved. Instead, a photon isolation prescription is mandatory in order to728

prevent uncancelled singularities from q ! q� splittings in the O(↵2↵S) mixed729

EW–QCD contributions from qq ! qq� and crossing-related channels.730

As a consequence of q ! q� collinear singularities and the need to apply731

a photon isolation prescription, QCD corrections to pp ! �+ jet behave dif-732

ferently as compared to Z/W+ jet production. A quantitative understanding733

of this difference and its implications on the correlation of QCD uncertainties734

between �+ jet and Z+ jet production is crucial for the extrapolation of �+ jet735

measurements to Z+ jet dark-matter backgrounds. At the TeV scale, where736

pT,V

� M
W,Z

, one might naively expect that differences between massive and737

massless vector bosons tend to disappear from the viewpoint of QCD dynamics.738

However, the presence of collinear q ! qV singularities at (N)NLO QCD implies739

a logarithmic sensitivity to the vector-boson masses, which results, respectively740

in ln(pT,V

/M
V

) and ln(R0) terms for the case of massive vector bosons and741

photons.742

In the following, in order to quantify the correlation of QCD uncertainties743

across different V+ jet processes, we propose a systematic approach to isolate744

QCD effects that are process independent (at large pT,V

) from �+ jet specific745

ones. To this end we introduce an alternative photon isolation prescription,746

which is designed such as to render the QCD dynamics of �+ jet and Z/W+ jet747

production as similar as possible at high pT. To this end we introduce a dynamic748

cone radius749

Rdyn(ET,�

, "0) =
M

Z

ET,�

p
"0

, (51)750

which is chosen in such a way that the invariant mass of a photon-jet pair with751

R
�j

= Rdyn and ET,j

= "0ET,�

corresponds to the Z-boson mass, i.e.752

M2
�j

' ET,�

ET,j

R2
�j

= "0E
2
T,�

R2
dyn = M2

Z

. (52)753

where the first identity is valid in the small-R approximation. In this way, using754

a smooth isolation with R0 = Rdyn(ET,�

, "0) mimics the role of the Z- and755

W -boson masses as regulators of collinear singularities in Z/W+jet production756

at high pT, while using a fixed cone radius R0 would correspond to an effective757

M
�j

cut well beyond M
Z,W

, resulting is a more pronounced suppression of QCD758

radiation in �+ jet production as compared to Z/W+ jet.759

Specifically, as default photon selection for the theoretical predictions13 in760

this study we use the dynamic cone isolation defined through eqs. (50) and (51),761

with parameters762

"0,dyn = 0.1, ndyn = 1, R0,dyn = min {1.0, Rdyn(ET,�

, "dyn,0)} . (53)763

Note that, in order to prevent that the veto against collinear QCD radation is764

applied to an excessively large region of phase space, the dynamic cone radius765

in (53) is limited to Rdyn  1.0. As a result of this upper bound, for ET,�

<766

M
Z

"
�1/2
0,dyn ' 290GeV the cone radius is kept fixed, and the impact of collinear767

QCD radiation starts to be significantly enhanced as compared to the case of768

Z/W+ jet production. Vice versa, for ET,�

> M
Z

"
�1/2
0,dyn, thanks to the dynamic769

13The same isolation prescription used for theory predictions should be applied also to their
MC counterparts d�MC/rdx in the context of the reweighting procedure.

27

this modelling of process correlations assumes a close similarity of QCD  effects between all V+jets processes

• apart from PDF effects it is the case for W+jets vs. Z+jets  

• at large pT is is also the case for ɣ+jets vs. Z+jets. In particular with dynamical cone
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Pure EW uncertainties

14

EW corrections become sizeable  
at large pT,V

Origin: virtual EW Sudakov logarithms

How to estimate corresponding pure 
EW uncertainties of relative           ?  

[7] TODO (): We should test the degree of correlation of QCD cor-
rections/uncertainties (and resulting cancellation in ratios) by means of
NLO studies. Afterwards, if possible, also through NNLO K-factors.

223

4.2 Pure EW uncertainties of relative O(↵2)224

First of all, note that for each process the corresponding QCD predictions and225

EW corrections should be computed in the same EW input scheme, otherwise226

NLO EW accuracy could be spoiled (here one should be especially careful if227

(N)NLO QCD and NLO EW corrections are computed with different tools).228

As a conservative estimate of missing higher-order EW effects we propose to229

take 10% of the NLO EW correction plus 50% of the 2-loop NLL Sudakov logs,230

i.e.231

d

dx
�
(V )
EW(~"EW, ~"QCD) = (1� 0.1 "EW,1)

d

dx
�
(V )
NLOEW(~"QCD)232

+ (1 + 0.5 "EW,2)
d

dx
�
(V )
NNLOEW(~"QCD), (15)233

with nuisance parameters "EW,i 2 [�1, 1]. The first term (0.1 "EW,1) is supposed234

to describe uncertainties of order ↵ times the NLO EW correction, which are235

not included in the NLL Sudakov approximation. The second term (0.5 "EW,2)236

mimics further uncertainties of the NLL two-loop approximation as well as the237

lack of Sudakov resummation. For instance, in the extreme scenario of an NLO238

EW correction �NLO = �50%, the expected NNLO EW Sudakov correction239

(based on exponentiation) amounts (assuming "EW,1 = "EW,2) to �NNLO =240

��2NLO/2 = 12.5%, and our uncertainty estimate to �0.1�NLO + 0.5�NNLO =241

5% + 6.25% ' 11%, while the unknown N3NLO EW terms are expected to be242

as small as �NNNLO = �3NLO/6 = �NLO�NNLO/3 ' 2%.243

[8] The above prescription is still under discussion: see Sect.8.1

244

Given the universal nature of Sudakov EW corrections and the fact that245

pp ! V j involves only very few independent EW coupling structures, it is nat-246

ural to assume that the known NLO+NNLO EW corrections and the unknown247

higher-order effects depend on the process (V = W±, Z, �) in a very similar248

way. Thus we recommend to vary the nuisance parameters ~"EW in eq. (15) in a249

correlated way across processes.250

8
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included as separate VV(+jets)  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Z+jet

Large EW corrections 
dominated by Sudakov logs 

Pure EW uncertainties430

Assuming that the NLL Sudakov approximation at NNLO is comparably accu-431

rate as at NLO, we can consider unknown Sudakov logarithms beyond NNLO as432

the dominant source of EW uncertainty at high pT. Such O(↵3) Sudakov terms433

can be easily estimated via naive exponentiation, which implies the following434

relations between NLO, NNLO and NNNLO terms,435

�
(2)
Sud ' 1

2

h

�
(1)
Sud

i2
,436

�
(3)
Sud ' 1

3!

h

�
(1)
Sud

i3
' 1

3
�
(1)
Sud �

(2)
Sud. (33)437

Based on these relations, we estimate the uncertainty due to unknown high-pT438

EW effects beyond NNLO as439

�(1)
(V )
EW(x) = �

(V )
NNLOSud(x) =

2

3

(V )
NLOEW(x)

(V )
NNLOSud(x), (34)440

which is an approximate implementation of eq. (33), obtained by neglecting441

effects from angular integration and multiplying the term �
(3)
Sud by a factor two,442

in order to be conservative. This rough estimate can be validated at NLO, where443

the uncertainty due to missing NNLO Sudakov effect, estimated with the naive444

exponentiation approach,445

�(1)
(V )
EW(x) = �

(V )
NLOEW(x) =

2

2

h


(V )
NLOEW(x)

i2
, (35)446

can be compared to the known NLL Sudakov results at NNLO. This is illustrated447

in Fig. 4, which demonstrates that eq. (35) (see green band) provides a fairly448

realistic estimate of NNLO EW corrections. The expected effects beyond NNLO,449

estimated according to eq. (34) turn out to be around ±5% in the multi-TeV450

tails.451

Besides Sudakov exponentiation effects, we introduce a second source of452

uncertainty, defined as 5% of the full NLO EW correction,453

�(2)
(V )
EW(x) = 0.05

(V )
NLOEW(x). (36)454

This type of uncertainty has a twofold motivation. At high pT, it accounts for455

unknown terms of order ↵2 ln2
⇣

Q

2

M

2

⌘

that can arise from effects of the form456

⇣↵

⇡

⌘2
�
(1)
hard �

(1)
Sud = NLO hard NLO Sud ' NLO hard NLOEW. (37)457

Here, in general, the non-Sudakov factor NLO hard = (↵
⇡

)�
(1)
hard can amount to458

several percent, due e.g. to photon-bremstrahlung effects in highly exclusive459

observables. However, for the boson-pT distributions considered in this pa-460

per, the quality of the Sudakov approximation observed in Fig. 4 indicates that461

NLO hard is very small. Nevertheless, to be conservative, the uncertainty (36)462

can accomodate effects as large as NLO hard = 5%.463

As a second motivation, besides unknown logarithmically enhanced terms,464

the uncertainty (36) can account also for NNLO effects of type
�

↵

⇡

�2
�
(2)
hard. In465

this perspective, eq. (36) amounts to a bound on hard NNLO effects,466

⇣↵

⇡

⌘2
�
(2)
hard  0.05NLOEW = 0.05

⇣↵

⇡

⌘

�
(1)
hard, (38)467
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Uncertainty estimate of NLO EW 
from naive exponentiation x 2:

↵(L2 + L1)

where �, � and ⇠ are anomalous dimensions depending on the EW quantum394

numbers of the scattering particles. The hard cross section has the form395

d�hard =



1 +
↵

⇡
�
(1)
hard +

⇣↵

⇡

⌘2
�
(2)
hard + . . .

�

d�Born, (28)396

and the correction factors �
(k)
hard are finite in the limit Q2/M2

W

! 1, while397

EW Sudakov logarithms of type ↵m lnn
�

Q2/M2
W

�

are factorised in the expo-398

nential. Expanding in ↵ = ↵(M2) with �
i

(↵) = ↵

⇡

�
(1)
i

+ . . . , and ↵(t) =399

↵
⇥

1 + ↵

⇡

b(1) ln
�

t

M

2

�

+ . . .
⇤

yields400

exp

⇢

. . .

�

= 1 +
↵

⇡
�
(1)
Sud +

⇣↵

⇡

⌘2
�
(2)
Sud + . . . . (29)401

At NLL level, which is the logarithmic accuracy at which NNLO Sudakov effects402

are known for V+ jet production [12–16], the following types of logarithms are403

available,9404

�
(1)
Sud =

X

i,j

C
(1)
2,ij ln

2

 

Q2
ij

M2

!

+ C
(1)
1 ln1

✓

Q2

M2

◆

,405

�
(2)
Sud =

X

i,j

C
(2)
4,ij ln

4

 

Q2
ij

M2

!

+ C
(2)
3 ln3

✓

Q2

M2

◆

+O


ln2
✓

Q2

M2

◆�

, (30)406

where M = M
W

⇠ M
Z

, Q2
ij

= |(p̂
i

±p̂
j

)2| are the various Mandelstam invariants407

built from the hard momenta p̂
i

of the V+ jet production process and Q2 =408

Q2
12 = ŝ.409

In this work we will employ the explicit NLL Sudakov results of [12–16],410

which have been implemented, in addition to exact NLO QCD+NLO EW am-411

plitudes, in the OpenLoops matrix-element generator [4, 17]. Let us recall412

that the results of [12–16] are based on the high-energy limit of virtual one- and413

two-loop corrections regularised with a fictitious photon mass of order M
W

.414

This generates logarithms of the form ↵n lnk(ŝ/M2
W

) that correspond to the415

combination of virtual one- and two-loop EW corrections plus corresponding416

photon radiation contributions up to an effective cut-off scale of order M
W

. In417

the case of V+ jet production, for physical observables that are inclusive with418

respect to photon radiation, this approximation is accurate at the one-percent419

level [13, 16, 18].420

In this work we will employ full EW results at NLO and NLL Sudakov loga-421

rithms at NNLO. In the notation of eq. (24)-(26), for fully-differential partonic422

cross sections, this implies423

NLOEW(ŝ, t̂) =
↵

⇡

h

�
(1)
hard + �

(1)
Sud

i

, (31)424

NNLOSud(ŝ, t̂) =
⇣↵

⇡

⌘2
�
(2)
Sud. (32)425

Transverse-momentum distributions including exact NLO EW corrections and426

Sudakov logarithms at NLO and NNLO are shown in Fig. 4, which confirms427

that the accuracy of the Sudakov approximation at NLO is very high, thereby428

supporting the usage of EW Sudakov logarithms at NNLO.429

9At NLO, EW corrections are known exactly and also NNLL asymptotic expansions [12–16]
are available.
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Pure EW uncertainties430

Assuming that the NLL Sudakov approximation at NNLO is comparably accu-431

rate as at NLO, we can consider unknown Sudakov logarithms beyond NNLO as432

the dominant source of EW uncertainty at high pT. Such O(↵3) Sudakov terms433

can be easily estimated via naive exponentiation, which implies the following434

relations between NLO, NNLO and NNNLO terms,435

�
(2)
Sud ' 1

2

h

�
(1)
Sud

i2
,436

�
(3)
Sud ' 1

3!

h

�
(1)
Sud

i3
' 1

3
�
(1)
Sud �

(2)
Sud. (33)437

Based on these relations, we estimate the uncertainty due to unknown high-pT438

EW effects beyond NNLO as439

�(1)
(V )
EW(x) = �

(V )
NNLOSud(x) =

2

3

(V )
NLOEW(x)

(V )
NNLOSud(x), (34)440

which is an approximate implementation of eq. (33), obtained by neglecting441

effects from angular integration and multiplying the term �
(3)
Sud by a factor two,442

in order to be conservative. This rough estimate can be validated at NLO, where443

the uncertainty due to missing NNLO Sudakov effect, estimated with the naive444

exponentiation approach,445

�(1)
(V )
EW(x) = �

(V )
NLOEW(x) =

2

2

h


(V )
NLOEW(x)

i2
, (35)446

can be compared to the known NLL Sudakov results at NNLO. This is illustrated447

in Fig. 4, which demonstrates that eq. (35) (see green band) provides a fairly448

realistic estimate of NNLO EW corrections. The expected effects beyond NNLO,449

estimated according to eq. (34) turn out to be around ±5% in the multi-TeV450

tails.451

Besides Sudakov exponentiation effects, we introduce a second source of452

uncertainty, defined as 5% of the full NLO EW correction,453

�(2)
(V )
EW(x) = 0.05

(V )
NLOEW(x). (36)454

This type of uncertainty has a twofold motivation. At high pT, it accounts for455

unknown terms of order ↵2 ln2
⇣

Q

2

M

2

⌘

that can arise from effects of the form456

⇣↵

⇡

⌘2
�
(1)
hard �

(1)
Sud = NLO hard NLO Sud ' NLO hard NLOEW. (37)457

Here, in general, the non-Sudakov factor NLO hard = (↵
⇡

)�
(1)
hard can amount to458

several percent, due e.g. to photon-bremstrahlung effects in highly exclusive459

observables. However, for the boson-pT distributions considered in this pa-460

per, the quality of the Sudakov approximation observed in Fig. 4 indicates that461

NLO hard is very small. Nevertheless, to be conservative, the uncertainty (36)462

can accomodate effects as large as NLO hard = 5%.463

As a second motivation, besides unknown logarithmically enhanced terms,464

the uncertainty (36) can account also for NNLO effects of type
�

↵

⇡

�2
�
(2)
hard. In465

this perspective, eq. (36) amounts to a bound on hard NNLO effects,466

⇣↵

⇡

⌘2
�
(2)
hard  0.05NLOEW = 0.05

⇣↵

⇡

⌘

�
(1)
hard, (38)467
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where �, � and ⇠ are anomalous dimensions depending on the EW quantum394

numbers of the scattering particles. The hard cross section has the form395

d�hard =



1 +
↵

⇡
�
(1)
hard +

⇣↵

⇡

⌘2
�
(2)
hard + . . .

�

d�Born, (28)396

and the correction factors �
(k)
hard are finite in the limit Q2/M2

W

! 1, while397

EW Sudakov logarithms of type ↵m lnn
�

Q2/M2
W

�

are factorised in the expo-398

nential. Expanding in ↵ = ↵(M2) with �
i

(↵) = ↵

⇡
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+ . . . , and ↵(t) =399

↵
⇥

1 + ↵

⇡

b(1) ln
�

t

M

2

�

+ . . .
⇤

yields400

exp

⇢

. . .

�

= 1 +
↵

⇡
�
(1)
Sud +

⇣↵

⇡

⌘2
�
(2)
Sud + . . . . (29)401

At NLL level, which is the logarithmic accuracy at which NNLO Sudakov effects402

are known for V+ jet production [12–16], the following types of logarithms are403

available,9404

�
(1)
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C
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where M = M
W

⇠ M
Z

, Q2
ij

= |(p̂
i

±p̂
j

)2| are the various Mandelstam invariants407

built from the hard momenta p̂
i

of the V+ jet production process and Q2 =408

Q2
12 = ŝ.409

In this work we will employ the explicit NLL Sudakov results of [12–16],410

which have been implemented, in addition to exact NLO QCD+NLO EW am-411

plitudes, in the OpenLoops matrix-element generator [4, 17]. Let us recall412

that the results of [12–16] are based on the high-energy limit of virtual one- and413

two-loop corrections regularised with a fictitious photon mass of order M
W

.414

This generates logarithms of the form ↵n lnk(ŝ/M2
W

) that correspond to the415

combination of virtual one- and two-loop EW corrections plus corresponding416

photon radiation contributions up to an effective cut-off scale of order M
W

. In417

the case of V+ jet production, for physical observables that are inclusive with418

respect to photon radiation, this approximation is accurate at the one-percent419

level [13, 16, 18].420

In this work we will employ full EW results at NLO and NLL Sudakov loga-421

rithms at NNLO. In the notation of eq. (24)-(26), for fully-differential partonic422

cross sections, this implies423

NLOEW(ŝ, t̂) =
↵

⇡

h

�
(1)
hard + �

(1)
Sud

i

, (31)424

NNLOSud(ŝ, t̂) =
⇣↵

⇡

⌘2
�
(2)
Sud. (32)425

Transverse-momentum distributions including exact NLO EW corrections and426

Sudakov logarithms at NLO and NNLO are shown in Fig. 4, which confirms427

that the accuracy of the Sudakov approximation at NLO is very high, thereby428

supporting the usage of EW Sudakov logarithms at NNLO.429

9At NLO, EW corrections are known exactly and also NNLL asymptotic expansions [12–16]
are available.
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Assuming that the NLL Sudakov approximation at NNLO is comparably accu-431

rate as at NLO, we can consider unknown Sudakov logarithms beyond NNLO as432

the dominant source of EW uncertainty at high pT. Such O(↵3) Sudakov terms433

can be easily estimated via naive exponentiation, which implies the following434

relations between NLO, NNLO and NNNLO terms,435

�
(2)
Sud ' 1
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,436

�
(3)
Sud ' 1
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Sud. (33)437

Based on these relations, we estimate the uncertainty due to unknown high-pT438

EW effects beyond NNLO as439

�(1)
(V )
EW(x) = �

(V )
NNLOSud(x) =

2

3

(V )
NLOEW(x)

(V )
NNLOSud(x), (34)440

which is an approximate implementation of eq. (33), obtained by neglecting441

effects from angular integration and multiplying the term �
(3)
Sud by a factor two,442

in order to be conservative. This rough estimate can be validated at NLO, where443

the uncertainty due to missing NNLO Sudakov effect, estimated with the naive444

exponentiation approach,445

�(1)
(V )
EW(x) = �

(V )
NLOEW(x) =

2

2

h


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NLOEW(x)

i2
, (35)446

can be compared to the known NLL Sudakov results at NNLO. This is illustrated447

in Fig. 4, which demonstrates that eq. (35) (see green band) provides a fairly448

realistic estimate of NNLO EW corrections. The expected effects beyond NNLO,449

estimated according to eq. (34) turn out to be around ±5% in the multi-TeV450

tails.451

Besides Sudakov exponentiation effects, we introduce a second source of452

uncertainty, defined as 5% of the full NLO EW correction,453

�(2)
(V )
EW(x) = 0.05

(V )
NLOEW(x). (36)454

This type of uncertainty has a twofold motivation. At high pT, it accounts for455

unknown terms of order ↵2 ln2
⇣
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2
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that can arise from effects of the form456
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Sud = NLO hard NLO Sud ' NLO hard NLOEW. (37)457

Here, in general, the non-Sudakov factor NLO hard = (↵
⇡

)�
(1)
hard can amount to458
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built from the hard momenta p̂
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of the V+ jet production process and Q2 =408
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In this work we will employ the explicit NLL Sudakov results of [12–16],410

which have been implemented, in addition to exact NLO QCD+NLO EW am-411

plitudes, in the OpenLoops matrix-element generator [4, 17]. Let us recall412

that the results of [12–16] are based on the high-energy limit of virtual one- and413

two-loop corrections regularised with a fictitious photon mass of order M
W

.414

This generates logarithms of the form ↵n lnk(ŝ/M2
W

) that correspond to the415

combination of virtual one- and two-loop EW corrections plus corresponding416

photon radiation contributions up to an effective cut-off scale of order M
W

. In417

the case of V+ jet production, for physical observables that are inclusive with418

respect to photon radiation, this approximation is accurate at the one-percent419

level [13, 16, 18].420

In this work we will employ full EW results at NLO and NLL Sudakov loga-421

rithms at NNLO. In the notation of eq. (24)-(26), for fully-differential partonic422

cross sections, this implies423
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Sud. (32)425

Transverse-momentum distributions including exact NLO EW corrections and426

Sudakov logarithms at NLO and NNLO are shown in Fig. 4, which confirms427

that the accuracy of the Sudakov approximation at NLO is very high, thereby428

supporting the usage of EW Sudakov logarithms at NNLO.429

9At NLO, EW corrections are known exactly and also NNLL asymptotic expansions [12–16]
are available.
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12 = ŝ.409

In this work we will employ the explicit NLL Sudakov results of [12–16],410

which have been implemented, in addition to exact NLO QCD+NLO EW am-411

plitudes, in the OpenLoops matrix-element generator [4, 17]. Let us recall412

that the results of [12–16] are based on the high-energy limit of virtual one- and413

two-loop corrections regularised with a fictitious photon mass of order M
W

.414

This generates logarithms of the form ↵n lnk(ŝ/M2
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Large EW corrections 
dominated by Sudakov logs 

Pure EW uncertainties430

Assuming that the NLL Sudakov approximation at NNLO is comparably accu-431

rate as at NLO, we can consider unknown Sudakov logarithms beyond NNLO as432

the dominant source of EW uncertainty at high pT. Such O(↵3) Sudakov terms433

can be easily estimated via naive exponentiation, which implies the following434
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Based on these relations, we estimate the uncertainty due to unknown high-pT438

EW effects beyond NNLO as439
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which is an approximate implementation of eq. (33), obtained by neglecting441

effects from angular integration and multiplying the term �
(3)
Sud by a factor two,442

in order to be conservative. This rough estimate can be validated at NLO, where443

the uncertainty due to missing NNLO Sudakov effect, estimated with the naive444

exponentiation approach,445
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can be compared to the known NLL Sudakov results at NNLO. This is illustrated447

in Fig. 4, which demonstrates that eq. (35) (see green band) provides a fairly448

realistic estimate of NNLO EW corrections. The expected effects beyond NNLO,449

estimated according to eq. (34) turn out to be around ±5% in the multi-TeV450

tails.451

Besides Sudakov exponentiation effects, we introduce a second source of452

uncertainty, defined as 5% of the full NLO EW correction,453
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Here, in general, the non-Sudakov factor NLO hard = (↵
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(1)
hard can amount to458

several percent, due e.g. to photon-bremstrahlung effects in highly exclusive459

observables. However, for the boson-pT distributions considered in this pa-460

per, the quality of the Sudakov approximation observed in Fig. 4 indicates that461

NLO hard is very small. Nevertheless, to be conservative, the uncertainty (36)462

can accomodate effects as large as NLO hard = 5%.463

As a second motivation, besides unknown logarithmically enhanced terms,464

the uncertainty (36) can account also for NNLO effects of type
�

↵
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hard. In465

this perspective, eq. (36) amounts to a bound on hard NNLO effects,466
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available,9404
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where M = M
W

⇠ M
Z

, Q2
ij

= |(p̂
i

±p̂
j

)2| are the various Mandelstam invariants407

built from the hard momenta p̂
i

of the V+ jet production process and Q2 =408

Q2
12 = ŝ.409

In this work we will employ the explicit NLL Sudakov results of [12–16],410

which have been implemented, in addition to exact NLO QCD+NLO EW am-411

plitudes, in the OpenLoops matrix-element generator [4, 17]. Let us recall412

that the results of [12–16] are based on the high-energy limit of virtual one- and413

two-loop corrections regularised with a fictitious photon mass of order M
W

.414

This generates logarithms of the form ↵n lnk(ŝ/M2
W

) that correspond to the415

combination of virtual one- and two-loop EW corrections plus corresponding416

photon radiation contributions up to an effective cut-off scale of order M
W

. In417

the case of V+ jet production, for physical observables that are inclusive with418

respect to photon radiation, this approximation is accurate at the one-percent419

level [13, 16, 18].420

In this work we will employ full EW results at NLO and NLL Sudakov loga-421

rithms at NNLO. In the notation of eq. (24)-(26), for fully-differential partonic422

cross sections, this implies423

NLOEW(ŝ, t̂) =
↵

⇡

h

�
(1)
hard + �

(1)
Sud

i

, (31)424

NNLOSud(ŝ, t̂) =
⇣↵

⇡

⌘2
�
(2)
Sud. (32)425

Transverse-momentum distributions including exact NLO EW corrections and426

Sudakov logarithms at NLO and NNLO are shown in Fig. 4, which confirms427

that the accuracy of the Sudakov approximation at NLO is very high, thereby428

supporting the usage of EW Sudakov logarithms at NNLO.429

9At NLO, EW corrections are known exactly and also NNLL asymptotic expansions [12–16]
are available.
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Assuming that the NLL Sudakov approximation at NNLO is comparably accu-431

rate as at NLO, we can consider unknown Sudakov logarithms beyond NNLO as432

the dominant source of EW uncertainty at high pT. Such O(↵3) Sudakov terms433

can be easily estimated via naive exponentiation, which implies the following434

relations between NLO, NNLO and NNNLO terms,435

�
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i2
,436
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�
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Based on these relations, we estimate the uncertainty due to unknown high-pT438

EW effects beyond NNLO as439

�(1)
(V )
EW(x) = �

(V )
NNLOSud(x) =

2

3

(V )
NLOEW(x)

(V )
NNLOSud(x), (34)440

which is an approximate implementation of eq. (33), obtained by neglecting441

effects from angular integration and multiplying the term �
(3)
Sud by a factor two,442

in order to be conservative. This rough estimate can be validated at NLO, where443

the uncertainty due to missing NNLO Sudakov effect, estimated with the naive444

exponentiation approach,445

�(1)
(V )
EW(x) = �

(V )
NLOEW(x) =

2

2

h


(V )
NLOEW(x)

i2
, (35)446

can be compared to the known NLL Sudakov results at NNLO. This is illustrated447

in Fig. 4, which demonstrates that eq. (35) (see green band) provides a fairly448

realistic estimate of NNLO EW corrections. The expected effects beyond NNLO,449

estimated according to eq. (34) turn out to be around ±5% in the multi-TeV450

tails.451

Besides Sudakov exponentiation effects, we introduce a second source of452

uncertainty, defined as 5% of the full NLO EW correction,453

�(2)
(V )
EW(x) = 0.05

(V )
NLOEW(x). (36)454

This type of uncertainty has a twofold motivation. At high pT, it accounts for455

unknown terms of order ↵2 ln2
⇣

Q

2

M

2

⌘

that can arise from effects of the form456

⇣↵

⇡

⌘2
�
(1)
hard �

(1)
Sud = NLO hard NLO Sud ' NLO hard NLOEW. (37)457

Here, in general, the non-Sudakov factor NLO hard = (↵
⇡

)�
(1)
hard can amount to458

several percent, due e.g. to photon-bremstrahlung effects in highly exclusive459

observables. However, for the boson-pT distributions considered in this pa-460

per, the quality of the Sudakov approximation observed in Fig. 4 indicates that461

NLO hard is very small. Nevertheless, to be conservative, the uncertainty (36)462

can accomodate effects as large as NLO hard = 5%.463

As a second motivation, besides unknown logarithmically enhanced terms,464

the uncertainty (36) can account also for NNLO effects of type
�

↵

⇡

�2
�
(2)
hard. In465

this perspective, eq. (36) amounts to a bound on hard NNLO effects,466

⇣↵

⇡

⌘2
�
(2)
hard  0.05NLOEW = 0.05

⇣↵

⇡

⌘

�
(1)
hard, (38)467
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Figure 5: NLO EW (left) and NLO EW+ NNLO Sudakov (right) -factors for
the various pp ! V+ jet processes at 13 TeV. The related uncertainties according
to eqs. (34), (36), and (39), are displayed as ratios �(i)

(V )
EW, which correspond

to the relative impact of EW uncertainties on pT distributions. The uncertainty
�(2)

(V )
EW at NLO EW is based on the corresponding lower perturbative order,

i.e. �(2)
(V )
EW = 0.05, while the uncertainty �(3)

(V )
EW is not defined at NLO EW.

which corresponds to a rather conservative bound, �(2)hard  0.05⇡
↵

�
(1)
hard ' 20 �

(1)
hard,468

that should account also for situations where the NLO hard corretion is acci-469

dentally small with respect to its NNLO counterpart.470

In order to account for the limitations of the Sudakov approximation at471

NNLO in a sufficiently conservative way, we introduce an additional source of472

uncertainty defined as the difference between the rigorous NLL Sudakov approx-473

imation (32) and a naive exponentiation of the full NLO EW correction,474
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This expression provides an estimate of the typical size of terms of type
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i2
476

and �
(1)
hard ⇥ �
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Sud.477

In Fig. 4 we show absolute predictions and higher-order EW corrections478

at NLO and NNLO to the transverse-momentum distribution for the different479
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the various pp ! V+ jet processes at 13 TeV. The related uncertainties according
to eqs. (34), (36), and (39), are displayed as ratios �(i)

(V )
EW, which correspond

to the relative impact of EW uncertainties on pT distributions. The uncertainty
�(2)

(V )
EW at NLO EW is based on the corresponding lower perturbative order,

i.e. �(2)
(V )
EW = 0.05, while the uncertainty �(3)

(V )
EW is not defined at NLO EW.

which corresponds to a rather conservative bound, �(2)hard  0.05⇡
↵

�
(1)
hard ' 20 �

(1)
hard,468

that should account also for situations where the NLO hard corretion is acci-469

dentally small with respect to its NNLO counterpart.470

In order to account for the limitations of the Sudakov approximation at471

NNLO in a sufficiently conservative way, we introduce an additional source of472

uncertainty defined as the difference between the rigorous NLL Sudakov approx-473

imation (32) and a naive exponentiation of the full NLO EW correction,474

�(3)
(V )
EW(x) = 

(V )
NNLOSud(x)�

1

2
[

(V )
NLOEW(x)]2. (39)475

This expression provides an estimate of the typical size of terms of type
h

�
(1)
hard

i2
476

and �
(1)
hard ⇥ �

(1)
Sud.477

In Fig. 4 we show absolute predictions and higher-order EW corrections478

at NLO and NNLO to the transverse-momentum distribution for the different479
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Additional uncorrelated uncertainties:
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Pure EW uncertainties
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mixed QCD-EW effects
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Mixed QCD-EW uncertainties
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Here j1 denotes the first jet, while the total transverse energy Htot
T is defined in terms of the jet

and W -boson transverse momenta12 as

Htot
T = pT,W +

X

k

pT,jk , (6.3)

where all jets that satisfy (6.1) are included.
Our default NLO results are obtained by combining QCD and EW predictions,

�NLO
QCD = �LO + ��NLO

QCD, �NLO
EW = �LO + ��NLO

EW , (6.4)

with a standard additive prescription

�NLO
QCD+EW = �LO + ��NLO

QCD + ��NLO
EW , (6.5)

where ��NLO
QCD and ��NLO

EW correspond to pp ! W + n-jet contributions of O(↵n+1
S ↵) and O(↵n

S↵
2),

respectively. As LO contributions, in Sections 6.1–6.3 only the leading-QCD terms of O(↵n
S↵) will

be included, while LO EW–QCD mixed and photon-induced terms of O(↵n�1
S ↵2) will be discussed

in Section 6.4. In order to identify potentially large effects due to the interplay of EW and QCD
corrections beyond NLO, we will also consider the following factorised combination of EW and
QCD corrections,

�NLO
QCD⇥EW = �NLO

QCD

✓
1 +

��NLO
EW

�LO

◆
= �NLO

EW

 
1 +

��NLO
QCD

�LO

!
. (6.6)

If this approach can be justified by a clear separation of scales—such as in situations where QCD
corrections are dominated by soft interactions well below the EW scale—the factorised formula
(6.6) can be regarded as an improved prediction. Otherwise, the difference between (6.5) and (6.6)
should be considered as an estimate of unknown higher-order corrections.

In the following sections, we will present QCD+EW and QCD⇥EW NLO corrections relative
to �NLO

QCD, which corresponds to the ratios

�NLO
QCD+EW

�NLO
QCD

=

 
1 +

��NLO
EW

�NLO
QCD

!
, (6.7)

�NLO
QCD⇥EW

�NLO
QCD

=

✓
1 +

��NLO
EW

�LO

◆
. (6.8)

Note that the QCD⇥EW ratio (6.8) corresponds to the usual NLO EW correction relative to LO,
which is free from NLO QCD effects, while the QCD+EW ratio (6.7) depends on �NLO

QCD. In particu-
lar, for observables that receive large NLO QCD corrections, the relative QCD+EW correction can
be drastically suppressed as compared to the QCD⇥EW one. This feature is typically encountered
in observables that receive huge QCD corrections of real-emission type. In such situations, NLO
QCD+EW predictions for pp ! W +n jets are dominated by tree-level contributions with one extra
jet, and the inclusion of NLO QCD+EW corrections for pp ! W +(n+1) jets becomes mandatory.

6.1 W+ + 1 jet

Among the various W+(multi)jet production processes, the inclusive production of a W boson
in association with (at least) one jet is the one that features the strongest sensitivity to NLO
QCD radiation. This is clearly illustrated by the results shown in Figures 13–14 and Table 2. In
particular, large NLO QCD effects arise in the tails of the inclusive distributions in the W -boson and

12Note that at variance with the definition (5.3) of ˆHT, here we use transverse momenta and not transverse energies.
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Difference between these two approaches indicates 
size of missing mixed EW-QCD corrections.

Given QCD and EW corrections are sizeable, also 
mixed QCD-EW uncertainties of relative             
have to be considered.

O(↵↵s)

However, for dominant Sudakov EW logarithms 
factorization should be exact!
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Mixed QCD-EW uncertainties
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Figure 8: NLO EW predictions for the production of Z(! `+`�)+jets (left) and
W±(! `⌫)+jets (right) at 13TeV. The NLO EW corrections for vector boson
production in association with one jet (blue) are compared with corresponding
corrections for the production in association with two jets (green). In the V +2j
predictions we require, besides the inclusive event selection detailed in section 4,
at least two anti-kT jets with R = 0.4 and p

T,j1,2 > 30 GeV (without any ⌘ cuts).
The lower ratio plot shows the difference in the EW corrections between the
one- and two-jet processes, �NLOEW = V jj

NLOEW � V j

NLOEW for the full NLO
EW corrections (red) and excluding the finite mixed QCD-EW Bremsstrahlung
interference contributions from the V +1j production (magenta).

where the mixed EW–QCD uncertainty reads633

�K
(V )
mix(x) = 0.1

h

K
(V )
TH,�(x, ~µ0)�K

(V )
TH,⌦(x, ~µ0)

i

, (46)634

and the related nuisance parameter should be Gaussian distributed with one635

standard deviation corresponding to the range "mix 2 [�1,+1]. This rather636

small value of the factor 0.1 in eq. (46) reflects the high degree of EW–QCD637

factorisation observed in Fig. 8. Variations of "mix should be correlated across638

different processes.639

In Fig. 9 the difference between the additive and the multiplicative combina-640

tion of QCD and EW corrections together with the corresponding uncertainty641

estimate (46) is shown for the various V +jet processes.642

4 Setup for numerical predictions643

In this section we define physics objects (Section 4.1), acceptance cuts and ob-644

servables (Section 4.2), and input parameters (Section 4.3) to be used in the645

theoretical calculations for pp ! W±/Z/�+ jet.646
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• V+j and V+2j NLO EW corrections 
(almost) identical 

• supports factorization

(correlated)



 
Other issues
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Photon-induced production
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Z+jet W+jet

• photon-induced production irrelevant for Z+jet (and ɣ+jet)
• in W+jet O(5%) contribution with LUXqed (consistent with CT14)  

(due to t-channel enhancement)
• ~1% uncertainties in photon PDFs due to LUXqed 
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Diagrams made by MadGraph5
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QED corrections to quark PDFs
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• small percent-level QED effects on qg/qq luminosities (included via LUXqed)
• 1.5-5% PDF uncertainties 
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‣ monojet / MET+jets searches soon limited by V+jets background systematics

‣ MC reweighting allows to promote V + jet to NNLO QCD+(N)NLO EW:
• inclusion of EW corrections crucial due to large Sudakov logs

‣ Perturbative systematics in pTV under control at the level of 1-10% up to the TeV

‣ Outlook: investigate/interpret post-fit nominal predictions and ratios

Conclusions & Outlook
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‣  remarkable agreement 
of Z/γ ratio with data at 
@ NLO QCD+EW!



https://indico.cern.ch/event/624982

https://indico.cern.ch/event/624982
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Putting everything together

30

a factorised prescription10,598

K
(V )
TH,⌦(x, ~µ) = K

(V )
NkLO(x, ~µ)

h

1 + 
(V )
EW(x)

i

. (44)599

This form is motivated by the known factorization of QCD corrections from600

the large Sudakov-enhanced EW corrections at high energies. Moreover, in601

cases where the multiplicative and additive approach are far apart from each602

other, for instance in the presence of giant K-factors [4, 27], we know that the603

former is much more reliable. The difference between additive and multiplicative604

combination of QCD and EW corrections is twofold. On the one hand, the605

multiplicative prescription (44) leads to mixed terms of relative O(↵↵S) that can606

become sizable when QCD and EW corrections are simultaneously enhanced.607

On the other hand, irrespectively of the size of QCD corrections, when EW608

corrections are large the additive approach (43) leads to a significant growth of609

scale uncertainties as compared to NLO QCD. In contrast, since the relative EW610

corrections factors 
(V )
EW(x) are essentially insensitive to QCD scale variations,611

combining EW and QCD corrections in the multiplicative approach (44) results612

in the same scale dependence as for pure QCD predictions.613

Useful insights into the typical size of mixed EW–QCD NNLO corrections614

to pp ! V+ jet can be gained by studying the NLO EW corrections to pp !615

V + 2 jets, which enter at the same order and represent the real–virtual part of616

the full NNLO mixed corrections. In particular, the differences between NLO617

EW K-factors for V+ jet and V + 2 jets, shown in Fig. 8 for pp ! Z/W +618

1, 2 jets, can provide a quantitative estimate of non-factorising NNLO mixed619

corrections. It turns out that the correspondence between EW K-factors for620

different jet multiplicities11 provides strong support to the hypothesis of EW–621

QCD factorisation.622

QCD-EW combination with uncertainties of relative O(↵↵
S

)623

Based on the above observations, we recommend to combine QCD and EW624

corrections according to the multiplicative prescription (44), while the difference625

with respect to the additive approach (43) can be used as input in order to model626

the uncertainty due to non-factorised mixed EW–QCD effects. Thus, including627

QCD+EW predictions and related uncertainties as specified in eqs. (21) and628

(40), we define629

K
(V )
TH (x, ~"QCD, ~"EW, "mix) = K

(V )
TH,⌦(x, ~"QCD, ~"EW) + "mix �K

(V )
mix(x),630

=

"

K
(V )
NkLO(x) +

3
X

i=1

"QCD,i

�(i)K
(V )
NkLO(x)

#

631

⇥
"

1 + 
(V )
EW(x) +

3
X

i=1

"
(V )
EW,i

�(i)
(V )
EW(x)

#

+ "mix �K
(V )
mix(x), (45)632

10See, e.g. in [24–26] for a factorised treatment of QCD and EW corrections for Higgs-
strahlung and vector-boson fusion processes.

11To be precise, above 1 TeV we observe small deviations of 1–3%. In the case of pp !
W+ jet, such effects are due to mixed EW–QCD interference contributions of O(↵S↵

2
) in

channels of type qq ! qqW (see the difference between red and magenta curves in Fig. 8).
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Figure 7: Impact of QED effects on the two partonic luminosities (g⌃ and
qq̄) that contribute dominantly to the Z+jet cross section. The luminosity
for producing a system of mass M from two flavours a and b is defined as
L
ab

=
R 1
M

2
/s

dx

x

f
a/p

(x,M2)f
b/p

(M
2

xs

,M2) and the g⌃ luminosity corresponds to
2
P

i

(L
gqi + L

gq̄i), while the qq̄ luminosity corresponds to 2
P

i

L
qiq̄i , where

i runs over quark flavours. The solid red lines correspond to the ratio of
luminosities obtained with the LUXqed_plus_PDF4LHC15_nnlo_100 [20] and
PDF4LHC15_nnlo_100 [10] sets, where a given M/2 value corresponds roughly
to the same pT,Z

. The bands represent the PDF4LHC15_nnlo_100 uncertainty,
shown for comparison.

large [22, 23] and should eventually be included.584

3.5 Combination of QCD and electroweak corrections585

The combination (7) of higher-order predictions presented in the previous sec-586

tions can be cast in the form,587

d

dx
�
(V )
TH (~µ) = K

(V )
TH (x, ~µ)

d

dx
�
(V )
LOQCD(~µ0) +

d

dx
�
(V )
��ind.(x, ~µ), (42)588

where589

K
(V )
TH,�(x, ~µ) = K

(V )
NkLO(x, ~µ) + 

(V )
EW(x)

K
(V )
LO (x, ~µ)

K
(V )
LO (x, ~µ0)

(43)590

corresponds to the standard additive combination of QCD and EW corrections591

as defined in eqs. (9) and (24)–(26). Note that the scale-dependent ratio of LO592

cross section in (43) is due to the fact that QCD and EW correction factors are593

normalised to �
(V )
LOQCD(~µ0) and �

(V )
LOQCD(~µ), respectively.594

Mixed QCD–EW corrections of relative O(↵↵S) are not known to date.595

However, in order to obtain an improved prediction that partially includes such596

mixed effects, higher-order EW and QCD corrections can be combined through597
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However, in order to fulfill (5), the Sudakov region (p(V )
T ⌧ MV ) should be105

excluded from the reweighting procedure. Moreover, in order to simultaneously106

fulfill conditions (5) and (6), any aspect of the reconstructed vector-boson pT107

that is better described at MC level should be excluded from the definition of108

x and included in ~y. This applies, as discussed in Sect. 6, to multiple photon109

emissions off leptons, and to possible isolation prescriptions for the soft QCD110

radiation that surrounds leptons or photons. In general, purely non-perturbative111

aspects of MC simulations, i.e. MPI, UE, hadronisation and hadron decays,112

should be systematically excluded form the definition of the reweighting variable113

x. Thus, impact and uncertainties related to this non-perturbative modelling114

will remain as in the unweighted MC samples.115

It should be stressed that the above considerations are meant for dark-matter116

searches based on the inclusive MET distribution, while more exclusive searches117

that exploit additional informations on hard jets may involve additional sub-118

tleties. In particular, for analyses that are sensitive to multi-jet emissions, using119

the inclusive vector-boson pT as reweighting variable would still fulfill (5), but120

the lack of QCD and EW corrections to V +2jet production in MC simulations121

could lead to a violation of (6). In analyses that are sensitive to the tails of122

inclusive jet-pT and HT distributions this issue is very serious, and QCD+EW123

corrections should be directly implemented at MC level using multi-jet merg-124

ing [4]. At the same time such an approach allows for a natural investigation of125

shape uncertainties.126

In general, as a sanity check of the reweighting procedure, we recommend to127

verify that, for reasonable choices of input parameters and QCD scales, (N)NLO128

QCD calculations and (N)LO merged MC predictions for vector-boson pT dis-129

tributions are in reasonably good agreement within the respective uncertainties.130

In this way one could exclude sources of MC mismodelling that could affect also131

the ratio (

d
dx

d
d~y�

(V )
MC)/(

d
dx�

(V )
MC) in (1). In addition, it is crucial to check that132

state-of-the art predictions for absolute d�/dpT distributions agree with data133

for the various visible final states.134

3 Combination of QCD and EW corrections135

A strict fixed-order implementation of QCD and EW corrections corresponds to136

d

dx
�
(V )
TH =

d

dx
�
(V )
QCD +

d

dx
�
(V )
EW +

d

dx
�
(V )
��ind., (7)137

where the QCD contribution should contain at least the LO QCD part of O(↵↵S)138

and the NLO QCD part of O(↵↵2
S), and where available also the NNLO QCD139

part of O(↵↵3
S),2140

d

dx
�
(V )
QCD =

d

dx
�
(V )
LOQCD +

d

dx
�
(V )
NLOQCD +

d

dx
�
(V )
NNLOQCD. (8)141

[3] NNLO QCD discussion still missing. See a few first comments and
considerations in see Section 8.3.

142

2In this power counting we do not include the extra factor ↵ associated with vector-boson
decays.
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4 Theoretical uncertainties198

Based on the nominal prediction of eq. 10 theoretical uncertainties are imple-199

mented through200

d

dx
�
(V )
TH (~"TH) =

d

dx
�
(V )
QCD(~"QCD)

"
1 +

d
dx�

(V )
EW(~"EW, ~"QCD)

d
dx �̂

(V )
QCD("̂, ~"QCD)

#
+

d

dx
�
(V )
��ind.("� , ~"QCD),

(11)201

with nuisance parameters ~"TH = (~"QCD, "̂, ~"EW, "�) defined in the following.202

4.1 Pure QCD uncertainties of relative O(↵2
S)203

Pure QCD uncertainties of relative O(↵2
S) should include separate nuisance pa-204

rameters205

~"QCD = ("PDF, "RF, "shape). (12)206

The first two parameters describe PDF variations (quite relevant in the TeV207

region) and standard 7-point factor-two variations around the central scale µR =208

µF = µ0. For the latter we recommend the standard choice5
209

µ0 =

HT

2

=

1

2

0

@
q

M2
V + p2T,V +

X

i2partons

|pT,i|
1

A , (13)210

where the sum runs over all final state QCD partons.211

In addition to factor-2 scale variations alternative dynamic scales should be212

used for the estimate of shape uncertainties (quite relevant for the extrapolation213

into the TeV region). To this end we employ214

µ0 =

HT ("shape)

2

=

0

@"shape(
q

M2
V + p2T,V +

1

"shape

X

i2{V,partons}

|pT,i|
1

A , (14)215

which is designed such as to yield HT("shape) ! "shapeHT at small pT and216

HT ("shape) ! HT/"shape at large pT . The values "shape = 0.5 and 2 would be217

natural choices corresponding to maximal shape variations with the standard218

factor-2 variation band.219

[6] DISC (ALL): Shall we use (14) for shape uncertainties?
========== DISCUSSED AT CERN =============
Yes. We keep (14) and we also complement the factor-2 1+6pt variation
by a corresponding factor-4 6pt variation.

220

All QCD uncertainties should be fully correlated on the r.h.s. of (11) and221

across different processes (V = W±, Z, �).222

5See Section 6.3 for a precise definition of HT at NLO EW.
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d

dx
�

(V )
EW =

d

dx
�

(V )
NLOEW +

d

dx
�

(V )
SudakovNNLOEW



      Scales for DM searches: V+jet pT-ratios                              Jonas M. Lindert 31

Correlation of scale variations: prescription

pT/pT,0 e�2 e�1 1 e e2

pT[TeV] 0.09 0.24 0.65 1.77 4.80

!shape(pT) -0.96 -0.75 0 0.75 0.96

Table 1: Characteristic values of the function !shape(pT) defined in (18).

where i = 0, . . . 6. The choice of doubling the rescaling factor at NNLO is234

motivated by the particularly small scale dependence at that order. Nominal235

predictions and related uncertainties are defined as the central value and the236

width of the band resulting from the above variations. In terms of K-factors237

this corresponds to238

K
(V )
NkLO(x) =

1

2

h

K
(V,max)
NkLO (x) +K

(V,min)
NkLO (x)

i

, (14)239

�(1)K
(V )
NkLO(x) =

1

2

h

K
(V,max)
NkLO (x)�K

(V,min)
NkLO (x)

i

, (15)240

with241

K
(V,max)
NkLO (x) = max

n

K
(V )
NkLO(x, ~µ

(k)
i

)|0  i  6
o

,242

K
(V,min)
NkLO (x) = min

n

K
(V )
NkLO(x, ~µ

(k)
i

)|0  i  6
o

. (16)243

Constant scale variations mainly affect the overall normalisation of pT-distribu-244

tions and tend to underestimate shape uncertainties, which play an important245

role in the extrapolation of low-pT measurements to high pT. Thus, for a rea-246

sonably conservative estimate of shape uncertainties, we introduce an additional247

variation,248

�(2)K
(V )
NkLO(x) = !shape(x) �

(1)K
(V )
NkLO(x), (17)249

where the standard scale uncertainty (17) is supplemented by a shape distortion250

!shape(x), with |!shape(x)|  1 and !shape(x) ! ±1 at high and small transverse251

momentum, respectively. The function !shape is defined as252

!shape(x) = tanh



ln

✓

pT
pT,0

◆�

=
p2T � p2T,0

p2T + p2T,0

, (18)253

and as reference transverse momentum we choose the value pT,0 = 650GeV,254

which corresponds (in logarithmic scale) to the middle of the range of inter-255

est, 0.2–2 TeV. As illustrated in Table 1, the function !shape(x) induces asym-256

metric variations that cover ±75% of the standard scale variation band for257

pT 2 [250, 1750]GeV.258

From the viewpoint of QCD interactions, the various V+ jet production259

processes are quite similar to each other at pT,V

� M
W,Z

. However, due to the260

presence of q ! q� collinear singularities and the need to suppress them with an261

appropriate photon-isolation prescription, QCD corrections in �+ jet production262

can feature significant differences as compared to the case of pp ! W/Z+ jet. In263

Section 4.1 we introduce a dynamic photon isolation prescription that renders264

the QCD dynamics of pp ! V+ jet processes almost independent on the vector265
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boson mass at large pT. With this dynamic photon isolation, which is used as266

default in this study, QCD K-factors and related uncertainties are very strongly267

correlated across all V+ jet processes, i.e. K(V )
NkLO(x) and �(i)K

(V )
NkLO(x) depend268

only very weakly on V at high pT.4269

The correlation of QCD uncertainties across V+ jet processes plays a key270

role in fits of the Z(! ⌫⌫̄)+ jet dark-matter background, and the quantita-271

tive understanding of such process correlations belongs to the most important272

theoretical aspects in dark matter searches. To this end, as explained in the273

following, we introduce a specific uncertainty based on the process dependence274

of the highest available term in the perturbative expansion,275

�K
(V )
NkLO(x) = K

(V )
NkLO(x)/K

(V )
Nk�1LO(x)� 1. (19)276

Specifically, as a conservative estimate of unknown process correlation effects,277

we take the difference of the known QCD K-factors with respect to Z+ jet278

production,279

�(3)K
(V )
NkLO(x) = �K

(V )
NkLO(x)��K

(Z)
NkLO(x). (20)280

In general, we do not assume that the various V+ jet production processes are281

all known at the same perturbative order, and NkLO in (20) should be under-282

stood as the highest available order for pp ! V+ jet. The process correlation283

uncertainty (20) can be assessed using the central scale (10) throughout, and284

Z+ jet production is chosen as reference process since it is strongly correlated to285

at least one other process (pp ! W+ jet) and is available up to NNLO.5 Note286

that, since the V+ jet K-factors of the same order k are strongly correlated,287

the small process-dependent parts of K-factors, �(3)K(V )
NkLO(x) ⌧ �K

(V )
NkLO, are288

downgraded from the status of known higher-order corrections to uncertain-289

ties without excessive losses of accuracy in the nominal NkLO predictions for290

individual processes.291

This modelling of process correlations assumes a close similarity of QCD292

effects between all pp ! V+ jet processes. This is achieved by means of the293

dynamic photon isolation prescription of Section 4.1, while the fact that exper-294

imental analyses employ a quite different photon isolation approach requires an295

additional �+ jet specific uncertainty discussed in Section 4.1.296

The above uncertainties can be parametrised through a set of independent297

nuisance parameters, ~"QCD, and combined using298

d

dx
�
(V )
NkLOQCD(~"QCD) =

"

K
(V )
NkLO(x) +

3
X

i=1

"QCD,i

�(i)K
(V )
NkLO(x)

#

299

⇥ d

dx
�
(V )
LOQCD(~µ0). (21)300

The nuisance parameters "QCD,1, "QCD,2 and "QCD,3 should be Gaussian dis-301

tributed with one standard deviation corresponding to the range "QCD,i

2302

4For what concerns process correlations, it is crucial that (apart from the MV dependence)
all V+ jet processes are evaluated using similar dynamical scales.

5Based on these criteria, W+ jet production or the average of W+ jet and Z+ jet production
are also a natural reference to measure the process dependence of QCD K-factors. However,
changing the reference process has very little impact on process correlations as the resulting
overall shift in �

(3)
K

(V )

NkLO
(x) cancels to a large extent in ratios of V+ jet cross sections.
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nuisance parameters

✏(Z)
QCD,1 = ✏(W

±)
QCD,1 = ✏(�)QCD,1 = ✏QCD,1

• fully correlated across processes
• correlated across pT bins

• include additional uncertainty based on differences in QCD corrections of the last calculated order:
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NkLO, are288

downgraded from the status of known higher-order corrections to uncertain-289

ties without excessive losses of accuracy in the nominal NkLO predictions for290

individual processes.291

This modelling of process correlations assumes a close similarity of QCD292

effects between all pp ! V+ jet processes. This is achieved by means of the293

dynamic photon isolation prescription of Section 4.1, while the fact that exper-294

imental analyses employ a quite different photon isolation approach requires an295

additional �+ jet specific uncertainty discussed in Section 4.1.296

The above uncertainties can be parametrised through a set of independent297

nuisance parameters, ~"QCD, and combined using298

d
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�
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NkLOQCD(~"QCD) =

"

K
(V )
NkLO(x) +
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"QCD,i

�(i)K
(V )
NkLO(x)
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⇥ d

dx
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(V )
LOQCD(~µ0). (21)300

The nuisance parameters "QCD,1, "QCD,2 and "QCD,3 should be Gaussian dis-301

tributed with one standard deviation corresponding to the range "QCD,i

2302

4For what concerns process correlations, it is crucial that (apart from the MV dependence)
all V+ jet processes are evaluated using similar dynamical scales.

5Based on these criteria, W+ jet production or the average of W+ jet and Z+ jet production
are also a natural reference to measure the process dependence of QCD K-factors. However,
changing the reference process has very little impact on process correlations as the resulting
overall shift in �

(3)
K

(V )

NkLO
(x) cancels to a large extent in ratios of V+ jet cross sections.
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correlated across all V+ jet processes, i.e. K(V )
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individual processes.291

This modelling of process correlations assumes a close similarity of QCD292

effects between all pp ! V+ jet processes. This is achieved by means of the293

dynamic photon isolation prescription of Section 4.1, while the fact that exper-294

imental analyses employ a quite different photon isolation approach requires an295

additional �+ jet specific uncertainty discussed in Section 4.1.296
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4For what concerns process correlations, it is crucial that (apart from the MV dependence)
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5Based on these criteria, W+ jet production or the average of W+ jet and Z+ jet production
are also a natural reference to measure the process dependence of QCD K-factors. However,
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overall shift in �
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• this modelling of process correlations assumes a close similarity of QCD  effects between all V+jets processes

• certainly the case for Z(→νν)̅+jets vs. Z(→l l)̅+jets

• apart from PDF effects it is the case for W+jets vs. Z+jets

• at large pT is is also the case for ɣ+jets vs. Z+jets

✏(Z)
QCD,3 = ✏(W

±)
QCD,3 = ✏(�)QCD,3 = ✏QCD,3
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γ+jet: Isolation
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dynamic cone:

as unresolved. Instead, a photon isolation prescription is mandatory in order to728

prevent uncancelled singularities from q ! q� splittings in the O(↵2↵S) mixed729

EW–QCD contributions from qq ! qq� and crossing-related channels.730

As a consequence of q ! q� collinear singularities and the need to apply731

a photon isolation prescription, QCD corrections to pp ! �+ jet behave dif-732

ferently as compared to Z/W+ jet production. A quantitative understanding733

of this difference and its implications on the correlation of QCD uncertainties734

between �+ jet and Z+ jet production is crucial for the extrapolation of �+ jet735

measurements to Z+ jet dark-matter backgrounds. At the TeV scale, where736

pT,V

� M
W,Z

, one might naively expect that differences between massive and737

massless vector bosons tend to disappear from the viewpoint of QCD dynamics.738

However, the presence of collinear q ! qV singularities at (N)NLO QCD implies739

a logarithmic sensitivity to the vector-boson masses, which results, respectively740

in ln(pT,V

/M
V

) and ln(R0) terms for the case of massive vector bosons and741

photons.742

In the following, in order to quantify the correlation of QCD uncertainties743

across different V+ jet processes, we propose a systematic approach to isolate744

QCD effects that are process independent (at large pT,V

) from �+ jet specific745

ones. To this end we introduce an alternative photon isolation prescription,746

which is designed such as to render the QCD dynamics of �+ jet and Z/W+ jet747

production as similar as possible at high pT. To this end we introduce a dynamic748

cone radius749

Rdyn(ET,�

, "0) =
M

Z

ET,�

p
"0

, (51)750

which is chosen in such a way that the invariant mass of a photon-jet pair with751

R
�j

= Rdyn and ET,j

= "0ET,�

corresponds to the Z-boson mass, i.e.752

M2
�j

' ET,�

ET,j

R2
�j

= "0E
2
T,�

R2
dyn = M2

Z

. (52)753

where the first identity is valid in the small-R approximation. In this way, using754

a smooth isolation with R0 = Rdyn(ET,�

, "0) mimics the role of the Z- and755

W -boson masses as regulators of collinear singularities in Z/W+jet production756

at high pT, while using a fixed cone radius R0 would correspond to an effective757

M
�j

cut well beyond M
Z,W

, resulting is a more pronounced suppression of QCD758

radiation in �+ jet production as compared to Z/W+ jet.759

Specifically, as default photon selection for the theoretical predictions13 in760

this study we use the dynamic cone isolation defined through eqs. (50) and (51),761

with parameters762

"0,dyn = 0.1, ndyn = 1, R0,dyn = min {1.0, Rdyn(ET,�

, "dyn,0)} . (53)763

Note that, in order to prevent that the veto against collinear QCD radation is764

applied to an excessively large region of phase space, the dynamic cone radius765

in (53) is limited to Rdyn  1.0. As a result of this upper bound, for ET,�

<766

M
Z

"
�1/2
0,dyn ' 290GeV the cone radius is kept fixed, and the impact of collinear767

QCD radiation starts to be significantly enhanced as compared to the case of768

Z/W+ jet production. Vice versa, for ET,�

> M
Z

"
�1/2
0,dyn, thanks to the dynamic769

13The same isolation prescription used for theory predictions should be applied also to their
MC counterparts d�MC/rdx in the context of the reweighting procedure.
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Figure 10: Comparison of NLO QCD K-factors (left) for W+ jet, Z+ jet, and
�+ jet production with dynamic photon isolation (53) and standard fixed-cone
isolation (54). On the right corresponding ratios of K-factors are shown.

isolation cone (53), QCD effects in �+ jet and Z/W+ jet production become770

closely related, and the degree of correlation between QCD uncertainties across771

all V+ jet processes can be described with the prescription of eqs. (19)–(20).772

For a realistic assessment of theoretical uncertainties, one should also con-773

sider the fact that photon isolation prescriptions used in experimental analyses774

differ in a significant way from the dynamic prescription of eq. (53). To this end,775

we recommend to repeat the reweighting procedure using theory predictions for776

�+ jet based on a standard Frixione isolation (50) with fixed cone radius and777

parameters that mimic typical experimental selections at particle level [29],778

"0,fix = 0.025, nfix = 2, R0,fix = 0.4. (54)779

The difference between �+ jet MC samples reweighted in the dynamic- and780

fixed-cone setup should be taken as additional uncertainty for pp ! �+ jet.781

As ingredients for this uncertainty estimate, besides a full set of pp !782

�+ jet predictions and uncertainties with dynamic photon isolation, we pro-783

vide nominal predictions (without uncertainties) with fixed-cone isolation (54)784

(see Appendix A). A comparison of the various V+ jet K-factors at NLO QCD785

with dynamic and fixed cone isolation is shown in Fig. 10.786

Predictions for �+ jet at (N)NLO EW are based on the dynamical cone787

prescription (53). Here, differences with respect to the fixed-cone isolation (54)788

are well below the percent level.789

QCD partons and photons inside jets790

In order to avoid any bias due to the different modelling of jets in MC simula-791

tions and perturbative calculations, theory calculations and reweighting should792

be performed at the level of inclusive vector-boson pT distributions, without793

imposing any requirement on the recoiling jet(s). Predictions presented in this794

study are thus independent of specific jet definitions or jet cuts.795

Concerning the composition of the recoil, we observe that, at NLO EW,796

q ! q� splittings can transfer an arbitrary fraction of the recoling momentum797

from QCD partons to photons. In particular, in pp ! V �j contributions of798

O(↵2↵S), the photon can carry up to 100% of the recoil momentum. Such799

28
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prevent uncancelled singularities from q ! q� splittings in the O(↵2↵S) mixed729

EW–QCD contributions from qq ! qq� and crossing-related channels.730

As a consequence of q ! q� collinear singularities and the need to apply731

a photon isolation prescription, QCD corrections to pp ! �+ jet behave dif-732

ferently as compared to Z/W+ jet production. A quantitative understanding733

of this difference and its implications on the correlation of QCD uncertainties734

between �+ jet and Z+ jet production is crucial for the extrapolation of �+ jet735

measurements to Z+ jet dark-matter backgrounds. At the TeV scale, where736

pT,V

� M
W,Z

, one might naively expect that differences between massive and737

massless vector bosons tend to disappear from the viewpoint of QCD dynamics.738

However, the presence of collinear q ! qV singularities at (N)NLO QCD implies739

a logarithmic sensitivity to the vector-boson masses, which results, respectively740

in ln(pT,V

/M
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) and ln(R0) terms for the case of massive vector bosons and741

photons.742

In the following, in order to quantify the correlation of QCD uncertainties743

across different V+ jet processes, we propose a systematic approach to isolate744

QCD effects that are process independent (at large pT,V

) from �+ jet specific745

ones. To this end we introduce an alternative photon isolation prescription,746

which is designed such as to render the QCD dynamics of �+ jet and Z/W+ jet747

production as similar as possible at high pT. To this end we introduce a dynamic748
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where the first identity is valid in the small-R approximation. In this way, using754

a smooth isolation with R0 = Rdyn(ET,�

, "0) mimics the role of the Z- and755

W -boson masses as regulators of collinear singularities in Z/W+jet production756

at high pT, while using a fixed cone radius R0 would correspond to an effective757

M
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cut well beyond M
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, resulting is a more pronounced suppression of QCD758
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Specifically, as default photon selection for the theoretical predictions13 in760
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with parameters762
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Note that, in order to prevent that the veto against collinear QCD radation is764

applied to an excessively large region of phase space, the dynamic cone radius765

in (53) is limited to Rdyn  1.0. As a result of this upper bound, for ET,�
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0,dyn ' 290GeV the cone radius is kept fixed, and the impact of collinear767
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13The same isolation prescription used for theory predictions should be applied also to their
MC counterparts d�MC/rdx in the context of the reweighting procedure.
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Figure 10: Comparison of NLO QCD K-factors (left) for W+ jet, Z+ jet, and
�+ jet production with dynamic photon isolation (53) and standard fixed-cone
isolation (54). On the right corresponding ratios of K-factors are shown.
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⇒
. Using this dynamic smooth isolation mimics the role of the Z- and W -boson masses as 

regulators of collinear singularities in Z/W +jet production at high pT.
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Figure 2. The unnormalised Z-boson transverse momentum distribution for the cuts given in
Table 1 and 66 GeV < m`` < 116 GeV. ATLAS data is taken from Ref. [15]. The luminosity error
is not shown. The green bands denote the NLO prediction with scale uncertainty and the blue
bands show the NNLO prediction with scale uncertainty.

Figure 3. The normalised Z-boson transverse momentum distribution for the cuts given in Table 1
and 66 GeV < m`` < 116 GeV. ATLAS data is taken from Ref. [15]. The green bands denote the
NLO prediction with scale uncertainty and the blue bands show the NNLO prediction with scale
uncertainty.

the data by the measured values for the inclusive lepton pair cross section in this fiducial

bin. The cross section for this mass window was measured to be [15],

�exp(66 GeV < m`` < 116 GeV) = 537.10± 0.45% (sys.)± 2.80% (lumi.) pb.
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[Gehrmann-De Ridder, Gehrmann,  
Glover, A. Huss, Morgan; ‘16] FIG. 1. Plots of the W -boson transverse momentum distribution for the following scenarios: 8

TeV inclusive 1-jet bin (upper left), 8 TeV exclusive 1-jet bin (upper right), 13 TeV inclusive 1-jet

bin (lower left), 13 TeV exclusive 1-jet bin (lower right). In each plot the upper inset shows the

LO, NLO and NNLO distributions, while the lower inset shows KNLO and KNNLO. The bands

indicate the scale variation, while the dashed lines in the lower panel indicate the result for the

central scale choice.

the kinematic boundary at 30 GeV. It would be interesting to compare the fixed-order

predictions with those of resummation-improved perturbation theory [7, 27].

The transverse momentum distribution of the leading jet is presented in Fig. 2. Shown

are the LO, NLO and NNLO distributions, as well as the associated K-factors, for both the

inclusive and exclusive 1-jet bins. The first thing to note is the growth of the NLO K-factor

with jet p
T

. It grows above a factor of four for pJ1
T

> 1 TeV for both 8 TeV and 13 TeV

collisions. The reason for these large corrections has been discussed in the literature [5, 6].

At NLO there are configurations containing two hard jets and a soft/collinear W boson that

9

[Boughezal, Liu, Petriello; ‘16] 

Z+jet W+jet

• unprecedented reduction of scale uncertainties at NNLO: O(~ 5%)
• we can now check the correlation of the uncertainties going from NLO to NNLO 
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order corrections. The ratio is then estimated to be [4],

RZ/� =

0

@Ru +
Rd �Ru

1 + Q2
u

Q2
d

hui
hdi

1

A⇥
Br(Z ! `�`+)⇥A

⇤
,

(17)
where Rq is the relevant ratio of quark-boson couplings
squared,

Rq =
v2q + a2q

4 sin2 ✓w cos2 ✓wQ2
q

, (18)

and hui (hdi) is the typical up (down) quark PDF at the
value of x probed by a given pVT , i.e. hxi = 2pVT /

p
s.

The branching ratio and acceptance factor (A) account
for the Z-boson decay and cuts on the leptons. At high
transverse momentum, pVT � MZ , x ! 1 and hui/hdi !
1, so that RZ/� should slowly approach an asymptotic
value from above [3, 4]. This argument thus predicts
a plateau at high transverse momentum, which we will
observe shortly in our full prediction. We stress that in
our calculation this ratio is not computed for on-shell
Z bosons but includes the decay into leptons, o↵-shell
e↵ects and the (small) contribution from virtual photon
exchange. Nevertheless, we will refer to this quantity as
RZ/� , or the Z/� ratio, as a matter of convenience.

When computing this ratio a subtlety arises when try-
ing to provide an uncertainty estimate based on scale
variation. If the variation is correlated, i.e. one com-
putes the scale uncertainty using the same scale in both
the numerator and denominator of Eq. (16), then one
obtains essentially no uncertainty on RZ/�(pT ), even at
NLO. We therefore discard this choice as a useful mea-
sure of the theoretical uncertainty. The alternative that
we use instead is to consider variations of the scale in the
numerator and denominator separately,

d�
O,{r,f}
`�`++j+X/dpT

d�O,r=f=1
�+j+X /dpT

and
d�O,r=f=1

`�`++j+X/dpT

d�
O,{r,f}
�+j+X/dpT

, (19)

where {r, f} represents the six-point scale variation in-
dicated in Eq. (5). The uncertainty is then defined by
the extremal values of either of these two ratios. In prac-
tice, since the scale-dependence of the two processes is so
similar, this procedure is almost identical to defining the
uncertainty in terms of the variation of either quantity
in Eq. (19) alone. In contrast to the correlated variation,
this approach results in scale uncertainties that, order-
by-order, overlap both the data and the central result of
the next-higher order. Moreover, with this procedure, at
NNLO the resulting uncertainty band is of a size typical
of a NNLO prediction and still smaller than the experi-
mental uncertainties.

Our results for the ratio for the pure QCD NLO and
NNLO calculation are shown in Fig. 7. The most signif-
icant e↵ect of the NNLO calculation is to decrease the
ratio, particularly at lower values of pT . We have al-
ready seen, in Fig. 3, that the shape of the p�T spectrum
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Figure 7: The quantities RNLO
Z/� (p�T ) and RNNLO

Z/� (p�T ), defined
through Eq. (16), compared to CMS data from ref. [41]. The
bands indicate the scale uncertainty on the theoretical pre-
dictions.

Figure 8: The quantity RZ/�(p
�
T ) defined in Eq. (16), com-

puted at NNLO and at NNLO including EW e↵ects, com-
pared to CMS data from ref. [41]. The bands indicate the
scale uncertainty on the theoretical predictions.

[Campbell, Ellis, Williams; ’17] 

NNLO/NLO ~ 1 for large pT!
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Overall

‣   mild dependence on the boson pT

QCD corrections

‣   10-15% below 250 GeV

‣    ≲ 5% above 350 GeV

EW corrections

‣    sizeable difference in EW corrections results in  
     10-15% corrections at several hundred GeV

‣    ~5% difference between NLO QCD+EW  
      and NLO QCDxEW
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ratio with a value of RBH = 0.03794, which is higher than that observed in data by a factor of
1.18 ± 0.14 (stat + syst).
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Figure 7: Differential cross section ratio of averaged Z ! (e+e� + µ+µ�) over g as a function
of the total transverse-momentum cross section and for central bosons (|yV | < 1.4) at different
kinematic selections in detector-corrected data. Top left: inclusive (njets � 1); top right: HT �
300 GeV, njets � 1. The black error bars reflect the statistical uncertainty in the ratio, the hatched
(gray) band represents the total uncertainty in the measurement. The shaded band around the
MADGRAPH+PYTHIA6 simulation to data ratio represents the statistical uncertainty in the MC
estimation. The bottom plots give the ratio of the various theoretical estimations to the data in
the njets � 1 case (bottom left) and HT � 300 GeV case (bottom right).

8 Summary

Differential cross sections have been measured for Z + jets (with Z ! `+`�) and isolated
g + jets as a function of the boson transverse momentum, using data collected by CMS atp

s = 8 TeV corresponding to an integrated luminosity of 19.7 fb�1. The estimations from the
MC multiparton LO+PS generators MADGRAPH+PYTHIA6 and SHERPA have been compared
to the data. We find that the pT spectra for Z + jets and g + jets are not well reproduced by
these MC models. We observe a monotonic increase of the MC simulation/data ratio with in-
creasing vector boson pT. Using the NLO generator BLACKHAT simulation, we find a smaller
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ratio with a value of RBH = 0.03794, which is higher than that observed in data by a factor of
1.18 ± 0.14 (stat + syst).
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300 GeV, njets � 1. The black error bars reflect the statistical uncertainty in the ratio, the hatched
(gray) band represents the total uncertainty in the measurement. The shaded band around the
MADGRAPH+PYTHIA6 simulation to data ratio represents the statistical uncertainty in the MC
estimation. The bottom plots give the ratio of the various theoretical estimations to the data in
the njets � 1 case (bottom left) and HT � 300 GeV case (bottom right).

8 Summary

Differential cross sections have been measured for Z + jets (with Z ! `+`�) and isolated
g + jets as a function of the boson transverse momentum, using data collected by CMS atp

s = 8 TeV corresponding to an integrated luminosity of 19.7 fb�1. The estimations from the
MC multiparton LO+PS generators MADGRAPH+PYTHIA6 and SHERPA have been compared
to the data. We find that the pT spectra for Z + jets and g + jets are not well reproduced by
these MC models. We observe a monotonic increase of the MC simulation/data ratio with in-
creasing vector boson pT. Using the NLO generator BLACKHAT simulation, we find a smaller

‣  constant off-set with respect to LO
‣  improved agreement at NLO QCD for small pT 
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Compare against data: Z/γ
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Combination of NLO QCD and EW & Setup
Two alternatives:

Difference between the two approaches indicates uncertainties due to missing two-loop  
EW-QCD corrections of O(↵↵s)

Here j1 denotes the first jet, while the total transverse energy Htot
T is defined in terms of the jet

and W -boson transverse momenta12 as

Htot
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where all jets that satisfy (6.1) are included.
Our default NLO results are obtained by combining QCD and EW predictions,
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with a standard additive prescription

�NLO
QCD+EW = �LO + ��NLO

QCD + ��NLO
EW , (6.5)
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EW correspond to pp ! W + n-jet contributions of O(↵n+1
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2),

respectively. As LO contributions, in Sections 6.1–6.3 only the leading-QCD terms of O(↵n
S↵) will

be included, while LO EW–QCD mixed and photon-induced terms of O(↵n�1
S ↵2) will be discussed

in Section 6.4. In order to identify potentially large effects due to the interplay of EW and QCD
corrections beyond NLO, we will also consider the following factorised combination of EW and
QCD corrections,
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If this approach can be justified by a clear separation of scales—such as in situations where QCD
corrections are dominated by soft interactions well below the EW scale—the factorised formula
(6.6) can be regarded as an improved prediction. Otherwise, the difference between (6.5) and (6.6)
should be considered as an estimate of unknown higher-order corrections.

In the following sections, we will present QCD+EW and QCD⇥EW NLO corrections relative
to �NLO

QCD, which corresponds to the ratios
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Note that the QCD⇥EW ratio (6.8) corresponds to the usual NLO EW correction relative to LO,
which is free from NLO QCD effects, while the QCD+EW ratio (6.7) depends on �NLO

QCD. In particu-
lar, for observables that receive large NLO QCD corrections, the relative QCD+EW correction can
be drastically suppressed as compared to the QCD⇥EW one. This feature is typically encountered
in observables that receive huge QCD corrections of real-emission type. In such situations, NLO
QCD+EW predictions for pp ! W +n jets are dominated by tree-level contributions with one extra
jet, and the inclusion of NLO QCD+EW corrections for pp ! W +(n+1) jets becomes mandatory.

6.1 W+ + 1 jet

Among the various W+(multi)jet production processes, the inclusive production of a W boson
in association with (at least) one jet is the one that features the strongest sensitivity to NLO
QCD radiation. This is clearly illustrated by the results shown in Figures 13–14 and Table 2. In
particular, large NLO QCD effects arise in the tails of the inclusive distributions in the W -boson and

12Note that at variance with the definition (5.3) of ˆHT, here we use transverse momenta and not transverse energies.
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suppressed by large NLO QCD corrections
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4.2 On-shell approximation

In our calculation the W+ is produced as a stable final state particle on its mass shell. In this way
the highest jet multiplicities (n = 3) can be achieved and the calculation can easily be extended to
include W decays in the NWA.

For n � 2 in the NLO EW contributions of O(↵2↵n
S) potentially resonant diagrams can ap-

pear, both, in the virtual and in the gluon bremsstrahlung contributions - but not in the photon
bremsstrahlung. Example diagrams with potentially resonant W and Z gauge bosons are shown in
Fig ??. Similar resonances can arise from top (in b-quark initiated processes) and Higgs (attached
to massive quark loops) propagators. In the virtual contributions resonant propagators can either
appear as EW insertions in a one-loop amplitude in interference with a QCD Born amplitude or in
an EW Born amplitude in interference with a pure QCD one-loop amplitude. Here we want to note
that at the considered order of perturbation theory such resonant diagrams can only enter via inter-
ferences with non-resonant ones. Therefore, no physical Breit-Wigner–like resonance but rather an
integrable pseudo singularity emerges that has to be regularized for numerical convergence. To this
end, for the particular process under consideration, we cannot consistently apply the complex mass
scheme due to the stable W in the final state. A finite W -width would alter the IR structure and
would require a cumbersome redefinition of the QED subtraction. Instead, we opt for a regulator
approach introducing a finite width �

reg

in all potentially resonant propagators while keeping the
EW mixing angle real, as defined in the on-shell scheme. In the virtual contributions this regulator
width has to be introduced with care to not spoil the IR structure of the diagrams. In particular no
width should be introduced in W propagators which are directly coupled to a photon. The obtained
result is independent of �

reg

in the smooth limit �
reg

! 0 where any gauge-dependence vanishes.
Furthermore, for a finite width any gauge-dependent contributions due to a regulated propagator
of a massive particle i are suppressed at least by O(�

reg

/Mi).

5 Setup of the simulation

In the following we present a series of NLO QCD+EW simulations for W+ production in association
with one, two, and three jets in proton–proton collisions at 13TeV. As input parameters for the
gauge boson, Higgs boson and top quark masses we use

MZ = 91.1876 GeV, MW = 80.385 GeV, MH = 126 GeV, mt = 173.2 GeV. (5.1)

The corresponding Lagrangian parameters are kept strictly real since we treat all heavy particles as
stable. The electroweak couplings are derived from the gauge boson masses and the Fermi constant,
Gµ = 1.16637⇥10�5 GeV�2, in the so-called Gµ-scheme, where the fine structure constant is given
by

↵ =

p
2

⇡
GµM

2
W

✓
1� M2

W

M2
Z

◆
, (5.2)

and the cosine of the weak mixing angle reads cos ✓w = MW /MZ . The CKM matrix is assumed to
be diagonal, while colour effects and related interferences are included throughout, without applying
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EW Sudakov logarithms II

Originate from soft/collinear virtual EW bosons coupling to on-shell legs

�,Z,W± �,Z,W± �,Z,W±, H, t, . . .

Universality and factorisation [Denner,S.P. ’01] similarly as in QCD

�1�loop
LL+NLL =

↵

4⇡

nX

k=1

8
<

:
1

2

X

l 6=k

X

a=�,Z,W±

Ia(k)I ā(l) ln2 skl
M2

+ �ew
(k) ln

s

M2

9
=

;

process-independent and simple structure

tedious implementation (ALPGEN [Chiesa et al. ’13]) due to nontrivial SU(2)⇥U(1)

features (P-violation, mixing, soft SU(2) correlations, Goldstone modes, . . . )

2-loop extension and resummation partially available

S. Pozzorini (Zurich University) Top Physics Top2014 10 / 36

Originate from soft/collinear virtual EW bosons coupling to on-shell legs

Universality and factorisation similar as in QCD    [Denner, Pozzorini; ’01] 

Virtual EW Sudakov logarithms 

• process-independent, simple structure
• 2-loop extension and resummation partially available 
• typical size at           1, 5, 10 TeV:

➡ large cancellations possible  �LL ⇠ � ↵

⇡s2W
log

2 ŝ

M2
W

' �28,�76,�104%,

�NLL ⇠ +

3↵

⇡s4W
log

ŝ

M2
W

' +16,+28,+32%

p
ŝ =
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FIG. 4. The ratio of common PDF sets to our LUXqed result,
along with the LUXqed uncertainty band (light red). The CT14
and MRST bands correspond to the range from the PDF mem-
bers shown in brackets (95% cl. in CT14’s case). The NNPDF

bands span from max(µr � �r, r16) to µr + �r, where µr is
the average (represented by the blue line), �r is the standard
deviation over replicas, and r16 denotes the 16th percentile
among replicas. Note the di↵erent y-axes for the panels.

as the di↵erence between the CLAS and CB fits (RES);
a systematic uncertainty due to the choice of the transi-
tion scale between the HERMES F

2

fit and the pertur-
bative determination from the PDFs, obtained by reduc-
ing the transition scale from 9 to 5 GeV2 (M); missing
higher order e↵ects, estimated using a modification of
Eq. (6), with the upper bound of the Q2 integration set
to µ2 and the last term adjusted to maintain ↵2(↵

s

L)n

accuracy (HO); a potential twist-4 contribution to F
L

parametrised as a factor (1 + 5.5 GeV2/Q2) [54] for
Q2 � 9GeV2 (T). One-sided errors are all symmetrised.
Our final uncertainty, shown as a solid line in Fig. 3, is
obtained by combining all sources in quadrature and is
about 1-2% over a large range of x values.

In Fig. 4 we compare our LUXqed result for the MS f
�/p

to determinations available publicly within LHAPDF [55].
Of the model-based estimates CT14qed inc, CT14qed [23]
and MRST2004 [21], it is CT14qed inc that comes closest
to LUXqed. Its model for the inelastic component is con-
strained by ep ! e� + X data from ZEUS [24]. It also

FIG. 5. �� luminosity in pp collisions as a function of the
�� invariant mass M , at four collider centre-of-mass energies.
The NNPDF30 results are shown only for 8 and 100 TeV. The
uncertainty of our LUXqed results is smaller than the width of
the lines.

includes an elastic component. Note however that, for
the neutron, CT14qed inc neglects the important neu-
tron magnetic form factor. As for the model-independent
determinations, NNPDF30 [56], which notably extends
NNPDF23 [22] with full treatment of ↵(↵

s

L)n terms in
the evolution [57], almost agrees with our result at small
x. At large x its band overlaps with our result, but the
central value and error are both much larger.
Similar features are visible in the corresponding ��

partonic luminosities, defined as

dL
��

d lnM2

=
M2

s

Z
dz

z
f
�/p

(z,M2) f
�/p

✓
M2

zs
,M2

◆
, (9)

and shown in Fig. 5, as a function of the �� invariant
mass M , for several centre-of-mass energies.
As an application, we consider pp ! HW+(! `+⌫) +

X at
p
s = 13 TeV, for which the total cross section with-

out photon-induced contributions is 91.2±1.8 fb [6], with
the error dominated by (non-photonic) PDF uncertain-
ties. Using HAWK 2.0.1 [58], we find a photon-induced
contribution of 5.5+4.3

�2.9

fb with NNPDF30, to be compared
to 4.4± 0.1 fb with LUXqed.
In conclusion, we have obtained a formula (i.e. Eq. (6))

for the MS photon PDF in terms of the proton structure
functions, which includes all terms of order ↵L (↵

s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n. Our method can be eas-
ily generalised to higher orders in ↵

s

and holds for any
hadronic bound state. Using current experimental in-
formation on F

2

and F
L

for protons we obtain a pho-
ton PDF with much smaller uncertainties than existing
determinations, as can be seen from Fig. 4. The pho-
ton PDF has a substantial contribution from the elas-
tic form factor (⇠ 20%) and from the resonance region
(⇠5%) even for high values of µ ⇠ 100�1000 GeV. Our

[Manohar, Nason, Salam, Zanderighi, ’16]


