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Outline
 The HL-LHC and upgrade of CMS calorimeters
 PU mitigation with precise timing

2~ 10 cm

Raw ΣET~2 TeV
14 jets with ET>40 GeV
Estimated  PU~50
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• ∼25 years of operation since installation instead of anticipated 10 years.
• We will see that while the ECAL barrel will perform  well to 3000 fb-1,      

the ECAL endcaps must be upgraded at the end of LHC Phase I

LHC and HL-LHC
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Phase 1: E = 13-14 TeV
L=1-2 ·1034 cm-2s-1

<PU> ∼ 40-60
≥50fb-1 per year

by the end of Phase1
300 - 500 fb-1

HL-LHC:
L=5 ·1034 cm-2s-1

<PU> ∼ 140 events
250 fb-1 per year  

by 2035  3000 fb-1

In Run1 we have collected ~1% 
of the total data expected!
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Radiation Environment 
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ECAL barrel: 3 Gy/h 
and 2x1012 p/cm2

ECAL endcap at η=2.6: 65 
Gy/h and 2x1014 p/cm2

HCAL endcap: up to 20 
Gy/h and 1013 p/cm2HCAL barrel: 0.3 Gy/h and 

up to 1011 p/cm2

1 Gy = 1 Joule/kg 
∼ 3x109 mips/cm2  

across the medium

HL-LHC
L=5 ·1034 cm-2s-1

∫Ldt = 3000 fb-1



Radiation damage
to PbWO4 crystals

Crystals are subject to two 
types of irradiation:
 Gamma irradiation damage 

spontaneously recovers at 
room temperature.

 Hadron damage creates 
clusters of defects which 
cause light transmission 
loss. The damage is 
permanent and cumulative 
at room temperature. 
Hadron damage causes 
band-edge shift at low 
wavelengths of the PbWO4
emission spectrum (orange 
and red curves).  
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- - - PbWO4 emission 
spectrum



Partial recover during
2011-2012 data taking
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Energy Resolution
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Deterioration of ECAL response strongly affect all the 
contribution to the energy resolution. 
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Reduction of light output causes:
• Worsening of stochastic term
• Amplification of the noise term
• light collection non-uniformity

and deviation from linearity
impact on the constant term
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Non-irradiated crystal

Dose equivalent to end of 
HL-LHC at |η| = 2.6



ECAL Endcaps
response evolution

 ECAL endcaps to be replaced after 500 fb-1 (during LS3)
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 Evolution of progressive deterioration 
of ECAL response vs pseudorapidity
(damage on photodetector included)

Energy resolution for e/γ is still 
acceptable with ECAL response 
greater than ∼ 10% of the non-
damaged detector.
• 500 fb-1: ECAL coverage to η<2.6 

(i.e. full TK fiducial area)
• 1000 fb-1: ECAL coverage to η<2.3
• 3000 fb-1: ECAL coverage to η<2.1



Energy Resolution
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 Performance for e/γ is acceptable on the right (~1/2%) while 
unsustainable on the left (~10%) 
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The dark current can be mitigated by cooling the EB to 8 °C.

Single channel noise extrapolation. 
- Dark current and noise measured for
several APDs irradiated at the ENEA up 
to the HL-LHC expected fluence.
- Goal: energy resolution not 
overwhelmed by noise from dark current.
- 5 ADC counts equivalent to~ 200 MeV

APD dark current and 
noise in ECAL barrel
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The dark current evolution in time during 
the 2011 and 2012 is shown.
- The APD dark current increases linearly 
with neutron fluence (which depends on 
pseudorapidity).



Radiation damage to HF
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Signal loss in HF due to the radiation 
induced reduction of quartz fiber 
transparency.
Laser data shown: 2011+2012 (29 fb-1)
Black line is the expectation (not a fit) 
based on simulation.

Expected loss of signal for up to 3000 fb-1

In the highest η region, signal reduction
by factor x3-x4 is expected and can be 
compensated by re-calibration.
HF will survive 3000 fb-1, at least up to   
η < 4.5.

No upgrade of HCAL Forward is planned for LS3



Radiation Damage to HE
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Degradation of signal (loss of scintillation and reduced transmission 
of light) in CMS HCAL Endcap in 2012 for the first sampling layer.

A signal reduction of ~ 30% is observed at the highest pseudorapidity
region (η=3). 
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Extrapolated signal 
degradation in HE
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 Extrapolation of degradation based on the 2012 data.
 HCAL Barrel will be highly performant to 3000 fb-1 

HCAL Endcaps will be replaced after 500 fb-1 (during LS3)

Here signal drops to 
(less than) 5% of the 
original value.

Riccardo Paramatti - INFN Roma



A new combined Endcap 
Calorimeter

 High Granularity Calorimeter (HGCAL): measure
charged particle momentum with the inner tracker, 
and neutrals in the calorimeter (Particle Flow)

 Key point: resolving/separating showers through a 
finely granulated and longitudinally segmented 
calorimeter.

 Planes of Si separated by lead/Cu
or brass

 Challenges:
number of channels and data transmission, 
compact and inexpensive electronics, 
L1 trigger, cooling, high pile-up, mechanical 
mounting 
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HGCAL  concept



High Granularity Calorimeter
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 E-HG: ~33 cm, 25 X0, 1λ, 30 layers:
 10 planes of Si separated by 0.5 X0 of tungsten/lead
 10 planes of Si separated by 0.8 X0 of tungsten/lead
 10 planes of Si separated by 1.2 X0

of tungsten/lead
 H-HG: ~66 cm, 3.5λ:

 12 planes of Si separated by ~0.3λ 
of brass absorber

 E-HG + H-HG:
 Fine grain pads 0.45 and 0.9 cm2

 9M channels and 660 m2 of silicon 

 B(back)-HG  as HE re-build 5λ

 ∆E/E ~ 20%/√E
3D shower reconstruction
 Use shower topology to mitigate 

PU effect

E-HG
H-HG

B-HG



Pile-up mitigation with 
precise timing



Pile-Up Mitigation

Two areas of study :
 Increased granularity and segmentation 

may help to separate out pile-up activity 
from primary event physics objects.

 High precision (pico second) timing may 
help in pile-up mitigation. 
The subdetector providing the precision 
timing may best be associated to precise 
and finely segmented detector → ECAL
 Object reconstruction
 Object-to-vertex attribution
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• PU particles overlap with main event objects spoiling resolution (bad energy 
measurement) and reconstruction (fake objects are created). 

• 30-40% of the energy in a jet is coming from photons or neutral hadrons 
( so no tracker information for PU cleaning). 

• Pile-up is most critical in the forward region 
• Upgrades must aim at optimizing forward detector for high pile-up condition



Pile-Up Mitigation with 
precise timing

 Desired time resolution is 20-30 ps
(~ 1 cm in vertex resolution)

 Generic R&D on MicroChannelPlates and
fast timing Si (highly doped) sensors. 
R&D also on timing with LYSO crystals. 
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GEANT4 toy simulation with 
“crystal slices” to study detector 
configuration (25 GeV photons)
• Best resolution at 7-8 X0
• Best thickness 1cm



Pile-Up Mitigation with 
precise timing
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In summary
 Modern calorimeters at the LHC already shown excellent 

performance in terms of stability, energy resolution, timing, etc.
 They played a crucial role in the discovery of the Higgs Boson 

and will be fundamental in Run2 as well.
 The HL-LHC poses severe requirements to detectors in terms of 

performance and rad-hardness. 

In these lectures I mainly discussed LHC calorimeters, with a brief 
overview to other HEP calorimeters. 
Calorimetry is also very important in many other fields: space 
experiments, neutrino experiments, medical applications, etc.
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