

Searches of new physics with boosted objects

Sadia Khalil University of Kansas

5th School on LHC Physics, NCP, Islamabad, Pakistan Aug 22, 2016

Unsolved problems in Standard Model

- Mass hierarchy
- Dark matter
- Gravity
- Baryogenesis
- Neutrino oscillations
- Strong Charge Parity

Dark Matter

Baryogenesis

Neutrino Oscillations

What is required for NP Searches?

- Detector and machine
 - Thanks to the accelerator teams of CERN, the LHC has exceeded even the most optimistic performance estimates

Triggers

- See talks by Ferdos Rezaei Hosseinabadi on L1 and HLT performance
- Understanding of SM backgrounds
 - See talks by Ferdos Rezaei Hosseinabadi related to top quark production x-section measurement
- New techniques to probe TeV scale
 - Jet Substructure tools ⇒top, Higgs, W/Z tagging
 - New discriminants (α_T , M_{T2} , S_T , $H_{T...}$), and smart algorithms (BDTs,...)

What is required for NP Searches?

Detector and machine

, the LHO, find, instic perform nave find, instic performance
 Understanding of totation to some data is production of the producti

- - Jet Substr e tools ⇒top, Higgs, W/Z tagging
 - New discriminants (α_T , M_{T2} , S_T , $H_{T...}$), and smart algorithms (BDTs,...)

CMS Integrated Luminosity, pp

om 2010-03-30 11:22 to 2016-08-07 05:35 UTC

2 NOV

Jet turn on

|n| < 3.0

1 Dec

3.1fb⁻¹ (13 TeV)

(Et> 36-200 GeV)

 L1 Jet E_T > 36 L1 Jet E

250 300 350 40 Offline Jet E_T (GeV)

LHC Collider

LHC Collider

- Largest ever built collider in the world near Geneva, Switzerland
- Proton-Proton 2808 bunch/beam
- Protons/bunch = 1.2×10^{11}
- Beam energy = $13 \text{ TeV} = 13 \times 10^{12} \text{ eV}$
- Luminosity = 10^{34} cm⁻² s⁻¹
- Crossing rate = 40 MHz (25 ns)
- Collisions per second = 1 billion

With every bunch crossing 23 Minimum Bias events with ~1725 particles produced

selection of 1 in 10¹³

Particle Detection

Jets

- Need a "jet algorithm" to associate the charged/neutral hadrons in a spray to initial quarks and gluons
- Sequential recombination algorithm:
 Find min of all dij and dib,
 - If min is a d_{ij}, merge and iterate
 - If min is a d_{iB} , classify as a final jet
 - Continue until list is exhausted

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \Delta R_{ij}^2 / R^2$$

$$d_{iB} = p_{ti}^{2p} \text{ (beam distance)}$$

$$p = 1 \rightarrow \text{kt algorithm (KT)}$$

$$p = 0 \rightarrow \text{Cambridge Aachen algorithm (CA)}$$

$$p = -1 \rightarrow \text{anti-kt algorithm (AK)}$$

b-jets

- <u>Combined Secondary Vertex version 2</u> algorithm, based on secondary vertex and track-based lifetime informations
- Combines the variables with a <u>neural network</u> instead of a likelihood ratio and the secondary vertex information is obtained with the Inclusive Vertex Finder algorithm.

Boosted Jets

• Heavier the mass, more is the boost received by its decay products

Jet Grooming

 Pruning - recluster. Throw out subjets which are too soft, requiring that each recombination satisfy

$$\frac{\min(p_{\mathrm{T}1}, p_{\mathrm{T}2})}{p_{\mathrm{T}p}} > 0.1$$
$$\Delta R_{12} < 0.5 \times \frac{m_{\mathrm{jet}}}{p_{\mathrm{T}}}$$

 Soft drop - decluster. Throw out subjets which do not satisfy the soft drop condition

W-tagging

Redo clustering remove soft

large angle

constituents

Pruning

More taggers

Boosted tautau-tagging

Missing Transverse Energy

lepton+neutrino event

Standard Model Backgrounds

 The x-section decrease exponentially with jet p_T and # of jets

 New physics often appears in an event with multiple jets and very high jet pt

Common Search Procedures

- Look for excesses over known backgrounds in
 - Reconstructed new particle mass tails
 - High S_T tails: $S_T = p_T^l + \Sigma p_T^{jet} + E_T^{miss}$

Resonances

- Powerful, model-independent probe to new physics
 - Simple Strategy: Look for a "bump"
 - Example: If m_{ff} > m_Z or m_H ➡ New Physics!
- Top quark resonances in BSM Models
 - Extended gauge sectors: Z', W' and G' bosons
 - Complex Strategy: Use boosted techniques to identify t, W, Z, H along with b and reconstruct the resonance mass

New Physics Searches

- For physics including boosted SM particles, CMS has the "Beyond Two Generations" Physics Analysis Group (B2G PAG)
- <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G</u>
- I will cover mostly the B2G results, see more talks by Albert De Roeck related to EXO and SUSY results

A glimpse of overwhelming results!

• Just new for ICHEP 2016, more than 70 CMS results !!

SUSY Results

<u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS#Run_2_Summary_plots_13_TeV</u>

EXO Summary

CMS Exotica Physics Group Summary – ICHEP, 2016

B2G Summary

<u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G</u>

$X \rightarrow Dibosons$

$X(750) \rightarrow \gamma\gamma$

 From Dec 2015 to March 2016, both ATLAS and CMS observe a diphoton excess of around 750 GeV

Sadia Khalil, 5th School on LHC Physics, NCP, Islamabad, Pakistan; Aug 22nd, 2016

••••••

•••••••

Η

X(750)

• What is seen now

What we would have seen

Data

Fit model

J=0 σ = 3.6fb

900

 $m_{\gamma\gamma}$ (GeV)

850

± 1 s.d.

± 2 s.d.

Sadia Khalil, 5th School on LHC Physics, NCP, Islamabad, Pakistan; Aug 22nd, 2016

"...just to mess with phenomenologists..."

Papers citing diphoton fluctuation

Citations summary

Generated on 2016-07-27

422 papers found, 412 of them citeable (published or arXiv)

Citation summary results	Citeable papers	Published only
Total number of papers analyzed:	412	206
Total number of citations:	17,418	12,429
Average citations per paper:	42.3	60.3
Breakdown of papers by citations:		
Renowned papers (500+)	<u>0</u>	<u>0</u>
Famous papers (250-499)	<u>0</u>	<u>C</u>
Very well-known papers (100-249)	<u>70</u>	53
Well-known papers (50-99)	<u>61</u>	<u>41</u>
Known papers (10-49)	<u>106</u>	<u>70</u>
Less known papers (1-9)	<u>131</u>	36
Unknown papers (0)	<u>44</u>	6
h _{HEP} index [7]	87	70
e additional metrics		

VV/WV/ZV/HW/HV/HH

8 + 13 TeV Combination

- Combinations prepared for several models of
 - Composite H: W' \rightarrow WZ/WH, Z' \rightarrow WW/ZH •
 - **RS** Graviton \bullet
 - Bulk Graviton: $G_{bulk} \rightarrow WW/ZZ$
 - Heavy Vector Triplet (reference)
- Combined all available channels except ZV, HV, HH 13 TeV

- #650: 3.9 sigma local, 3.5 sigma global
 - However, need to look else where ulleteffect for other masses this plot

example: Z'→tt

Z′ →tt

Sadia Khalil, 5th School on LHC Physics, NCP, Islamabad, Pakistan; Aug 22nd, 2016

lept.

/′→tb

 \bar{q}

Vector-like quarks

Its a non-chiral matter and hence has its own mass:

 $\mathcal{L}_M = -M \bar{\psi} \psi$ Gauge invariant mass term without the Higgs

 Transforms under the same representation of the SM SU(3)_c×SU(2)_W×U(1)_Y gauge symmetry

$$\mathcal{L}_W = \frac{g}{\sqrt{2}} \left(J^{\mu +} W^+_{\mu} + J^{\mu -} W^-_{\mu} \right)$$
 Charged current Lagrangian

- SM chiral quarks: ONLY left-handed charged currents
 - $J^{\mu+} = J_L^{\mu+} + J_R^{\mu+} \quad \text{with} \quad \begin{cases} J_L^{\mu+} = \bar{u}_L \gamma^{\mu} d_L = \bar{u} \gamma^{\mu} (1 \gamma^5) d = V A \\ J_R^{\mu+} = 0 \end{cases}$

vector-like quarks: BOTH left-handed and right-handed charged currents

$$J^{\mu+} = J_L^{\mu+} + J_R^{\mu+} = \bar{u}_L \gamma^\mu d_L + \bar{u}_R \gamma^\mu d_R = \bar{u} \gamma^\mu d = \mathbf{V}$$

Vector-like quarks

• Production:

• Decays:

Pair: T \rightarrow Wb, Zt, Ht; B \rightarrow Wt, Zb, Hb

BR	Wt	Wb	\mathbf{Zt}	$\mathbf{Z}\mathbf{b}$	ht	hb	Chirality
T23 singlet	0	1/2	1/4	0	1/4	0	L
T23 doublet	0	0	1/2	0	1/2	0	R
X53 doublet	1	0	0	0	0	0	L/R
B13 singlet	1/2	0	0	1/4	0	1/4	L
B13 doublet	1	0	0	0	0	0	R
Y43 triplet	0	1	0	0	0	0	L/R

	Table 1:	Branching	ratios,	following	the e	quivalence	theorem
--	----------	-----------	---------	-----------	-------	------------	---------

VLQ: Pair production

B2G-15-006

 ℓ +jets: XX \rightarrow 4W + 2b, TT \rightarrow 6 final states! Reconstructing M(VLQ) with 1ℓ + jets

becomes unfeasible. Maximize sensitivity by categorizing according to jet tags:

- Search for $X_{5/3} \rightarrow tW$ in same-sign 2 ℓ and ℓ +jets final states
- Search for $T_{2/3} \rightarrow bW(50\%)$, tZ(25%), tH(25%) in ℓ +jets
 - Inclusive analysis targeting singlet VLQ decay combination
 - Single lepton final state will be joined by boosted Higgs, 2*l*, and 3*l* states

 $(e, \mu) \ge (0, 1, 2, 3 + b \text{ jets}) \ge (0, 1 + W \text{ jets}).$

SS 2ℓ: cut & count in lepton categories, data-driven nonprompt/charge mis-ID bkgd

₄ / 120 GeV

VLQ: Pair production

B2G-15-006

 ℓ +jets: XX \rightarrow 4W + 2b, TT \rightarrow 6 final states! Reconstructing M(VLQ) with 1ℓ + jets

becomes unfeasible. Maximize sensitivity by categorizing according to jet tags:

- Search for $X_{5/3} \rightarrow tW$ in same-sign 2 ℓ and ℓ +jets final states
- Search for $T_{2/3} \rightarrow bW(50\%)$, tZ(25%), tH(25%) in ℓ +jets
 - Inclusive analysis targeting singlet VLQ decay combination
 - Single lepton final state will be joined by boosted Higgs, 2*l*, and 3*l* states

 $(e, \mu) \ge (0, 1, 2, 3 + b \text{ jets}) \ge (0, 1 + W \text{ jets}).$

SS 2ℓ: cut & count in lepton categories, data-driven nonprompt/charge mis-ID bkgd

VLQ: Pair production

 T₂₃→bW: From combination of all exclusive regions, the search has sensitivity of 750 GeV, considering T as isospin singlet

Single $T_{2/3} \rightarrow tZ$, dilepton

- Search for T \rightarrow tZ \rightarrow t + 2 ℓ and B \rightarrow bZ, reconstructing M_{T/B}using leptons and boosted jets
- + $T \rightarrow tZ$ with 3 top quark decays
- At least one b tagged jet per event

For unit b-associated couplings:

- Exclude T singlet below 1350 GeV
- Exclude B singlet below 1120 GeV
- First Z' \rightarrow VLQ result from CMS
 - Exotic production mode: $Z' \rightarrow tT \rightarrow ttZ$
 - Probing M(Z') 1.5 2.5 TeV

Diagrams J. Thaler

Coupling limits for c(bW), c(tZ), and c(tW) based on T/B singlet or doublet models

B2G-16-001

Single $T_{2/3} \rightarrow tH$, $Had + \ell jets$

Set cross section limits for LH or RH signal with unit couplings & coupling limits for c(Wb), c(Zt)

Sadia Khalil, 5th School on LHC Physics, NCP, Islamabad, Pakistan; Aug 22nd, 2016

M(T) [GeV]

Summary

- Described common objects, tools and methods to probe new physics at TeV scale at the LHC
- Due to high advancement in jet sub-structure tools, it is now possible to explore a plethora of models that would otherwise have been inaccessible to LHC
 - The resonance decays: X' → VV, tt, bb, TT, tT,... that provides a clear signature of new physics
 - VLQs TT, BB, Tjb, Tjt, Bjb, Bjt, have a very rich phenomenology
 - can be a possible solution to mass hierarchy problem
 - can be portal to Dark matter! (See the backup slide)

Summary

 Described common objects, tools and methods to probe new physics at TeV scale at the LHC

• can be portal to Dark matter! (See the backup slide)

Backup

P-values and limits

• The 2016 data (based on 12.9 fb⁻¹ of integrated luminosity) do not confirm the fluctuations observed earlier in the m_{VV} spectrum in 2015 and Run1 at 8 TeV

Sadia Khalil, 5th School on LHC Physics, NCP, Islamabad, Pakistan; Aug 22nd, 2016

Top Partners

- Quantum loop corrections due to top quark pushes up the Higgs mass, unless severe fine-tuning is introduced
- Higgs mass:
 - $m_h^2 = m_{bare}^2 + \delta m_h^2$
 - $\delta m_h^2 = \dots + h_h^t$
- Solution to this problem invokes the existence of top quark partners:

- fermionic (vector-like quarks)
- bosonic (stops in SUSY)

Sadia Khalil, 5th School on LHC Physics, NCP, Islamabad, Pakistan; Aug 22nd, 2016

Illustration by Fabrizio Margaroli

top partner(s)

W'

Top Partners: Connection to the dark matter

- Little Higgs, Extra Dimensions theories provide dark matter candidates
- VLQs can decay into SM quarks+DM (hep-ph/1604.07941)

Sadia Khalil, 5th School on LHC Physics, NCP, Islamabad, Pakistan; Aug 22nd, 2016

Illustration by Fabrizio Margaroli

Where do the VLQs appear?

Wrapped or universal extra dimensions

lightest states of the fermion KK excitations

• Composite Higgs models:

resonance of the bounded states of Higgs

Little Higgs models:

<u>Isospin multiplets in a larger group representations</u> <u>ensuring cancellation of loop divergence</u>

History! The 4th generation

Remain popular for quite few years!

- Higgs discovery ruled out them!
 - coupling to Higgs ∝ fermion mass ⇒ drastic effect on loop
 induced H-g and H-γ vertices
 - cross section increased by a factor ~9

SUSY: Implications

 SUSY unifies the strengths of three forces of nature at 10¹⁶ GeV

• Explains 25% of the energy in the universe: the dark matter

Beautiful but not a minimal theory

- SUSY is a broken symmetry: masses of superpartners are not fixed by theory
- A parameter space which is impossible to fully exclude but to only constrain

- Complementary strategies are requires to maximally constrain the parameters
 - direct and indirect dark matter detection
 experiments
 - rare processes production rate
 - precision SM production cross section measurement (tt production)

- Within the MSSM only:
 - MSSM: 109 parameters
 - pMSSM: 19 parameters
 - CMSSW: 5 parameters

Leptoquarks

- New bosons that carry <u>both lepton and baryon number</u> are predicted by many BSM theories: GUTs, Composite models
- Dominant processes for LQ pair production at LHC
 - gluon-gluon fusion & quark-antiquark annihilation

Leptoquarks

- New bosons that carry <u>both lepton and baryon number</u> are predicted by many BSM theories: GUTs, Composite models
- Dominant processes for LQ pair production at LHC
 - gluon-gluon fusion & quark-antiquark annihilation
- Exact properties (spin, weak isospin, electric charge) depend on specific model: direct searches at the LHC → Buchmuller-Ruckl-Wyler model (BRW)
 - interact with SM fermions through coupling λ
 - preserves baryon and lepton number
 - couple to a single chirality and generation of SM fermions at a time

Leptoquarks

- New bosons that carry <u>both lepton and baryon number</u> are predicted by many BSM theories: GUTs, Composite models
- Dominant processes for LQ pair production at LHC
 - gluon-gluon fusion & quark-antiquark annihilation
- Exact properties (spin, weak isospin, electric charge) depend on specific model: direct searches at the LHC → Buchmuller-Ruckl-Wyler model (BRW)
 - interact with SM fermions through coupling λ
 - preserves baryon and lepton number
 - couple to a single chirality and generation of SM fermions at a time
- BR, β is generally unknown, but {II,Iv,vv} + qq maximally produced for $\beta = 1$, 0.5, and 0

BR(LQ-	+ld)	=	β
BR(LQ-	•vq)	=	1-β

LQLQ	β^2	$\beta(1-\beta)$	$(1-\beta)^2$
1st gen	ee + jj	$e\nu + jj$	n/a
2nd gen	$\mu\mu + jj$	$\mu u + jj$	n/a
3rd gen	au au otbb,tt	n/a	$\nu\nu$ +bb,tt

Z'/W' resonances

• Numerous final states to explore \rightarrow already several results at 13 TeV !!

resonance	diagram type	final state	luminosity	CMS-PAS
ttbar	\bar{q}	lvbbjj	2.6 fb⁻¹	B2G-15-002
	q g_{KK}/Z' t	bbjjjj	2.6 fb⁻¹	B2G-15-003
W'	\bar{q}	b $bbjj 2.6 \text{ fb}^{-1} B2$ W'_{R} $Vbb 2.2 \text{ fb}^{-1} B2$	2.6 fb⁻¹	B2G-16-009
			B2G-15-004	
	q \overline{t}	lvbb	12.9 fb ⁻¹ 2016 data	B2G-16-017

Top quark production and decya

53

Top quark production and decya

Jet Clustering Algorithms

- Different types
 - N = 2: "kT"
 - "Irregular" jets, but good for low pt
 - N = 0 : "Cambridge-Aachen" (CA)
 - Also irregular, very useful for substructure!
 - N = -2: "anti-kT"
 - "Idealized" cone algorithm

Vector-like quarks

• Production:

• Decays:

Pair: T \rightarrow Wb, Zt, Ht; B \rightarrow Wt, Zb, Hb

BR	Wt	Wb	\mathbf{Zt}	$\mathbf{Z}\mathbf{b}$	ht	hb	Chirality
T23 singlet	0	1/2	1/4	0	1/4	0	L
T23 doublet	0	0	1/2	0	1/2	0	R
X53 doublet	1	0	0	0	0	0	L/R
B13 singlet	1/2	0	0	1/4	0	1/4	L
B13 doublet	1	0	0	0	0	0	R
Y43 triplet	0	1	0	0	0	0	L/R

Table 1: Branching ratios, following the equivalence theorem

