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1. What central value of the scales should we choose?

2. How much should we vary around that scale?

• Goal is to produce uncertainty treatable like statistical uncertainty
• Want 95% (or 68%?) confidence that next order will be within uncertainty

• At minimum, want bands to overlap…

• Goal is to have best agreement with data
• Minimal Scale Sensitivity?
• Best convergence?
• Physically motivated?
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Scale setting for inclusive observables
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20.1 e+e− → µ+µ− (+γ) 357

For an S-matrix calculation, only amputated graphs are necessary (see Section 18.3.2).
In this case, there are five relevant 1-loop graphs in QED:

, , , , . (20.7)

The next-to-leading order O(α3) result is the interference between these graphs (of order
α2) and the original graph (of order α).

In addition to loop corrections to the 4-point function, we will also need to calculate
real emission graphs to cancel the IR divergences. Real emission graphs correspond to
processes that are the same order in perturbation theory as the loops but involve more final
state particles. We will do the loops first, then the real emission graphs, and then show that
we can take mγ → 0 after all the contributions are combined into the full cross section
σtot = σ(e+e− → µ+µ−(+γ)).

An important simplifying observation is that since, as far as QED is concerned, the elec-
tron and muon charges, Qe and Qµ, can be anything, the IR divergence must cancel order
by order in Qe and Qµ separately. The tree-level cross section scales as σ0 ∼ Q2

eQ
2
µ.

The loops in Eq. (20.7) scale as QeQ3
µ, Q3

eQµ, Q2
eQ

2
µ, Q2

eQ
2
µ and QeQµQ2

X respectively,
where QX is the charge of the particles going around the vacuum polarization loop, which
can be anything. In particular, we will focus on the cancellation of divergences propor-
tional to σ0QeQ3

µ. This cancellation gives the critical demonstration of IR finiteness, and
is phenomenologically relevant. Other loop contributions will be discussed afterwards.

20.1.1 Vertex correction

The vertex correction is

iMΓ =

p1

p2

p

p4

p3

+
p1

p4p2

p p3

= i
e2

R

Q2
v̄(p2)γµu(p1)ū(p3)Γµ

2 (p)v(p4),

(20.8)
where pµ = pµ

1 + pµ
2 is the photon momentum entering the vertex with p2 = Q2. In this

equation, Γµ
2 (p) refers to the O(e2) contribution to the 1PI vertex function, for which we

do not introduce any new subscripts for readability. Conveniently, we already computed
Γµ

2(p) for a general off-shell photon in Section 19.3, so we can just copy over those results.
Recall from Section 19.3 that the general vertex function Γµ(p) can be parametrized in

terms of two form factors:

Γµ(p) = F1(p2)γµ +
iσµν

2m
pνF2(p2). (20.9)
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20.2 Jets

We have found that the sum of the e+e− → µ+µ− cross section σV , at order e6
R from

the graphs + , and the e+e− → µ+µ−γ cross section σR also at order

e6
R from the graphs + , was IR and UV finite. Photons emitted from

final state particles, such as the muons in this case, are known as final state radiation. The
explanation of why one has to include final state radiation to get a finite cross section is
that it is impossible to tell whether the final state in a scattering process is just a muon or
a muon plus an arbitrary number of soft or collinear photons. Trying to make this more
precise leads naturally to the notion of jets.

For simplicity, we calculated only the total cross section for e+e− annihilation into
states containing a muon and antimuon pair, inclusive over an additional photon. One could
also calculate something less inclusive. For example, experimentally, a muon might be
identified as a track in a cloud chamber or an energy deposition in a calorimeter. So one
could calculate the cross section for the production of a track or energy deposition. This
cross section gets contributions from different processes. Even with an amazing detector,
there will be some lower limit Eres on the energy of photons that can be resolved. Even for
energetic photons, if the photon is going in exactly the same direction as the muon there
would be no way to resolve it and the muon separately. That is, there will be some lower
limit θres on the angle that can be measured between either muon and the photon.

With these experimental parameters,

σtot = σ2→2 + σ2→3, (20.52)

where

σ2→2 = σ
(
e+e− → µ+µ−)+ σ

(
e+e− → µ+µ−γ

) ∣∣∣
Eγ<Eres or θγµ<θres

(20.53)

is the rate for producing something that looks just like a µ+µ− pair and

σ2→3 = σ
(
e+e− → µ+µ−γ

) ∣∣∣
Eγ>Eres and θγµ>θres

(20.54)

is the rate for producing a muon pair in association with an observable photon.
The cross section for muons plus a hard photon is now IR finite due to the energy cutoff,

even for Eres ≪ Q and θres ≪ 1. Unfortunately, the phase space integral within these
cuts, even with mγ = 0, is complicated enough to be unilluminating. The result, which we
quote from [Ellis et al., 1996], is that the rate for producing all but a fraction Eres

Q of the
total energy in a pair of cones of half-angle θres is
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e2
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8π2

{
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. (20.55)
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that

σ
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)
≡ σ

(
e+e− → µ+µ−)+ σ

(
e+e− → µ+µ−γ

)

= σ0

(
1 +

3e2
R

16π2

)
, (20.3)

where σ0 = e4
R

12πQ2 is the tree-level cross section for e+e− → µ+µ− at ECM = Q. While
this QED cross section is very difficult to measure, its analog in QCD, e+e− → q̄q(+g),
to be discussed in Section 26.3, is an important precision calculation which has been well
confirmed by data and provides strong constraints on beyond-the-Standard-Model physics.

We will see how having to sum over final states (and sometimes initial states) with
different particle multiplicities is related to a muon not being physically separable from its
surrounding cloud of soft photons. Trying to make this photon cloud more precise leads
naturally to the notion of jets. Similarly, trying to understand the initial state radiation
contribution leads naturally to the notion of parton distribution functions. The total cross
section calculation is so important that we will calculate it two ways, with a Pauli–Villars
UV regulator and a photon mass IR regulator, and with dimensional regularization for both
the UV and the IR, showing that the total cross section is regulator independent.

20.1 e+e− → µ+µ− (+γ)

At leading order, the cross section for e+e− → µ+µ− involves a single Feynman diagram:

iM0 =
p1

p4p2

p3

= i
e2

R

Q2
v̄(p2)γµu(p1)ū(p3)γµv(p4), (20.4)

where Q2 = (p1 + p2)2 = E2
CM = s is the square of the center-of-mass energy.

We already studied this process at tree-level in Section 13.3 and found that, in the high-
energy limit, Q≫ me,mµ, the differential cross section is (Eq. (13.78))

dσ

dΩ
=

e4
R

64π2Q2
(1 + cos2 θ). (20.5)

The total tree-level cross section is then a simple integral:

σ0

(
Q2
)

=
∫ 2π

0
dφ

∫ 1

−1
d cos θ

dσ

dΩ
=

e4
R

12πQ2
. (20.6)

What we would like to calculate is the next-to-leading-order correction to σ0, which begins
at O

(
α3
)
.

364 Infrared divergences

20.2 Jets

We have found that the sum of the e+e− → µ+µ− cross section σV , at order e6
R from

the graphs + , and the e+e− → µ+µ−γ cross section σR also at order

e6
R from the graphs + , was IR and UV finite. Photons emitted from

final state particles, such as the muons in this case, are known as final state radiation. The
explanation of why one has to include final state radiation to get a finite cross section is
that it is impossible to tell whether the final state in a scattering process is just a muon or
a muon plus an arbitrary number of soft or collinear photons. Trying to make this more
precise leads naturally to the notion of jets.

For simplicity, we calculated only the total cross section for e+e− annihilation into
states containing a muon and antimuon pair, inclusive over an additional photon. One could
also calculate something less inclusive. For example, experimentally, a muon might be
identified as a track in a cloud chamber or an energy deposition in a calorimeter. So one
could calculate the cross section for the production of a track or energy deposition. This
cross section gets contributions from different processes. Even with an amazing detector,
there will be some lower limit Eres on the energy of photons that can be resolved. Even for
energetic photons, if the photon is going in exactly the same direction as the muon there
would be no way to resolve it and the muon separately. That is, there will be some lower
limit θres on the angle that can be measured between either muon and the photon.

With these experimental parameters,

σtot = σ2→2 + σ2→3, (20.52)

where

σ2→2 = σ
(
e+e− → µ+µ−)+ σ

(
e+e− → µ+µ−γ

) ∣∣∣
Eγ<Eres or θγµ<θres

(20.53)

is the rate for producing something that looks just like a µ+µ− pair and

σ2→3 = σ
(
e+e− → µ+µ−γ

) ∣∣∣
Eγ>Eres and θγµ>θres

(20.54)

is the rate for producing a muon pair in association with an observable photon.
The cross section for muons plus a hard photon is now IR finite due to the energy cutoff,

even for Eres ≪ Q and θres ≪ 1. Unfortunately, the phase space integral within these
cuts, even with mγ = 0, is complicated enough to be unilluminating. The result, which we
quote from [Ellis et al., 1996], is that the rate for producing all but a fraction Eres

Q of the
total energy in a pair of cones of half-angle θres is

σ2→3 = σ0
e2

R

8π2

{
ln

1
θres

[
ln
(

Q

2Eres
− 1
)
− 3

4
+ 3

Eres

Q

]

+
π2

12
− 7

16
− Eres

Q
+

3
2

(
Eres

Q

)2

+ O
(
θres ln

Eres

Q

)}
. (20.55)

�
tot

=

+ + +… +=

• Only one scale, so choosing µ = Q = ECM turns stot into a series in a(Q)

• Varying µ adds terms at higher order in a, example of higher order effects

• Doesn’t even have the right scaling with group factors
• With one flavor, we need µ = 8000 Q to get NLO effect right
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Q = 100 GeV

Q

2-loop has form
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Is this why µ ~ Q/2 is common?



Total cross section in e+e-
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• Region where variation is flattest tells us natural scale (circles)
• In flat region, curves are polynomials in log µ

• Center of polynomial symmetrizes uncertanties (squares)
• Curves’ intersection minimizes corrections

• Can be dangerous is correction is large
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Q = 200,000 GeV

Q

2-loops

3-loops

4-loops



Thrust distribution: fixed order
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1

�0

d�

d⌧
= �(⌧) + CF

↵s(µ)

2⇡


�4 ln ⌧ � 3

⌧
� 8 + 2 ln ⌧ + · · ·
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�0 ln
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+

C2
F

2

ln3 ⌧
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+ · · ·

�

• Choose µ = Q 
• by dimensional analysis?

• µ = 2Q, 15 Q, 0.1 Q equally good
• Why not µ = t Q or µ2 = t Q2?

• Clearly underestimating errors!
• Poor convergence

[Gehrmann et al. 0711.4711, 2011]
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Each function has one scale

Hard function: Q
(hard scale, like COM energy)

Jet function: p2

(mass of the jet)
Soft scale

(out-of-jet energy)

• Natural scales read off from factorization formula

• Evolve each function from its scale to common scale µ using RGE
• Logs of µ linked to logs of t

• Reduces problem to the fixed-order inclusive calculation case
• Single scale at fixed order is misleading: multiple scale problem

Thrust distribution: SCET

µh = Q µj =
p
⌧Q µs = ⌧Q

ln
µj

µ
= ln

Q

µ
+

1

2
ln ⌧ ln

µs

µ
= ln

Q

µ
+ ln ⌧ln

µh

µ
= ln

Q

µ

the endpoint region, one finds

R(τ) =

∫ τ

0

dτ ′ 1

σ0

dσ

dτ ′
= 1 +

2αs

3π

[
−2 ln2 τ − 3 ln τ + . . .

]
. (3)

Double logarithmic terms of the form αn
s ln2n τ arise from regions of phase space where the

quarks or gluons are soft or collinear. For small enough τ , higher order terms are just as
important as lower order ones and the standard perturbative expansion breaks down. Re-
summation refers to summing a series of contributions of the form αn

s lnm τ for the integral
R(τ) or αn

s (lnm−1 τ)/τ for the differential distribution. Leading logarithmic (LL) accuracy is
achieved by summing the tower of logarithms with m = 2n, next-to-leading logarithmic accu-
racy (NLL) also sums the terms with m = 2n − 1. Resummation at NkLL accuracy, provides
all logarithmic terms with 2n ≥ m ≥ 2n − 2k + 1, as detailed in Section 2.

The first resummation of event shapes was done by Catani, Trentadue, Turnock and Web-
ber (CTTW) in [12]. Their approach was to define jet functions JC(p2) as the probability
for finding a jet of invariant mass p2 in the event. These can be calculated to NLL by sum-
ming probabilities for successive emissions using the Alterelli-Parisi splitting functions. Each
term in the series that is resummed corresponds to an additional semi-classical radiation. The
splitting functions only account for collinear emissions; to include soft emission, it is common
either to impose some kind of angular ordering constraint to simulate soft coherence effects, or
to use more sophisticated probability functions, such as Catani-Seymour dipoles [13]. Except
for [14], none of these approaches has led to a resummation for event shapes beyond NLL.

The approach to resummation of event shapes [15] based on Soft-Collinear Effective The-
ory (SCET) [16, 17, 18] contrasts sharply with the semi-classical CTTW treatment. The
most important conceptual difference is that effective field theory works with amplitudes, at
the operator level, instead of probabilities at the level of a differential cross-section. Conse-
quently, the resummation comes not from the exponentially decreasing probability for multiple
emissions, but from a solution to renormalization group (RG) equations.

The starting point for the effective field theory approach is the factorization formula for
thrust in the 2-jet region,

1

σ0

dσ2

dτ
= H(Q2, µ)

∫
dp2

Ldp2
Rdk J(p2

L, µ) J(p2
R, µ) ST (k, µ)δ(τ −

p2
L + p2

R

Q2
−

k

Q
) , (4)

where H(Q2, µ) is the hard function, J(p2, µ) the jet function, and ST (k, µ) is the soft function
for thrust. Q refers to the center-of-mass energy of the collision, µ is an arbitrary renormaliza-
tion scale, and the born-level cross section σ0 appears for normalization. A similar factorization
formula was derived to study top quark jets in [19], and then transformed into this form to
study event shapes in [15]. Factorization properties of event shape variables were also studied
in [20, 21]. The expression (4) is valid to all orders in perturbation theory up to terms which
are power suppressed in the two-jet region τ → 0,

dσ

dτ
=

dσ2

dτ

[
1 + O(τ)

]
. (5)

The key to the factorization theorem is that near maximum thrust, τ reduces to the sum

2



Resummation improves fit
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Natural scales improve convergence
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Hadron collisions more complicated
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P P

photon

Threshold resummation:
d�

dpT
⇠

Z
dx1dx2x1f1(x1, µ)x2f2(x2, µ)

Want to choose

⇥H(pT , µ)⇥
Z

dm2dkJ(m2, µ)S(k, µ)

µh = Q µj =
p
⌧Q

⇥�


pT

p
S �m

2 � kpT � (1� x2)
t

s

� (1� x2)
u

s

�

µh = pT µj = m µs =
µ2
j

µh
=

m

pT
Similar to thrust scale choices:

µs =
µ2
j

µh
= ⌧Q

• Dangerous since                     integrates over Landau pole

• Must choose scales as functions of measured quantities

Z
dm↵s(m)

µj ⇠ hmi

… but m and k are integrated over!



How to decide scales
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Hard Scale
• Include 1-loop hard function, tree-level jet and soft functions
• Integrate over pdfs and phase space at fixed pT
• Vary scale and look for stationary point 

Theory tells us that natural hard scale is
µh = pT
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• Vary scale and look for stationary point 

Repeat for jet scale

µh = pT Lower scale indicated
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Natural scales
Hard scale Jet scale

So we take:

Always well above LQCD
•avoids unphysical region

note that

March 31, 2017 Matthew Schwartz



Jet masses

R=1.2

R=0.4

Rule of thumb “m = 0.2 pt”

mJ really  is close to the
mass of the partonic jet

March 31, 2017 Matthew Schwartz



W boson pT: 2 scales mW and pT
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Figure 3: Scale sensitivities. These plots show the effect of adding part of the fixed-order NLO
calculation to the LO calculation. The left panel shows what happens if all the µ-dependent
terms at NLO are added together. There is a slow monotonic logarithmic µ dependence,
with no natural extremum. In contrast, when the hard, jet, or soft contributions are added
separately, there are natural extrema. These extrema indicate the average value of momenta
⟨p⟩ appearing in the logarithms. That there are different extrema for the different components
proves that multiple scales are relevant. The plots are for W+ bosons, but the qualitative
features are the same for all bosons.

these degrees of freedom, appearing in the large logarithms. After integrating over the PDFs,
the perturbative correction will then have the form

∆σ

σLO
= αs(µ)(c2L

2 + c1L+ c0) , (28)

with L = ln µ
⟨p⟩ . If µ is chosen either much lower or much higher than ⟨p⟩, the perturbative

corrections will become large. Since we do not have an analytic expression for the distribution,
due to the necessity of convoluting with PDFs, we determine ⟨p⟩ numerically by computing the
individual corrections to the cross section as a function of µ. The result is shown in the right
plot of Figure 3. It has the expected form (28) and we see that while the jet and soft scales
are concave upwards, the hard curve is concave downward. The extrema of the corresponding
curves indicate the scales ⟨p⟩ that dominate these contributions after integrating over the
PDF. It is then natural to define our default values for µ as the positions of the extrema.
That there are different extrema for the different components proves that multiple scales are
relevant. These scales are conflated in the fixed-order calculation. The left plot in Figure 3
shows the fixed-order scale dependence. In this case, there is monotonic µ dependence, with
no natural extremum.

To find the scales numerically we extract these extrema from the curves. Using a number of
different machine center-of-mass energies (we tried 2, 7, 14, and 100 TeV), pp and p̄p collisions,
and various boson masses, we determine a reasonable approximation to these points is given
by the following functional forms
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That there are different extrema for the different components proves that multiple scales are
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no natural extremum.

To find the scales numerically we extract these extrema from the curves. Using a number of
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Figure 5: Comparison of our scale choices (blue) with the traditional choice µ =
√

M2
W + p2T

(red) for photon (dashed) andW boson (solid). For the hard scale, there is not much difference.
On the other hand, the natural jet (and soft) scales are lower than the traditional choice, but
higher than the fixed scale µ = MW .

other two parameterizations. If we used the jet scale instead of the hard scale, the band would
be closer to the µ = MW band. Thus it is important to choose the appropriate scale in the
appropriate place to get an accurate prediction.

Having determined the default values for the scales in Eq. (29), we can compute the
resummed distribution. As discussed above, we include all ingredients for N3LL accuracy,
except for the two-loop non-logarithmic terms in the hard, jet and soft functions. We match
to NLO fixed order and denote our highest order resummed result by N3LLp+NLO, where
the subscript “p” stands for partial. Convergence in perturbation theory and the relative
size of various scale variations are shown in Figure 7. To generate the bands in this plot, we
determine the maximum and minimum cross section obtained when varying each scale up and
down by a factor of 2 around its default value. In contrast to the fixed-order result, the scale
dependence is not monotonic (cf. Figure 3). To determine the maximum and minimum, we
compute the cross section at 1

2 , 2 and the central value, fit a parabola to those three points
and take the maximum and minimum along the parabola.

Curves in the first four panels of Figure 7 are not matched to fixed order. The relatively
large factorization scale uncertainty comes about because the µ dependence is only canceled
in the resummed distribution near threshold. The full µ dependence at NLO is removed once
the theory is matched to the fixed-order distribution, as it is in the bottom two panels. The
combined uncertainty that we use for our final error estimates is the quadratic sum of the
hard, jet, soft and factorization scale uncertainties:

∆σ =
√

(∆hσ)2 + (∆jσ)2 + (∆sσ)2 + (∆fσ)2 (32)

This is a conservative error estimate. We observe that the N2LL and N3LLp scale variation
bands overlap, but the increase in the cross section from NLL to N2LL is larger than the
NLL band. The same behavior is also seen when going from the LO to the NLO fixed-order
result. The corresponding bands would overlap had we evaluated the LO and NLL results with
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Figure 6: Scale variations at next-to-leading order. The blue southeast stripes show the scale
variation of the NLO calculation (called NNLO in fewz) with µ = µf = µr = MW , as in the
atlas paper. The red northeast stripes show the prediction using µf = µr =

√
M2

W + p2T and
the black vertical stripes have µf and µr set to the scales in Eq. (29). Bands correspond to
varying µ = µf = µr by factors of two from these default scales.

leading-order PDF sets which have a larger value of αs, instead of the NNLO PDFs we use
throughout. The increase in the cross section from NLL to N2LL is mostly due to the one-loop
constants in the soft and hard functions, as can be seen from the right panel of Figure 3. We
have checked how much of a shift the known two-loop jet and soft function constants induce
and find that it is below a per cent.

4 Comparison with LHC data

We are now ready to compare to LHC data. We discuss separately the two processes we study,
direct photon and W production. For numerical work we use the NNLO MSTW 2008 PDF set
and its associated αs(MZ) = 0.1171 [45]. We also use MW = 80.399 GeV, αe.m. = 127.916−1,
sin2 θW = 0.2226, Vud = 0.97425, Vus = 0.22543, Vub = 0.00354, Vcd = 0.22529, Vcs = 0.97342
and Vcb = 0.04128.

4.1 Direct photon

For direct photon production, to be consistent with the comparison to Tevatron data in [18],
we use the scale choices from that paper

µh = pT ,

14

µ =

q
m
2
W
+ p2T

Fixed order setsµh = µj = µs = µ

Natural scales lost

Our scales
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3

the partonic cross section is convoluted with the PDFs,
the average jet mass must be calculated numerically.
To obtain the proper scale for each ingredient of the

factorization formula (1), we use the numerical procedure
advocated in [12]. We evaluate the factorization theorem
(1) numerically at a fixed scale µ and study individually
the impact of the NLO corrections from the hard, jet
and soft functions. The scale variations are shown on
the top panel in Figure 2. Note that the jet and hard
function variations have natural extrema. These extrema
are shown as the points in the lower panel for the jet scale.
The solid curves are a reasonable approximation to these
points, given by

µh =
13pT + 2MV

12
−

p2T√
s
,

µj =
7pT + 2MV

12

(

1−
2pT√
s

)

,

(6)

which we use instead of the exact extrema for simplicity.
We also set µs = µ2

j/µh, as dictated by the factorization
theorem. By choosing scales close to these extrema, we
minimize the scale uncertainty.
The scale setting procedure beautifully illustrates the

power of the effective field theory approach. In a fixed-
order computation, the hard, jet and soft corrections can-
not be separated and are included at a common value
of the renormalization scale. This is shown in the NLO
curves in the top of Figure 2. In this case the scale depen-
dence is monotonous. Because there are multiple relevant
scales in the problem, there is no natural scale choice at
fixed order. But there are natural choices when µ is split
into hard, jet and soft. For illustration, we also show
in the bottom panel of Figure 2 the popular scale choice
µj =

√

p2T +M2
V , which is a bad fit to the jet scale.

The most natural choice for the factorization scale µf

would be at or below µs, since this scale defines the
boundary between the perturbative and non-perturbative
part of the process. However, since all PDF fits were per-
formed with µf set equal to the hardest scale in the pro-
cess, we will follow this convention and use µf = µh as
our default value. Note that this implies that we use the
RG to run the jet and soft functions from lower to higher
values, in contrast to the situation depicted in Figure 1.
In order for our results to contain the full NLO cross

section we match the resummed result to fixed order.
The matching is straightforward since the resummation
switches itself off when we set all scales equal, µh = µj =
µs = µf . Doing so in the NNLL result yields all loga-
rithmically enhanced terms at one loop level, which we
denote by NLOsing. The matched result is obtained by
adding the difference between the full NLO result and the
singular terms NLOsing to the NNLL resummed result.
We denote the matched result by NNLL+NLO. To com-
pute the NLO fixed-order result, we use the code qt [13],
and have verified that it agrees with mcfm [14].
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FIG. 4: Prediction for the combined W+ and W− cross sec-
tions the LHC (7 TeV).

Most of the ingredients necessary to go to N3LL ac-
curacy are already known. The 3-loop anomalous di-
mensions are all known. We use these, along with the
two-loop jet function constants [15, 16] and the Padé ap-
proximant for the 4-loop cusp anomalous dimension, to
get our most accurate prediction, which we denote by
N3LLpartial.

For fixed order, we set the renormalization and factor-
ization scales equal to µh. Uncertainties are estimated
by varying by a factor of 2 around the defaults values
(6) and extracting the maximum and minimum values.
For the final scale variation error bands on the resummed
distributions, we add the jet, hard, soft and factorization
scale uncertainties in quadrature. All numerical predic-
tions are computed using MSTW2008NNLO PDFs [17],
with αs(MZ) = 0.1171. For the electroweak parameters,
we use α = 1/127.92, sin θW = 0.2263,MW = 80.40GeV,
MZ = 91.19GeV.

In Figure 3, we show the pT spectrum of the Z-boson
at the Tevatron in comparison to results of the D0 exper-
iment [18]. Our results agree well with the experimental
results but have significantly smaller uncertainties, in the
region of high transverse momentum.
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Figure 10: Comparison of theory to atlas data for the W spectra. The red band is the NLO
prediction, using µf = µr = MW , as in [2]. The N3LLp + NLO prediction, in green, is in
excellent agreement with the data. Dashed blue lines indicate PDF uncertainties which are of
order the scale uncertainties at N3LLp + NLO order.

the data and the NLO scale uncertainties, but of the same order as the scale uncertainties of the
resummed distribution. This indicates that PDF fits could be improved using the W spectra,
but only if resummation is included (or perhaps if the NNLO result becomes available).

5 Conclusions

In this paper, we have compared theoretical predictions for the direct photon and W boson
spectra at high pT to measurements performed by the atlas collaboration using LHC data.
The predictions were performed using the exact cross section at NLO in αs (the highest or-
der known), supplemented with additional terms to all orders in αs coming from a threshold
expansion. These extra terms correspond to large logarithms associated with infrared singu-
larities of the recoiling jet. To isolate these terms, the resummed calculation is performed
near the partonic threshold, in which the pT of the vector boson is maximal for the given
value of the partonic center-of-mass energy. In this limit, the cross section factorizes and the
logarithmic terms can then included to all orders in perturbation theory. These terms usually
give the dominant contribution to the the cross section. In the photon case, the fragmentation
cross section and isolation corrections were added also, using the program jetphox.

A main advantage of the resummed cross section, which was calculated using effective
theory in [18] and [19], is that it has well-defined scales associated with different phase space
regions. Unlike a fixed-order calculation, which merges all the scales into one, the effective
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Figure 8: Perturbative uncertainty at Q = 91.2 GeV. The first four panels show the variation
of the matching scale, the hard scale, the jet scale, and the soft scale. Each of the scales is
varied separately by a factor of two around the default value. The last two panels show the
effect of simultaneously varying the jet- and soft scales, see text. The lep 1 aleph data is
included for reference. All plots have ! s(mZ) = 0.1168.

of " and compare to the best fit result. We find that the extracted value is fairly insensitive to
the fit range. In fact, going from the standard range (solid line) to the larger region (dashed
lines) changes the best-fit value of ! s(mZ) by less than 0.3%, from 0.1168 to 0.1171.

Next, we consider the perturbative theoretical uncertainty. In the effective field theory
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analysis, four scales appear: the hard scale µh ∼ Q, the jet scale µj ∼
√

τQ, the soft scale
µs ∼ τQ, and the scale µm at which the matching corrections are added. In the matching
corrections the physics associated with the hard, jet and soft scales has not been factorized, so
it is not obvious which value of µm should be chosen. We follow standard fixed-order practice
and choose µm = Q as the default value. Our result is independent of these scales to the order
of the calculation: the change in the result due to scale variation can thus be used to estimate
the size of unknown higher order terms, of O(α4

s) for our final result.
We show the results of varying each of the four scales up and down by a factor of 2 in the

first four panels of Figure 8. The results converge nicely, with the dominant uncertainty coming
from the soft scale variation. This is expected, as the soft scale probes the lowest energies
and therefore the largest values of αs. In fact, it is a critical advantage of the effective theory
that the soft scale can be probed explicitly – the fixed-order calculation has access to only one
scale and assuming µ ∼ Q may therefore underestimate the perturbative uncertainty. From
the first panel in Figure 8 it is clear that the extraction of αs is almost completely insensitive
to the scale at which the fixed order calculation comes in. Again, this is in contrast to a pure
fixed-order result. The matching scale variation is so small because the matching correction
itself is small, as we saw in Figures 1, 2, 4, and 5.

Figure 8 shows the effect of varying the jet and soft scales separately by factors of two:
1
2

√
τQ < µj < 2

√
τQ and 1

2τQ < µs < 2τQ. While a factor of two may seem reasonable for a
fixed order calculation (although as we have already observed, the thrust distribution probes
scales τQ ≪ Q), from the effective field theory point of view it makes little sense to vary the
soft and jet scales separately. In doing so, one can easily have µj < µs or µh < µj which is
completely unphysical. Instead, for the error analysis we will use two coordinated variations.
First, a correlated variation holding µj/µs fixed:

µj → c
√

τQ, µs → cτQ,
1

2
< c < 2 . (39)

This probes the upper and lower limits on µj and µs, but avoids the unphysical region. Second,
an anti-correlated variation, holding µ2

j/(Qµs) fixed:

µ2
j → aQ2τ µs → aQτ,

1√
2

< a <
√

2 . (40)

This is independent from the correlated mode but again avoids having µj < µs. The uncer-
tainty resulting from these two variations is shown in the last two panels of Figure 8.

To estimate the total perturbative uncertainty on the extracted value of αs, we use the
uncertainty band technique proposed in [44] and adopted both by aleph [42] and opal [43]
as well as in the recent fit of NNLO results to aleph data [5]. The result is shown in Figure 9.
In short, the theoretical uncertainty is determined as follows: one first calculates αs(mZ) using
a least-squares fit to the data with all scales at their canonical values and without including
any theoretical uncertainty in the χ2-function. Then each scale is varied separately, holding
αs(mZ) fixed to its best-fit value. These produce the curves in Figure 9. Next, the uncertainty
band, the yellow region in Figure 9, is defined as the envelope of all these variations. Finally,
the scales are returned to their canonical values, and the maximal and minimal values of αs are
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"
2 . (40)

This is independent from the correlated mode but again avoids having µj < µ s. The uncer-
tainty resulting from these two variations is shown in the last two panels of Figure 8.

To estimate the total perturbative uncertainty on the extracted value of " s, we use the
uncertainty band technique proposed in [44] and adopted both by aleph [42] and opal [43]
as well as in the recent fit of NNLO results to aleph data [5]. The result is shown in Figure 9.
In short, the theoretical uncertainty is determined as follows: one first calculates " s(mZ ) using
a least-squares fit to the data with all scales at their canonical values and without including
any theoretical uncertainty in the #2-function. Then each scale is varied separately, holding
" s(mZ ) fixed to its best-fit value. These produce the curves in Figure 9. Next, the uncertainty
band, the yellow region in Figure 9, is defined as the envelope of all these variations. Finally,
the scales are returned to their canonical values, and the maximal and minimal values of " s are
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Figure 8: Perturbative uncertainty at Q = 91.2 GeV. The Þrst four panels show the variation
of the matching scale, the hard scale, the jet scale, and the soft scale. Each of the scales is
varied separately by a factor of two around the default value. The last two panels show the
e! ect of simultaneously varying the jet- and soft scales, see text. The lep 1 aleph data is
included for reference. All plots have! s(mZ ) = 0 .1168.

of " and compare to the best Þt result. We Þnd that the extracted value is fairly insensitive to
the Þt range. In fact, going from the standard range (solid line) to the larger region (dashed
lines) changes the best-Þt value of! s(mZ ) by less than 0.3%, from 0.1168 to 0.1171.

Next, we consider the perturbative theoretical uncertainty. In the e! ective Þeld theory
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Combine with uncertainty band
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Figure 9: Uncertainty bands for various scale variations. The band in the first panel is deter-
mined entirely by scale variations. The second panel shows an alternative way of estimating the
perturbative uncertainty using an educated guess of the uncalculated higher order coefficients,
as described in the text.
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For hadron collisions, uncertainties smaller
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Direct photon 13 TeV

• Adding in quadrature
gives smaller uncertainty
than NLO
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Very problematic at fixed order:

• can underestimates uncertainties
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Scale variation
March 31, 2017 Matthew Schwartz

Very problematic at fixed order:

• can underestimates uncertainties

Many reasonable
scale choices: 

Pick one and vary by a factor of 2

Differences between 
parameterizations
are larger than the 
individual variations

µ =
q

p2T +m2
W

µ = HT

µ = max{mW , Ejet}

e.g. pT spectrum of W

• does not get color structures right
• does not account for asymptotic nature of 

series

Also problematic with resummation
• how to combine variations of different scales?

Additional problems

Scale variation pT
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Resummed formula depends on a bunch of anomalous dimensions

where we have written! 0 and ! 1 in terms of the Casimir invariants CF = 4
3, CA = 3 and

TF = 1
2, but have evaluated! 2 and ! 3 for N = 3 colors. The RG equation (44) has a solution

in terms of L = ln µ2

! 2

" s(µ) =
4#
! 0

[
1
L
−

! 1

! 2
0L2

ln L +
! 2

1

! 4
0L3

(ln2 L − ln L − 1) +
! 2

! 3
0L3

+
! 3

1

! 6
0L4

(
− ln3 L +

5
2

ln2 L + 2 ln L −
1
2

)
− 3

! 1! 2

! 5
0L4

ln L +
! 3

2! 4
0L4

]
. (47)

It is also useful sometimes to work with perturbative expansion of " s(µ) in terms of " s at a
Þxed renormalization scale,µR:

" s(µ) = " s(µR) −
" 2

s(µR)
2#

! 0 ln
µ

µR
+

" 3
s(µR)
8#2

(
−! 1 ln

µ
µR

+ 2! 2
0 ln2 µ

µR

)

+
" 4

s(µR)
32#2

(
−! 2 ln

µ
µR

+ 5! 0! 1 ln2 µ
µR

− 4! 3
0 ln3 µ

µR

)
+ · · · . (48)

We write the perturbative expansion of the anomalous dimensions as

! cusp(" ) =
( "

4#

)
! 0 +

( "
4#

)2
! 1 +

( "
4#

)3
! 2 + · · · ,

$H (" ) =
( "

4#

)
$H

0 +
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4#

)2
$H

1 +
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4#

)3
$H

2 + · · · ,

$J (" ) =
( "

4#

)
$J

0 +
( "

4#

)2
$J

1 +
( "

4#

)3
$J

2 + · · · ,

$S(" ) = $H (" ) − 2$J (" ) . (49)

The exact anomalous dimensions are known to" 3
s. The anomalous dimensions for the hard

function are

$H
0 = −6CF ,

$H
1 = C2

F (−3 + 4#2 − 48%3) + CF CA

(
−

961
27

−
11#2

3
+ 52%3

)
+ CF TF nf

(
260
27

+
4#2
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)
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$H
2 = −1.856n2

f + 259.3nf − 1499. (50)

For the jet function

$J
0 = −3CF ,

$J
1 = C2

F (−
3
2

+ 2#2 − 24%3) + CF CA

(
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1769
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−
11#2

9
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+ CF TF nf

(
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27

+
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9
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,

$J
2 = −0.7255n2

f + 85.35nf − 203.8. (51)
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where we have written β0 and β1 in terms of the Casimir invariants CF = 4
3, CA = 3 and

TF = 1
2 , but have evaluated β2 and β3 for N = 3 colors. The RG equation (44) has a solution

in terms of L = ln µ2

! 2

αs(µ) =
4π

β0

!
1

L
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β1

β2
0L2

ln L +
β2

1

β4
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$
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It is also useful sometimes to work with perturbative expansion of αs(µ) in terms of αs at a
fixed renormalization scale, µR :

αs(µ) = αs(µR) !
α2

s(µR)

2π
β0 ln

µ
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We write the perturbative expansion of the anomalous dimensions as
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The exact anomalous dimensions are known to α3
s. The anomalous dimensions for the hard

function are
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where we have written! 0 and ! 1 in terms of the Casimir invariants CF = 4
3, CA = 3 and
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For the soft function

γS
0 = γH

0 − 2γJ
0 , γS

1 = γH
1 − 2γJ

1 , γS
2 = γH

2 − 2γJ
2 . (52)

And for the cusp anomalous dimension
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Analytical expressions for the three-loop terms γH
2 , γJ

2 and Γ2 can be found in [24]. The α4
s part

of the cusp anomalous dimension is not known and we estimate it using a Padé approximation.
The same approximation works well at α3

s and in any case our results are very insensitive to
the value of Γ3.

B Hard, jet and soft function

The hard function can be written as

H(Q2, µ) = h(ln
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, µ) , (54)

where to three-loop order
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• Each anomalous dimension is a series
• Series generally asymptotic
• Estimate higher order terms with

Padé approximation

! n +1 ! c
! 2

n

! n�1
�j
n+1 ⇡ c

(�j
n)

2

�j
n�1

• vary c by a factor of 2 or 5
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Figure 9: Uncertainty bands for various scale variations. The band in the first panel is deter-
mined entirely by scale variations. The second panel shows an alternative way of estimating the
perturbative uncertainty using an educated guess of the uncalculated higher order coefficients,
as described in the text.
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Figure 9: Uncertainty bands for various scale variations. The band in the first panel is deter-
mined entirely by scale variations. The second panel shows an alternative way of estimating the
perturbative uncertainty using an educated guess of the uncalculated higher order coe! cients,
as described in the text.
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Regular variations Padé variations

• Reasonable estimate of what higher order calculation will give you
• Not perfect, but I think it’s a good idea needing refinement
• Can be used at fixed order too…
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Can we estimate higher order non-logarithmic terms?
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Can we estimate higher order non-logarithmic terms?
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• Different color structures known
• Logs all known
• Coefficients can be studied/estimated to look for patterns

• Statistical distributions of coefficients -> confidence levels?
• Study graphs at next order 

• New channels opening up
• Now scales appearing (particle masses, new logarithms)

theoretical uncertainty
Scale sensitivity

Estimte higher order effects
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Two problems: 1. What scales should we choose?

2. How do we estimate theory error?

• Solution clear for single scale problems
• Even single-scale problems can have multiple scales

• Factorized distribution separates scales
• Effectively reduces to single-scale case

• Multiple scales makes problem worse
• How do we combine separate variations?

• Scale variation is poor proxy for theoretical estimates
• Does not even get color structures right
• Different parameterizations don’t agree

• Think about what can appear at higher order
• More work, but may be more realistic


