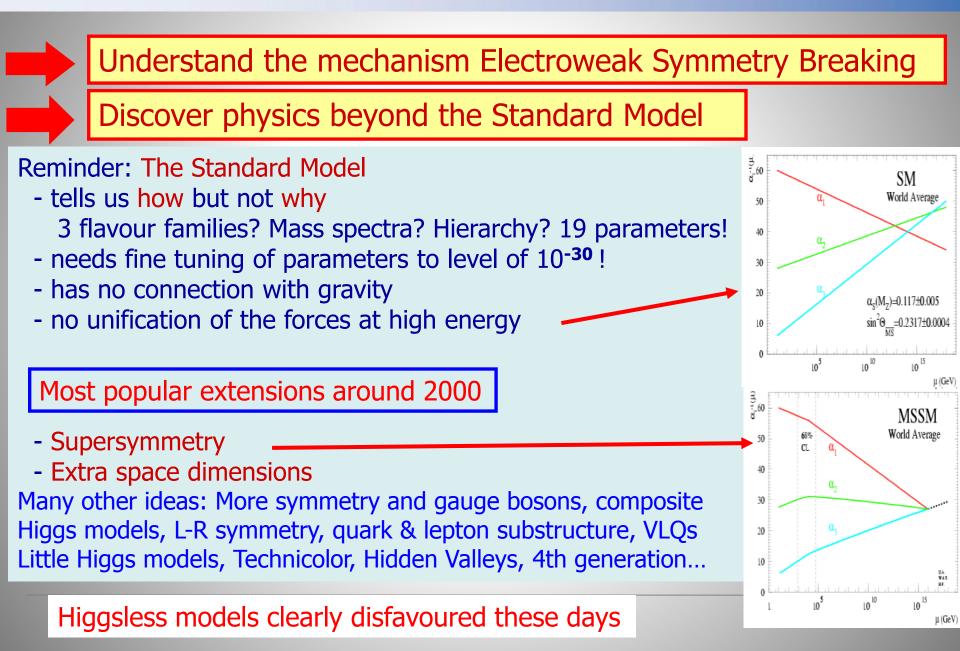
Beyond the Standard Model Searches @ the LHC

Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belorum UC-Davis California USA NTU, Singapore

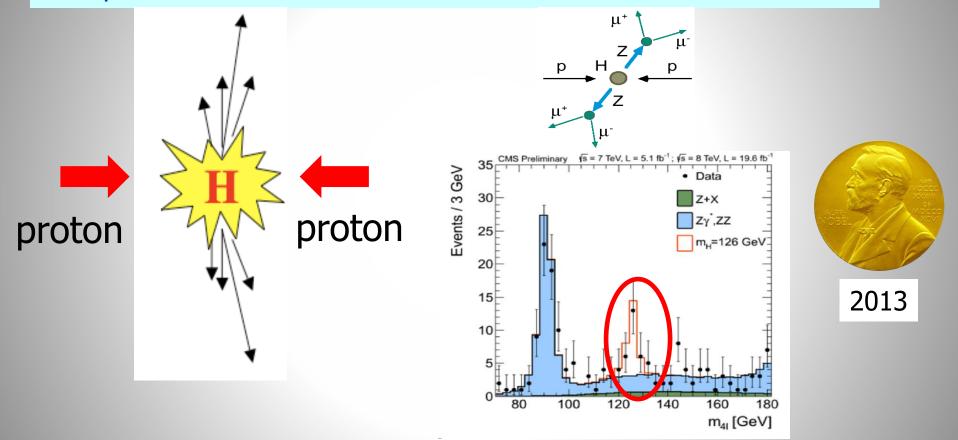
August 15 - August 26 Astanabad

5th School on LHC Physics - 2016



Lecture Plan

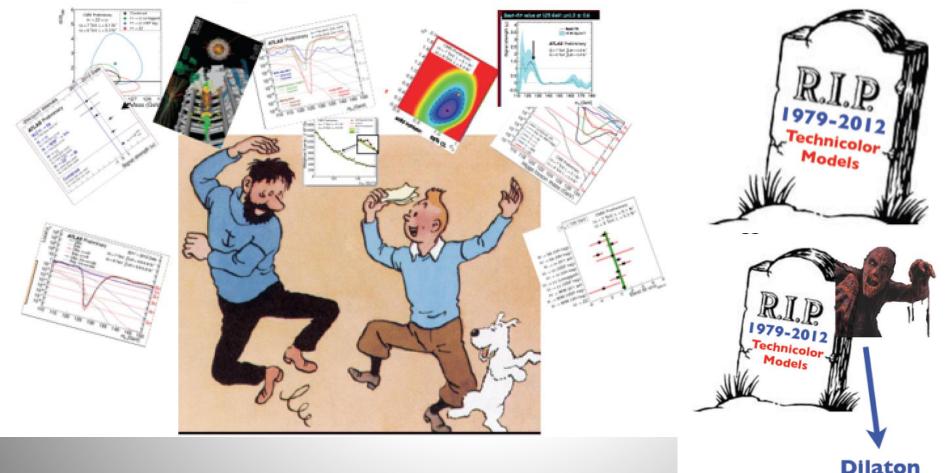
Overview of the 3 lectures in the next days


- Lecture 1:
 - Introduction to searches for new physics
 - Searches for exotica and new phenomena
- Lecture 2:
 - Searches for supersymmetry
 - Searches for real exotic particles
- Lecture 3:
 - The hunt for dark matter
 - Outlook for the LHC and for the Future

Physics case for new High Energy Machines

2012: A Milestone in Particle Physics

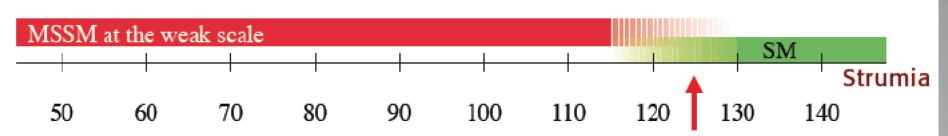
Observation of a Higgs Particle at the LHC, after about 40 years of experimental searches to find it


The Higgs particle was the last missing particle in the Standard Model and possibly our portal to physics Beyond the Standard Model

The Theorist and Experimentalists

The party in 2012!

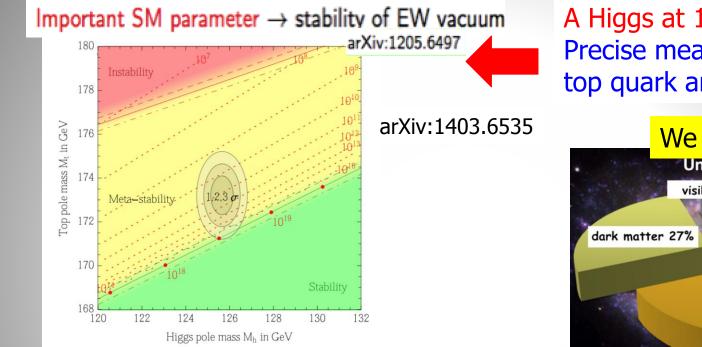
A. Pomarol ICHEP2012


Not everybody at the party eg higgsless models...

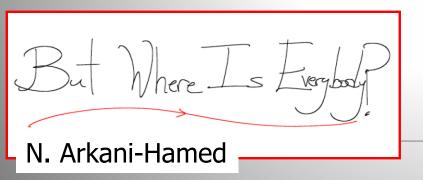
But careful about resurrections, Higgs imposters...

A Higgs @ 125 GeV...

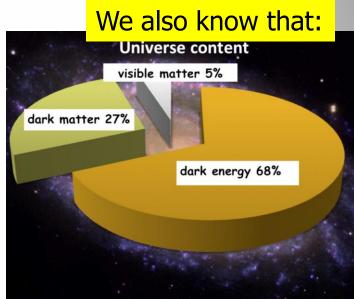
A malicious choice!

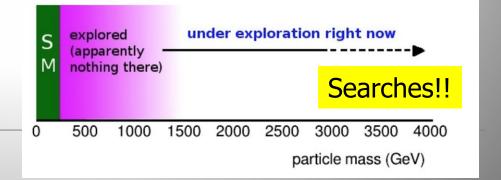

The Higgs: so simple yet so unnatural

 $m_{\mu} = 125.0 + - 0.2 \text{ GeV}$

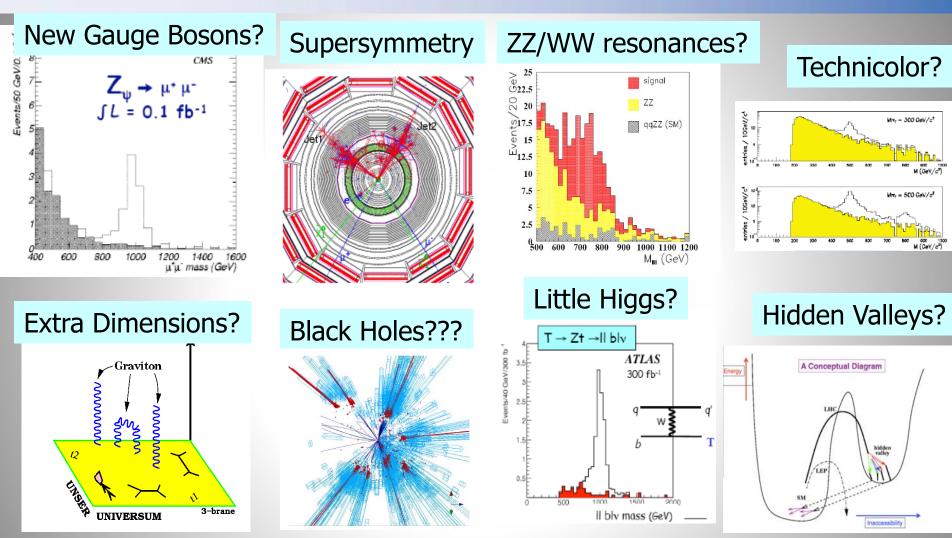

Guido Altarelli 1941-2015 Stockholm Nobel Symposium May 2013

"We do not understand why the mass of the Higgs is 125 GeV It most likely tells us something on what is Beyond the Standard Model"


Physics Beyond the Standard Model?



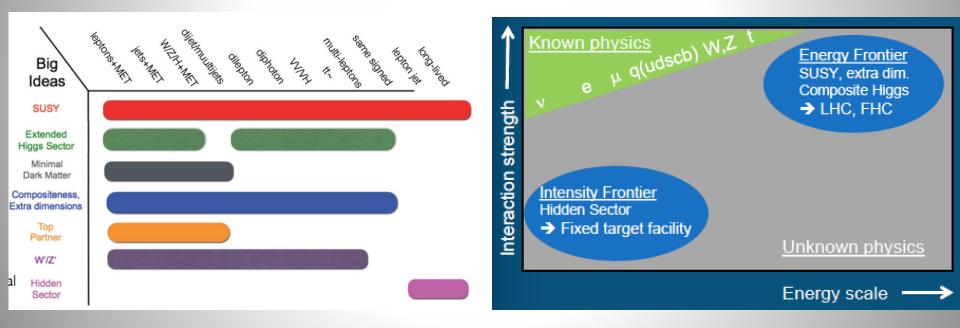
New Physics inevitable? But at which scale/energy?



A Higgs at 125 GeV Precise measurements of the top quark and the Higgs mass

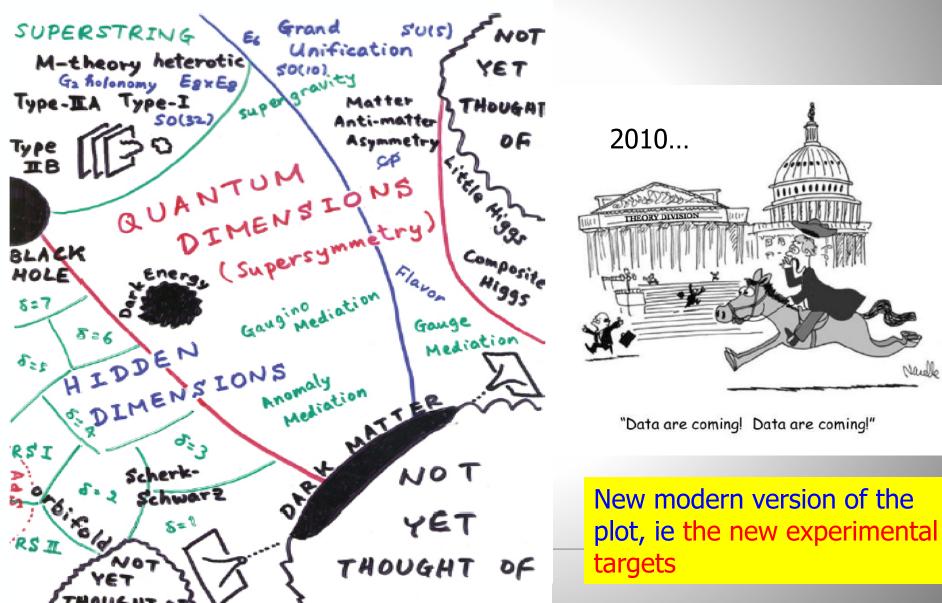
New Physics?

What stabelizes the Higgs Mass? Many ideas, not all viable any more A large variety of possible signals. We have to be ready for that

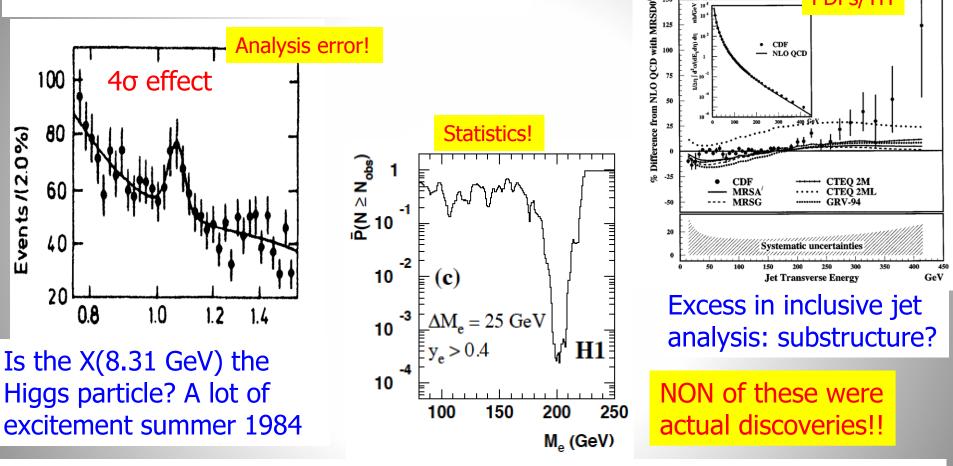

Beyond the SM Signatures

1 jet + MET Many extensions of the SM have been jets + MET developed over the past decades. 1 lepton + MET Supersymmetry Same-sign di-lepton Dilepton resonance Extra-Dimensions Diphoton resonance Technicolor(s) Diphoton + MET Little Higgs Multileptons Lepton-jet resonance No Higgs Lepton-photon resonance GUT Gamma-jet resonance Diboson resonance Hidden Valley Z+MET Leptoquarks W/Z+Gamma resonance Top-antitop resonance Compositeness Slow-moving particles 4th generation (t', b') Long-lived particles Top-antitop production LRSM, heavy neutrino Lepton-Jets etc... Microscopic blackholes Dijet resonance etc... (for illustration only)

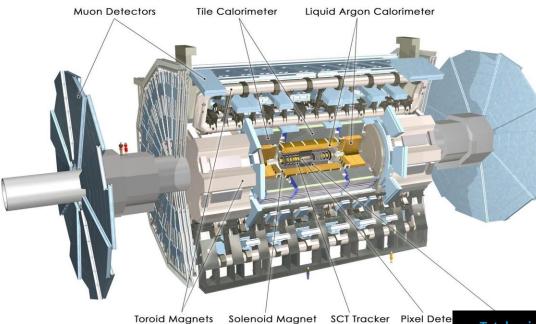
New Physics Searches

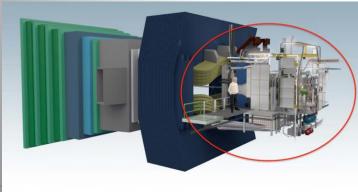

Same signatures can come from quit different phenomena: "The Inverse Problem" See eg the LHC Olympics workshops (2004)

We should explore both the energy scale and the interaction strength (couplings) with our searches


2010-2012: LHC data and Theorists

Careful with "Discoveries"!

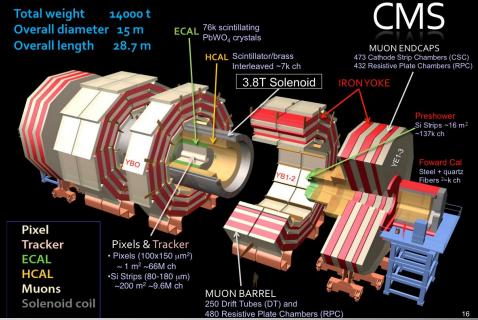

EVIDENCE FOR A MASSIVE STATE IN THE RADIATIVE DECAYS OF THE UPSILON


Excess of events at high Q² in ep DIS at HERA, mainly in H1:

- •7 events found with an electron-quark mass of ~200 GeV, expected ~1 event
- •4 events found with expected 2 events in ZEUS -> Leptoquarks?

New Physics Hunters @ the LHC

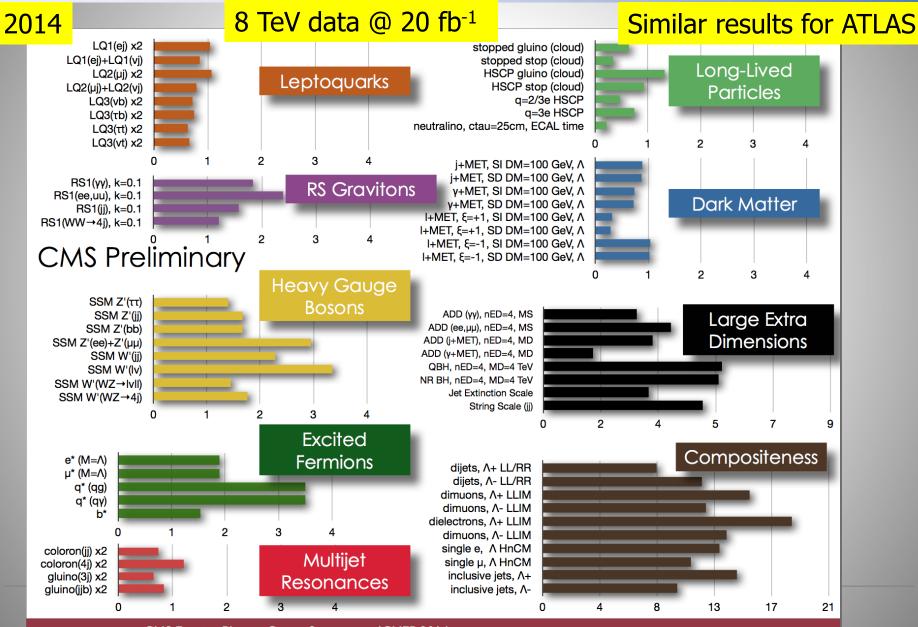
...And also LHCb and MoEDAL



LHCb

MoEDAL

The ATLAS experiment


The CMS experiment

Searches for BSM Physics

- First Searches at the LHC (2010-2012)
 - Supersymmetry with MET plus jets, lepton(s), photons
 - Extra Dimensions and black holes, heavy resonances (in electrons, muons, taus, jets), leptoquarks, excited leptons and quarks, 4th generation, a few very exotic signatures (R-hadrons)...
- Evolved Searches (2013-...)
 - Supersymmetry on third generation squarks, compressed spectra, stealth SUSY, EWKinos, VBF processes...
 - Higgs in decays or as study object, vector-like quarks, boosted objects, long lived particles, fractional charges...
 - More dedicated Dark Matter searches!
- We are now fully in the analyses at 13 TeV... Strategy now a combination of the above!

Summary of Exotica Searches

CMS Exotica Physics Group Summary – ICHEP, 2014

Summary of SUSY Searches

Similar results CMS

 $\sqrt{s} = 7, 8 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits Status: Feb 2015

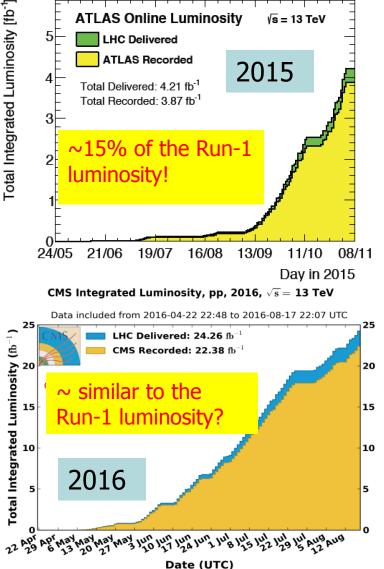
2014

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	¹] Mass limit	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} \\ (\text{compressed}) \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q \ell \ell / \ell \nu / \nu \nu \bar{\chi}_{1}^{0} \\ GMSB(\ell NLSP) \\ GGM \ (bino NLSP) \\ GGM \ (higgsino NLSP) \\ Gravitio \ LSP \end{array} $	$\begin{matrix} 0 \\ 0 \\ 1 \\ \gamma \\ 0 \\ 1 \\ e, \mu \\ 2 \\ e, \mu \\ 1 \\ 2 \\ \gamma \\ 1 \\ e, \mu + \gamma \\ \gamma \\ 2 \\ e, \mu (Z) \\ 0 \\ \end{matrix}$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20 20 20.3 20.3 4.8 4.8 5.8 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1405.7875 1405.7875 1410.57875 1405.7875 1501.03555 1501.03555 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 1502.01518
3 rd gen. ĝ med.	$\tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0}$ $\tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0}$ $\tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0}$ $\tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{+}$	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	\$\tilde{k}\$ 1.25 TeV m(\tilde{V}_1)<400 GeV \$\tilde{k}\$ 1.1 TeV m(\tilde{V}_1)<350 GeV \$\tilde{k}\$ 1.34 TeV m(\tilde{V}_1)<400 GeV \$\tilde{k}\$ 1.34 TeV m(\tilde{V}_1)<300 GeV \$\tilde{k}\$ 1.3 TeV m(\tilde{V}_1)<300 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{c} \bar{b}_1 \bar{b}_1, \bar{b}_1 \rightarrow b \bar{k}_1^0 \\ \bar{b}_1 \bar{b}_1, \bar{b}_1 \rightarrow \iota \bar{k}_1^+ \\ \bar{r}_1 \bar{r}_1, \bar{r}_1 \rightarrow b \bar{k}_1^+ \\ \bar{r}_1 \bar{r}_1, \bar{r}_1 \rightarrow b \bar{k}_1^+ \\ \bar{r}_1 \bar{r}_1, \bar{r}_1 \rightarrow \ell \bar{k}_1^0 \\ \bar{r}_1 \bar{r}_1, catural GMSB) \\ \bar{t}_2 \bar{t}_2, \bar{t}_2 \rightarrow \bar{t}_1 + Z \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 0-1 \ e, \mu \\ 0 \\ 1 \\ 0 \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 1-2 b nono-jet/c-1 1 b 1 b	Yes Yes Yes Yes Yes tag Yes Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 1404.2500 1209.2102, 1407.0583 1403.4653, 1412.4742 1407.0583,1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{split} \tilde{\ell}_{L,\mathbf{R}} \tilde{\ell}_{L,\mathbf{R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\nu}(\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} (\ell (\tilde{\nu}), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{Z} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0}, \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{R} \ell \end{split} $	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ γγ e,μ,γ 4 e,μ	0 0 - 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294,1402.7029 1501.07110 1405.5086
Long-lived particles	Direct $\tilde{x}_1^+ \tilde{x}_1^-$ prod., long-lived \tilde{x}_1^+ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{x}_1^0 \rightarrow \tilde{\tau}(\tilde{c}, \tilde{\mu}) + \tau(e, GMSB, \tilde{x}_1^0 \rightarrow \gamma \tilde{G}, \log - i \text{ved } \tilde{x}_1^0$ $\tilde{q} \tilde{q}, \tilde{x}_1^0 \rightarrow q q \mu$ (RPV)	Disapp. trk 0 trk μ) 1-2 μ 2 γ 1 μ, displ. vtb	1 jet 1-5 jets - - - -	Yes Yes - Yes -	20.3 27.9 19.1 19.1 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$ LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$ Bilinear RPV CMSSM $\tilde{X}_{1}^{*}\tilde{X}_{1}^{*}, \tilde{X}_{1}^{+} \rightarrow W\tilde{X}_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu\tilde{v}_{e}$ $\tilde{X}_{1}^{*}\tilde{X}_{1}^{*}, \tilde{X}_{1}^{+} \rightarrow W\tilde{X}_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow r\tau\tilde{v}_{e}, e\tau\tilde{v}_{\tau}$ $\tilde{g} \rightarrow qqq$ $\tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs$	$\begin{array}{c} 2 e, \mu \\ 1 e, \mu + \tau \\ 2 e, \mu (\text{SS}) \\ 4 e, \mu \\ 3 e, \mu + \tau \\ 0 \\ 2 e, \mu (\text{SS}) \end{array}$	- 0-3 b - - 6-7 jets 0-3 b 2 c	- Yes Yes - Yes Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3 20.3	ŷr, 1.61 TeV $\lambda'_{311}=0.10, \lambda_{132}=0.05$ ŷr, 1.1 TeV $\lambda'_{311}=0.10, \lambda_{1223}=0.05$ ŷr, ĝr 1.35 TeV $m(\hat{g})m(\hat{g}), c_{LSP}<1 mm$ \hat{X}_1^* 750 GeV $m(\hat{g}^0)>0.2 xm(\hat{x}_1^*), \lambda_{121}\neq 0$ \hat{X}_1^* 450 GeV $m(\hat{\xi}^0)>0.2 xm(\hat{x}_1^*), \lambda_{123}\neq 0$ \hat{g} 916 GeV $B(c)=0\%$ \hat{g} 850 GeV $m(\hat{\xi}^0)>2.2 xm(\hat{x}_1^*), \lambda_{123}\neq 0$ \hat{g} 916 GeV $m(\hat{\xi}^0)>2.2 xm(\hat{x}_1^*), \lambda_{123}\neq 0$ \hat{g} 916 GeV $m(\hat{\xi}^0)>2.2 xm(\hat{x}_1^*), \lambda_{123}\neq 0$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} =$	8 TeV data		-1 1 Mass scale [TeV]	1901.01329

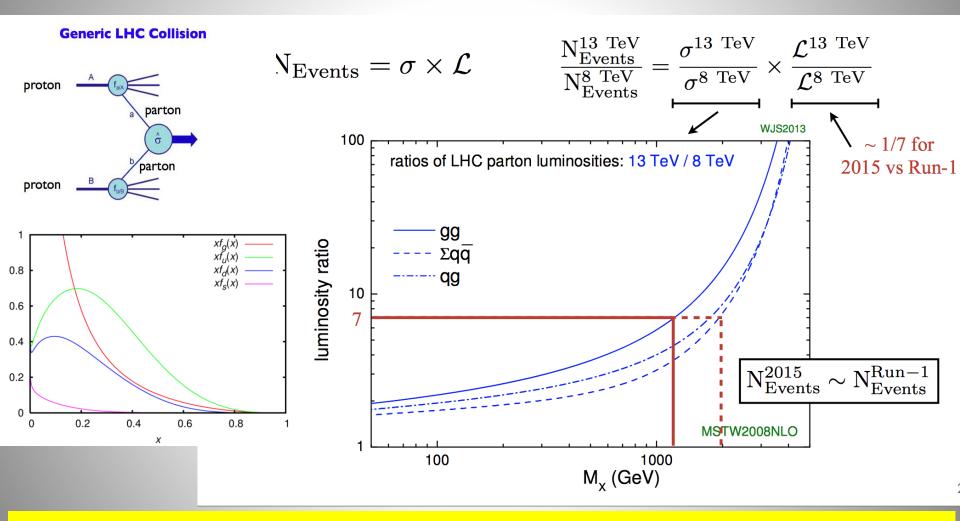
Run-1: We Observed Mild Deviations!

No	ovember 20	B. Hoobermar										
https://www.dropbox.com/s/2xrrcxns5wnc4ek/LHC_anomalies.pdf?dl=0												
		Search	Dataset	Max Significance	Reference							
		Z+jęts+E _T ^{miss}	ATLAS 8 TeV	3.0σ	EPJC 75 (2015) 318							
	Strong SUSY		ATLAS 13 TeV	2.20	ATLAS-CONF-2015-082							
	(jets+E _T ^{miss} +X) EWK SUSY (leptons+E _T ^{miss})	Dilepton mass edge	CMS 8 TeV	2.6σ	arXiv:1502.06031 [hep-ex]							
		Soft 20+E _T ^{miss}	ATLAS 8 TeV	2.3σ	ATLAS-CONF-2013-062							
		Same-sign ≥2ℓ+b+E _T ^{miss}	ATLAS 8 TeV	2.5σ	arXiv:1504.04605 [hep-ex]							
		3ℓ+E _T ^{miss} (WZ→3ℓ channel)	CMS 8 TeV	~2σ	EPJC 74 (2014) 3036							
		$4\ell + E_T^{miss}$ ($3\ell + \tau_{had}$ channel)	CMS 8 TeV	~3σ	PRD 90, 032006 (2014)							
		30+E- ^{miss}	ATLAS 8 TeV	2.2σ	JHEP 04 (2014)169							
		All-hadronic boosted diboson	ATLAS 8 TeV	3.4σ	JHEP 12 (2015) 55							
		Dijet resonance search (M _{jj} ~ 1.8 TeV)	CMS 8 TeV	~2σ	PRD 91 (2015) 052009							
	Resonances	W(&v)H(bb) resonance (M _{WH} ~ 1.8 TeV)	CMS 8 leV	2.2σ	CMS-PAS-EXO-14-010							
	Higgs Flavor SM	X→h(bb)h(vv) (M _× ~300 GeV)	ATLAS 8 TeV	3.0σ	PRL 114 (2015) 081802							
		1st gen. leptoquarks (eejj / evjj channels)	CMS 8 TeV	2.6σ / 2.4σ	CMS-PAS-EXO-12-041							
		Heavy right-handed neutrinos	CMS 8 TeV	2.8σ	EPJC 74 (2014) 3149							
		ttH (same-sign muon channel)	CMS 8 TeV	$\mu_{ttH} = 8.5^{+3.5}_{-2.7}$	JHEP 09 (2014) 087							
		Higgs→με (lepton flavor violation)	CMS 8 TeV	2.5σ	CMS-PAS-HIG-14-005							
		В → Кℓℓ (Кµµ / Кее)	LHCb 8 TeV	2.6σ	PRL 113 (2014) 151601							
		В → Кµµ (branching ratio)	LHCb 8 TeV	2.2σ	JHEP 06 (2014) 133							
		В → Кµµ (P_5 ' angular distribution)	LHCB 8 TeV	3.7σ	LHCb-CONF-2015-002							
		WW cross section*	CMS 7 TeV	1.0σ	EPJC 73 2610 (2013)							
		WW cross section*	CMS 8 TeV	1.7σ	PLB 721 (2013)							
	measurements	WW cross section*	ATLAS 7 TeV	1.4σ	PRD 87, 112001 (2013)							
		WW cross section*	ATLAS 8 TeV	2.0σ	ATLAS-CONF-2014-033							
	A See, Joinwel and Olyji 0014 and Manni and Zenderighi 0014 for explanation											

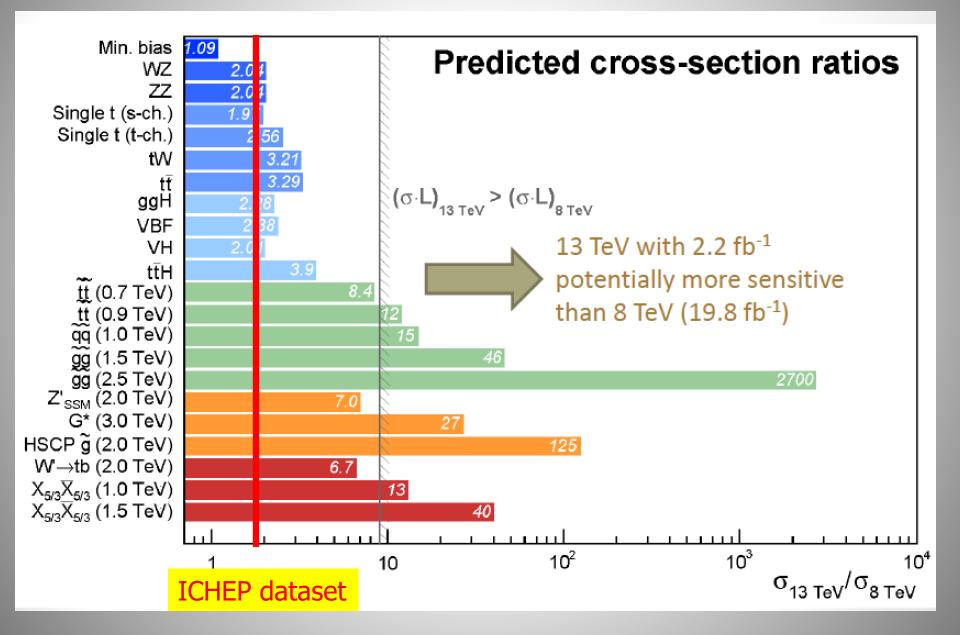
* See Jaiswal and Okui 2014 and Monni and Zanderighi 2014 for explanation


LHC experiments are back in business at a new record energy 13 TeV

3rd June 2015

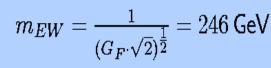


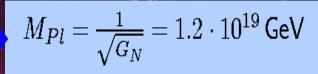
For ICHEP results: ~ 13 fb⁻¹ from 2016 data



New Physics Searches with 13 TeV Data

For searches above 1-2 TeV the 2015 data sample becomes already important The 2016 data (\sim 30 fb⁻¹ at the end?) will take over for ALL searches


Run-II: From 8 TeV to 13 TeV



Extra Dimensions

Extra Space Dimensions

Problem:

The Gravity force becomes strong!

Models with Extra Dimensions

RS

Randall Sundrum

UFD

Large Extra Dimensions Planck scale $(M_D) \sim \text{TeV}$

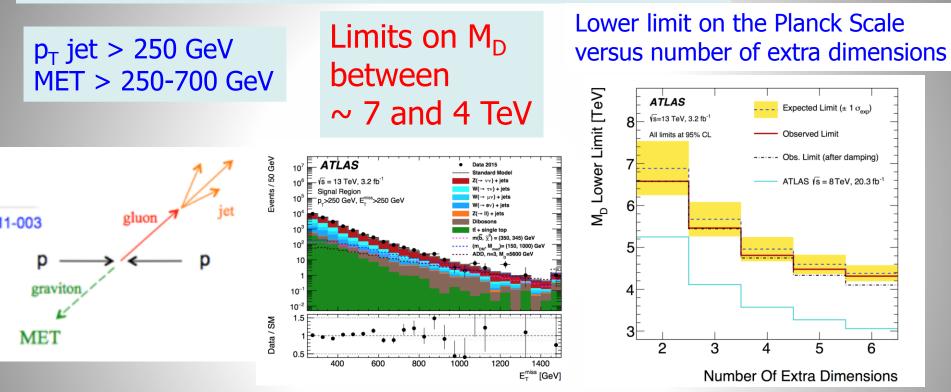
Size: » TeV⁻¹; SM-particles on brane; gravity in bulk KK-towers (small spacing); KK-exchange; graviton prod. ADD Signature: e.g. x-section deviations; jet+ET,miss Arkani-Hamed Dimopoulos Dvali

Warped Extra Dimensions

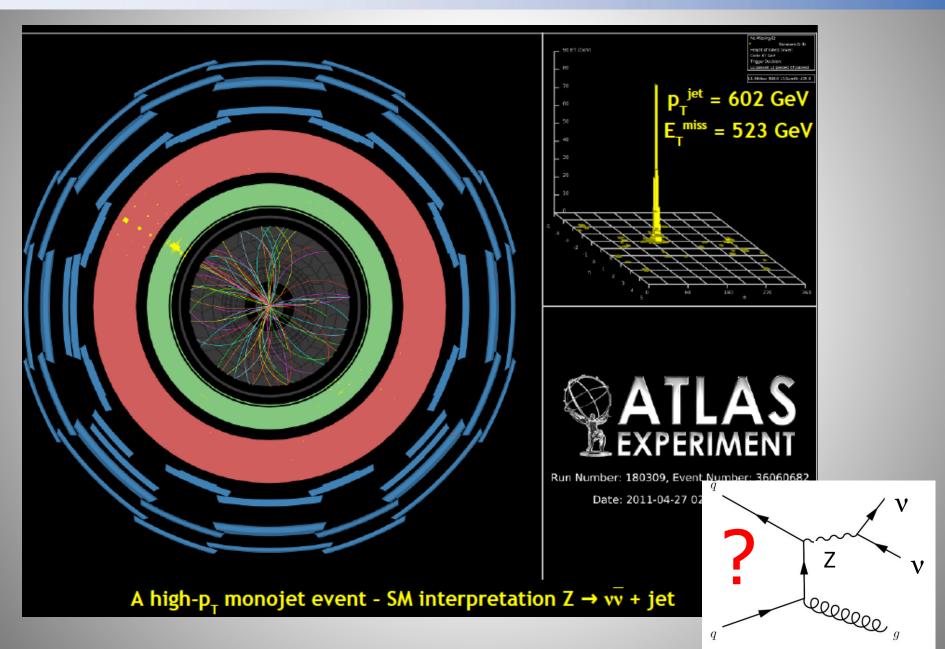
5-dimensional spacetime with warped geometry Graviton KK-modes (large spacing); graviton resonances Signature: e.g. resonance in ee, µµ, yy-mass distributions ...

look-like SUSY **TeV-Scale Extra Dimensions**

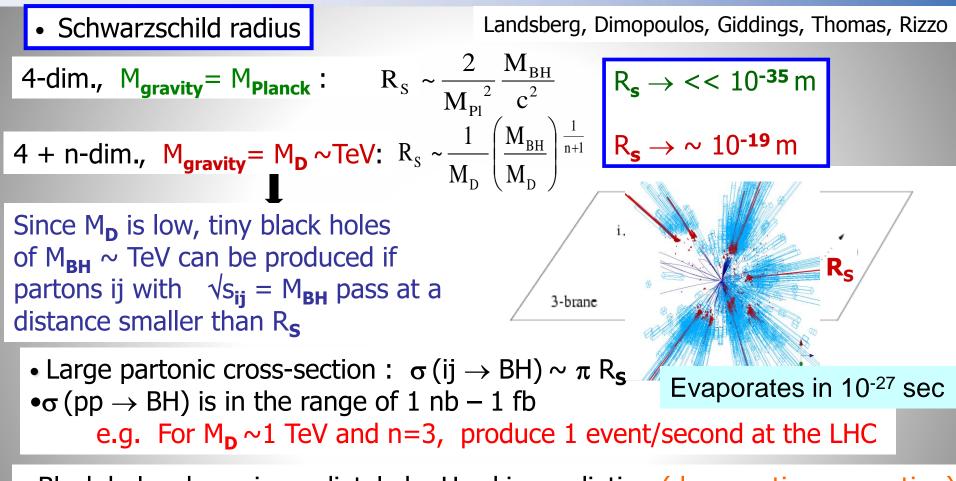
SM particles allowed to propagate in ED of size TeV⁻¹ [scenarios: gauge fields only (nUED) or all SM particles (UED)]


nUED : KK excitations of gauge bosons

Universal Extra Dimensions UED : KK number conservation; KK states pair produced (at tree-level) ... Signature: e.g. Z'/W' resonances, dijets+E_{T,miss}, heavy stable quarks/gluons...


Example: Mono-jet final state + Missing E_T (ADD) arXiv:10

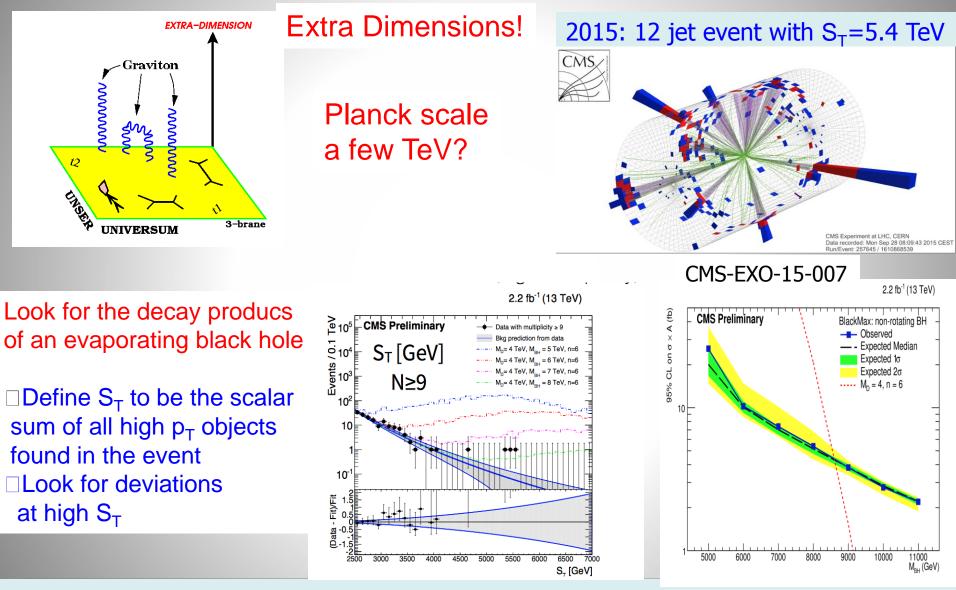
arXiv:1604.07773



	95% CL lower limits on M_D [TeV]								
<i>n</i> extra	95% CL observed lim	95% CL expected limit							
dimensions	Nominal (Nominal after damping)	$\pm 1\sigma$ (theory)	Nominal	$\pm 1\sigma$ (expected)					
2	6.58 (6.58)	+0.52 -0.42	6.88	+0.65 -0.64					
3	5.46 (5.44)	+0.45 -0.34	5.67	+0.41 -0.41					
4	4.81 (4.74)	+0.41 -0.29	4.96	+0.29 -0.29					
5	4.48 (4.34)	+0.41 -0.26	4.60	+0.23 -0.23					
6	4.31 (4.10)	+0.41 -0.24	4.38	+0.19 -0.19					

A High p_T Mono-jet event

Micro Black Holes?

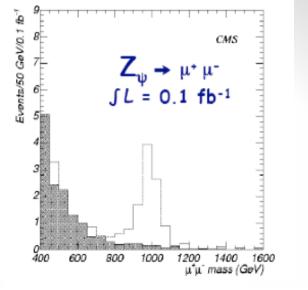


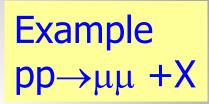
- Black holes decay immediately by Hawking radiation (democratic evaporation)
 - -- large multiplicity
 - -- small missing E
 - -- jets/leptons ~ 5

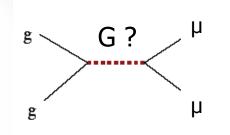
expected signature (quite spectacular ...)

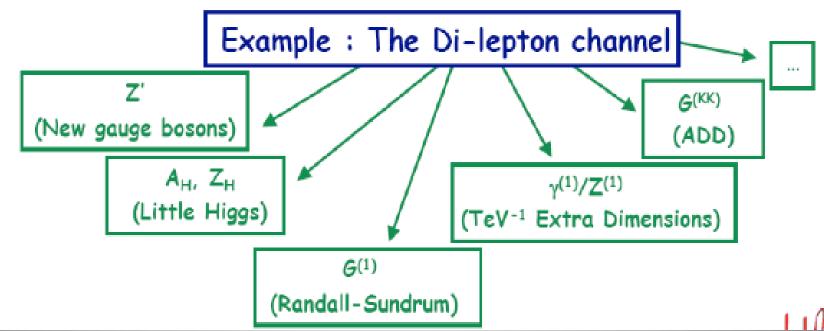
Note: Quantum Black holes usually decay typically just to two fermions Dvali

Search for Micro Black Holes

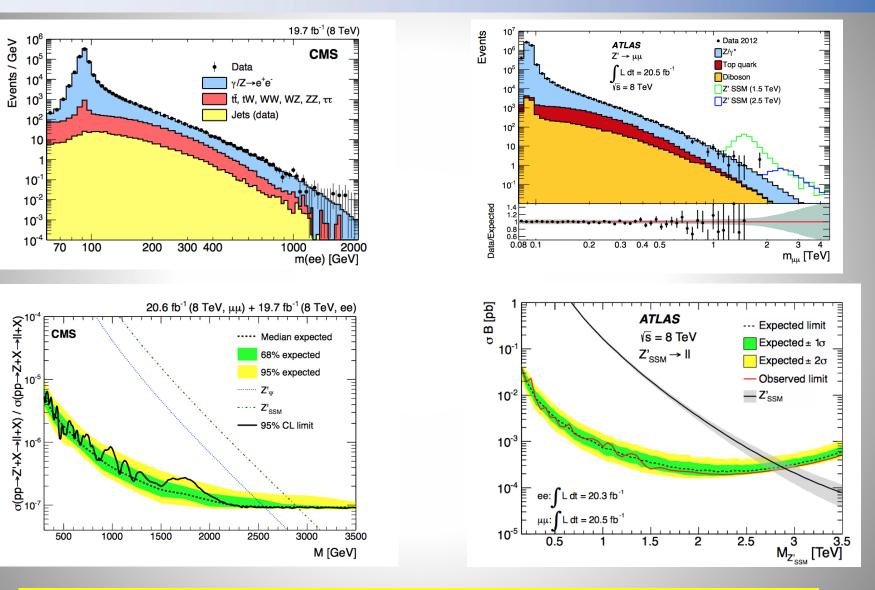


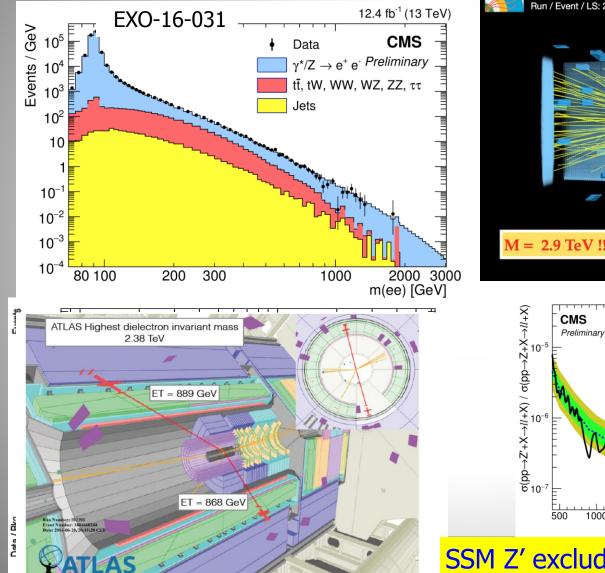

Black hole mass excluded in range below ~8-9 TeV depending on assumptions

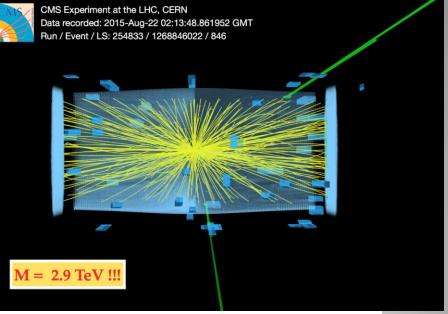

Search for High Mass Resonances


E.g. Di-lepton Resonance

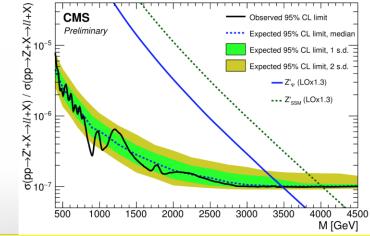
Plot the di-lepton invariant mass A peak!! A new particle!! A discovery!!



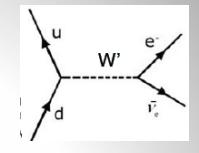

Example: Z' Results Run-1

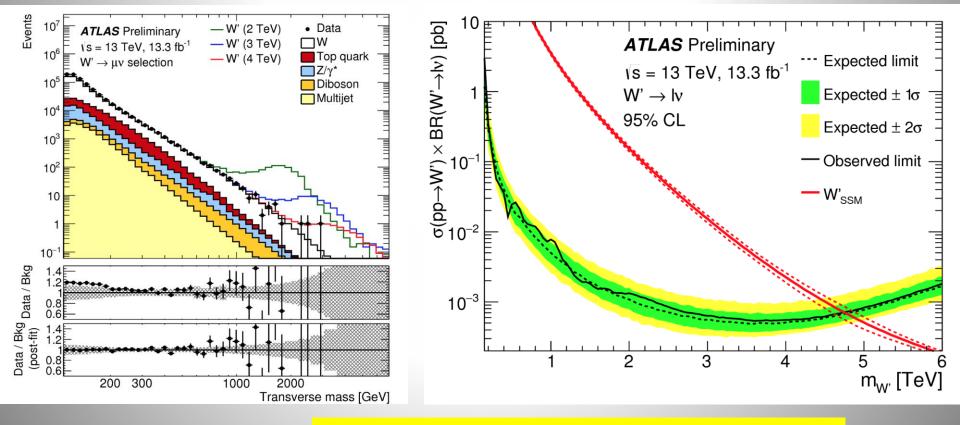


Sequential Standard Model Z' excluded for masses below 2.9 TeV


Search for New Gauge Bosons

Search for Z' in dilepton decay channel

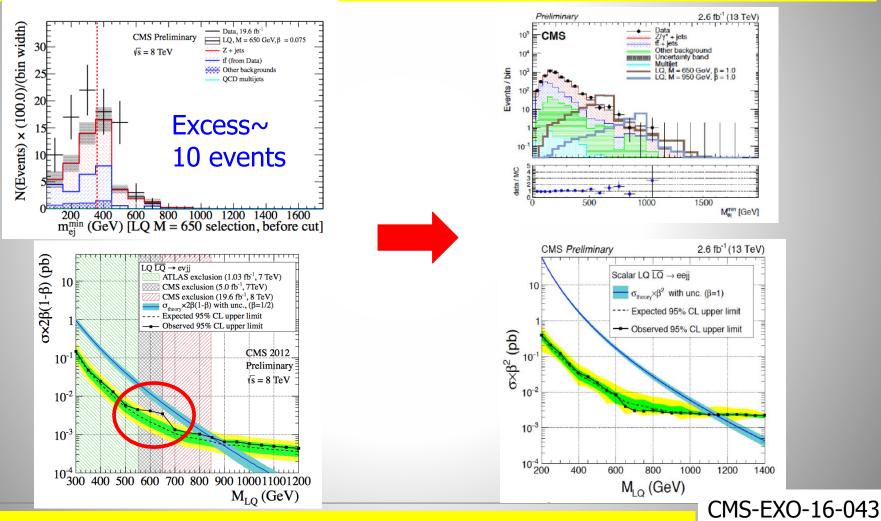

12.4 fb $^{\text{-1}}$ (13 TeV, ee) + 13.0 fb $^{\text{-1}}$ (13 TeV, $\mu\mu)$



SSM Z' excluded for masses below 4 TeV

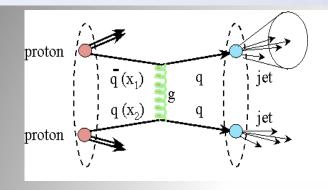
Lepton+MET: Search for W'

CONF-16-061



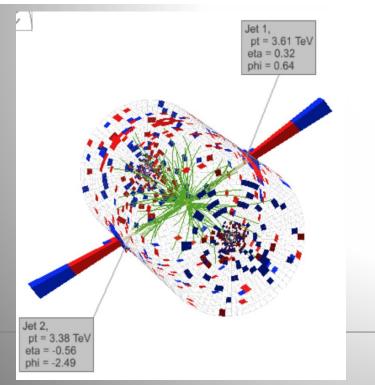
SSM W' excluded for masses below 4.8 TeV

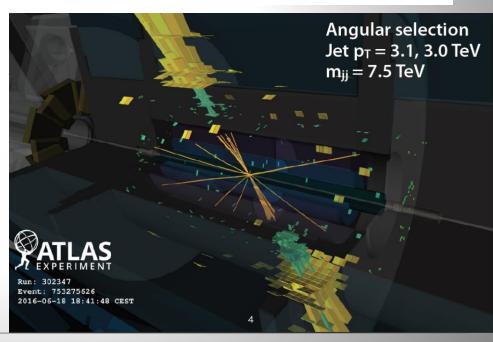
Leptoquark LQ->lepton+jet Search


Searches in leptions + jet channels

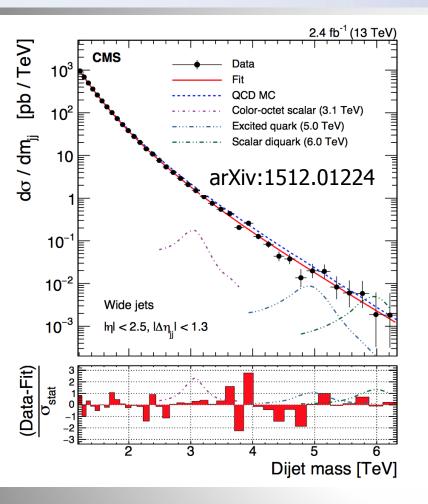
A small enhancement was seen in Run-1 in CMS in the e-jet channel (2.6σ)

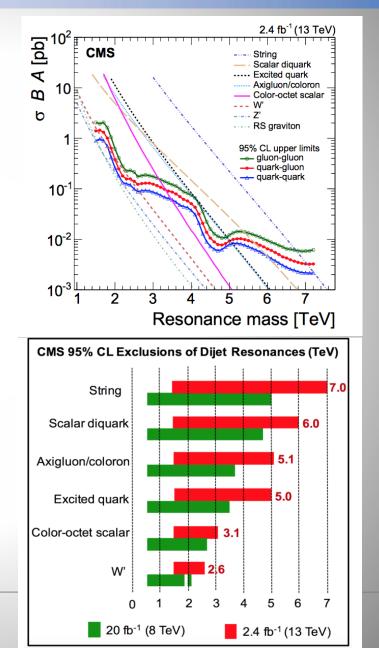
New data does not show any deviation from SM expectation.

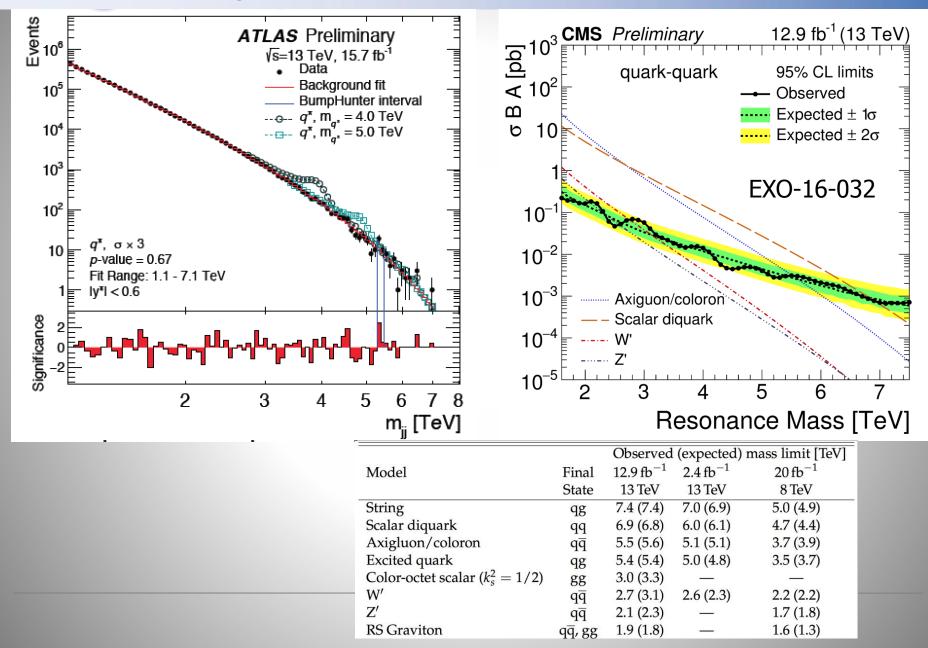

Dijet Resonance Search

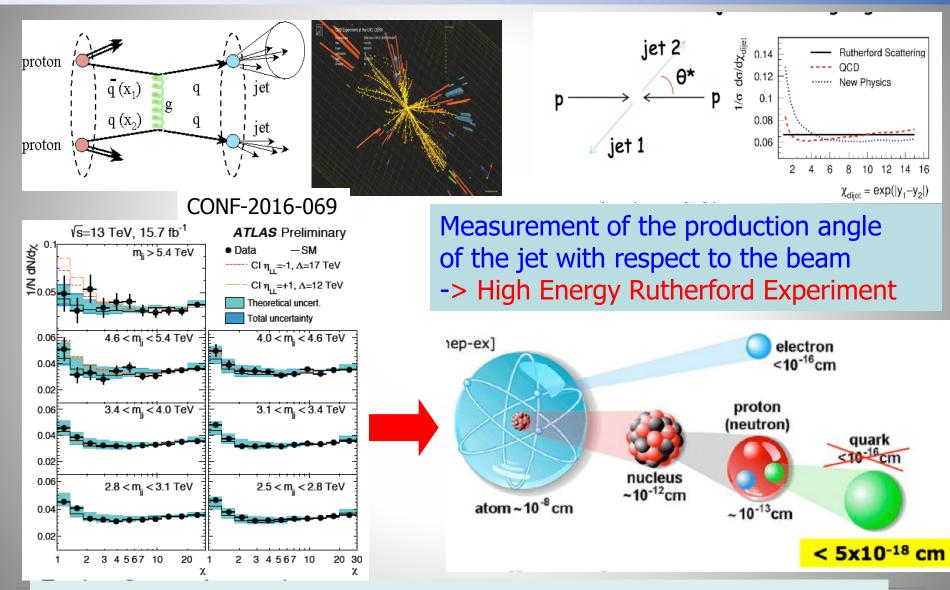

Coloured objects are easy to produce at pp colliders->High sensitivity early on

The highest mass dijet events recorded so far in Run-2


Dijet invariant mass = 7.7 TeV

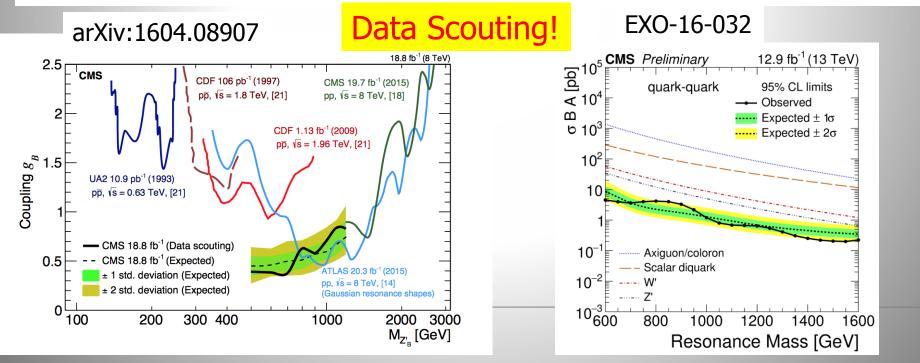

Dijet invariant mass = 7.5 TeV


Early Dijet Searches @ 13 TeV


2.4 fb⁻¹ limits from 13 TeV already surpass the 20 fb⁻¹ limits from 8 TeV

Dijet Searches: 13 TeV

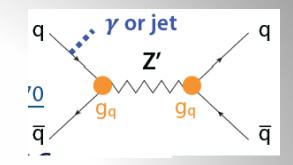
Are Quarks Elementary Particles?

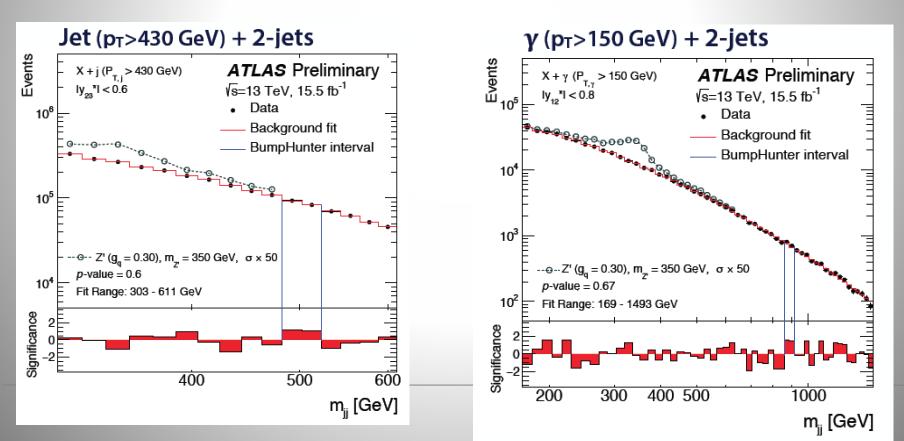


Quarks remain elementary particles after these first results

Access to lower mass/scale in dijets

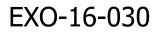
What about low mass & small couplings Problem for dijet triggers: trigger thresholds lead to data sensitivity that starts around a dijet mass of 1.2 TeV. Problem is the rate/data volume!

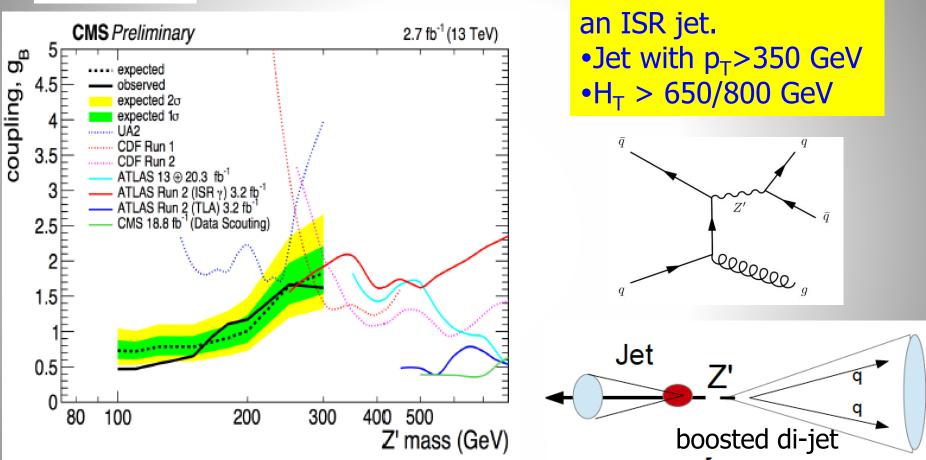

Solution: Reduce data size per event from 500 kB to 10 kB -> Keep only reconstructed jets at HLT/no raw data! This allows for a 1 kHz extra trigger rate for such data, without affecting the overall data taking (5% correction). Trigger used: Sum jet $p_T > 250$ GeV for jets with $p_T > 40$ GeV



Access to lower mass/scale in dijets

CONF-2016-070


Bump hunting in dijets Produced with an ISR photon or high p_T jet to give the trigger

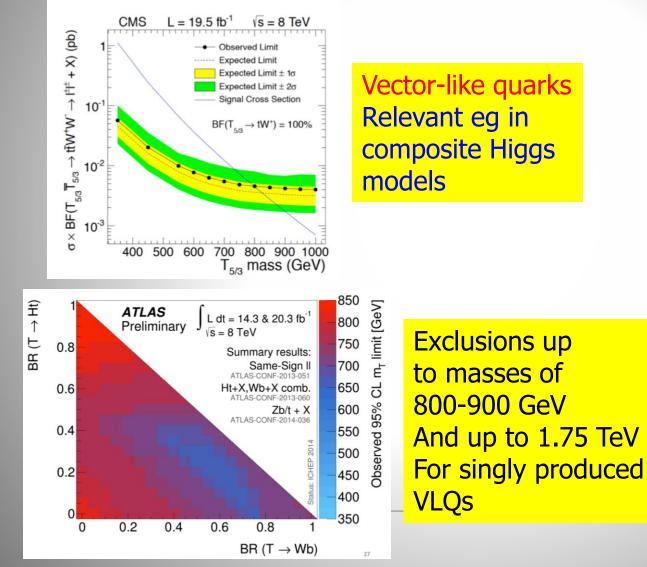


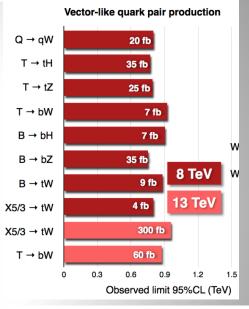
Access to lower mass/scale in dijets

Production of a Z' with

Sensitivity 'beats' the old UA2 result, going now below 140 GeV

Search for a 4th Generation


We can't be sure that there are only 3 generations (u,d) (s,c) (b,t) A possible new generation should be heavy! Look for b' and t' quarks in 2010-2011


No evidence found for a new quark generation for quarks with mass < 550 GeV!

A 4th generation would also affect the Higgs rate in a substantial way, so it is unlikely to exist!

Vector-like Top/Bottom Partner Searches

color-triplet spin-1/2 fermions; L & R components transform the same way under weak isospin

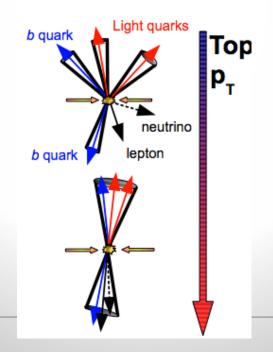
 $T \rightarrow tH$

 $T \rightarrow tH$

 $T \rightarrow tZ$

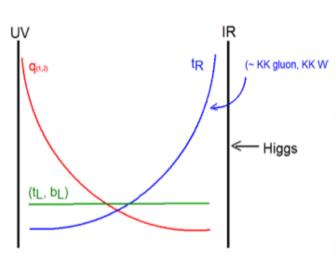
 $B \rightarrow bZ$

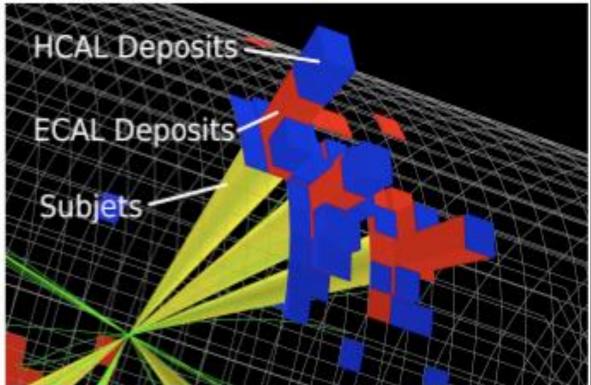
 $T \rightarrow bW$


Y→ tH

Vector-like quark single production

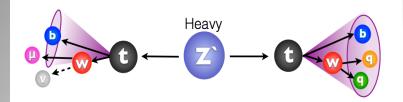
Observed limit 95%CL (TeV)


Searches with Boosted Objects


TeV Resonances into Top Quark Pairs

Recent developments in models: a prominent role of top production -light SM fermions live near Planck brane, heavy (top) near TeV brane -decay of Randall Sundrum gravitons into top pairs!!

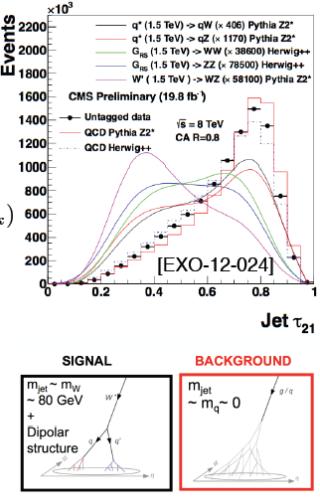
• Eg RS \rightarrow t tbar



 \Rightarrow High P_T tops

So far no signals found of the kind X -> tt

Searches with Boosted Objects


- Several different techniques to identify merged jets are on the market...
 - N-subjettiness, τ_N, uses τ₂₁=τ₂/τ₁ as a discriminant to separate QCD jets from merged W/Z jets

$$\tau_N = \frac{1}{d_0} \sum_k p_{\mathrm{T},k} \min\left(\Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k}\right)$$


Boosted W Jet, R = 0.6 Boosted QCD Jet, R = 0.6 5.8 2.2 5.6 W Jet QCD Jet 5.4 1.8 1.44.8 1.2 4.6 -0.20.2 0.6 0.8 -1.2-1 -0.8 -0.6 -0.4 -0.20 0.4

[Thaler, Tilburg, arXiv:1011.2268]

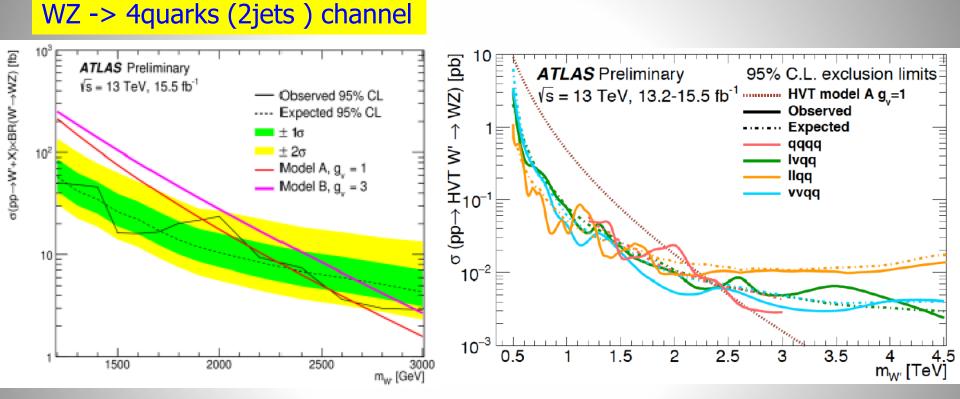
Discussed in topical "Boost Workshops" Last one Zurich 18-22 July 2016 https://indico.cern.ch/event/439039/

Resonances Decaying into VV?

1500

2000

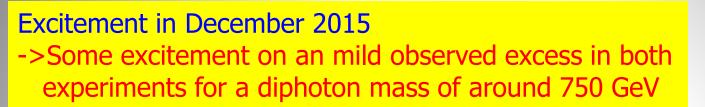
2500

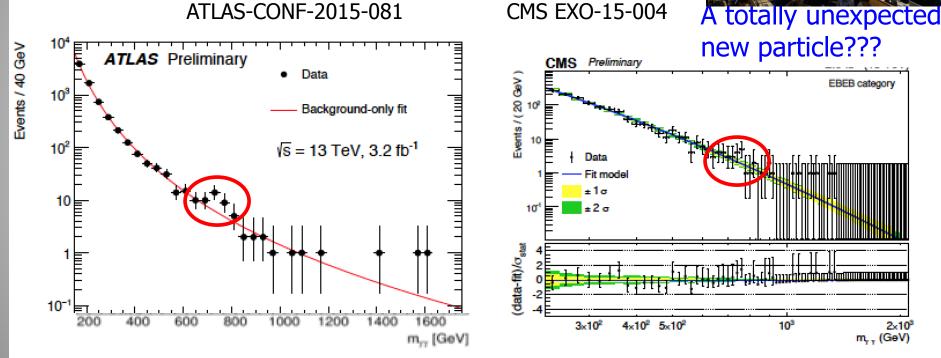

3000 M_o [GeV]

M_{Gout} (TeV)

10

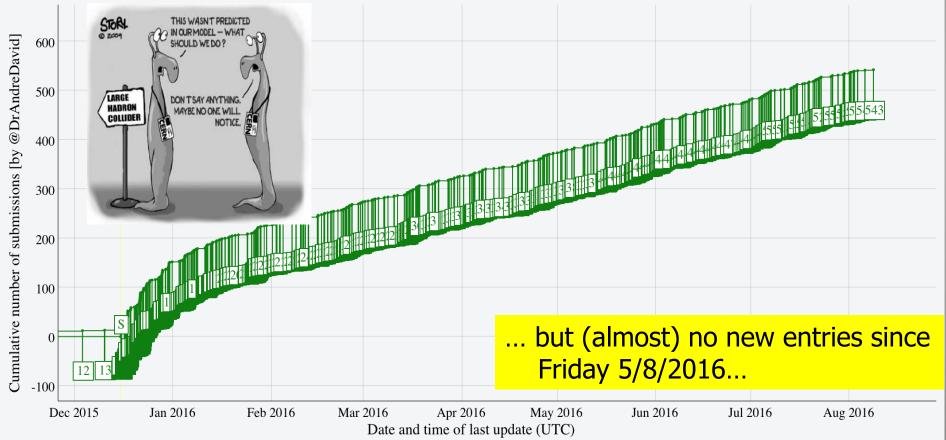
completely settle the issue


Diboson Search with the 2016 Data


2.0 TeV excess seen at 8 TeV strikes (a little) back? Let's see what happens with more data..

More channels analysed: X-> VV, VH, HH, yy, Zy,... No striking signals seen

A new Particle at 750 GeV: $X \rightarrow \gamma \gamma \gamma$?

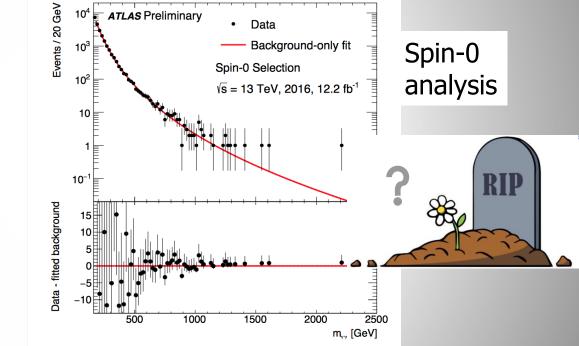

Statistical fluctuation? A new resonance? ??? Moriond: CMS: 3.4σ ! ATLAS up to 3.9σ !! (global significances)

This triggered >540 papers so far!!

Andre David: <u>http://jsfiddle.net/adavid/bk2tmc2m/show/</u> 12/8/2016

Constant rate of 2 papers/ working day!

#Run2Seminar and subsequent yy-related arXiv submissions



A new Particle at 750 GeV: $X \rightarrow \gamma \gamma$?

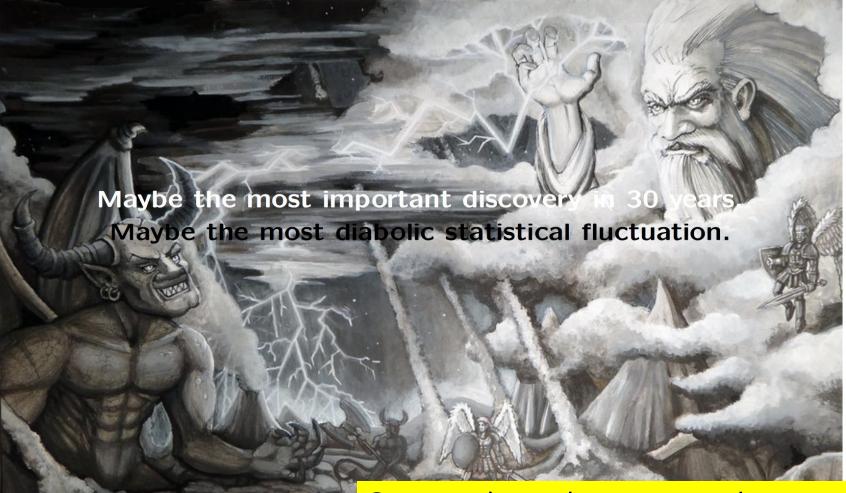
What does the 2016 data say ? (4 x 2015 data!!)

ATLAS-CONF-2016-059 **CMS** Preliminary 12.9 fb⁻¹ (13 TeV) Events / 20 GeV Data Fit model EBEB 1 s.d. ± 2 s.d. 1**0**2 10 ˈdata-fit)/ơ_{stat} 400 600 800 100012001400160018002000 $m_{\gamma\gamma}$ (GeV)

CMS-EXO-16-027

Last Friday

at ICHEP!!


The excess is **NOT** seen in the new data from 2016!

So, not for this time, but a sign of new physics can be found any time now We need only one significant deviation of the Standard Model to show the way!

A New Particle at 750 GeV??

Moriond 2016 summary

A. Strumia

Guess we know the answer to that now... ☺

Exotics Search Summary

ATLAS Exotics Searches* - 95% CL Exclusion

 ℓ . γ Jets; E_{-}^{miss} (\pounds dt[fb⁻¹]

Status: August 2016 Model

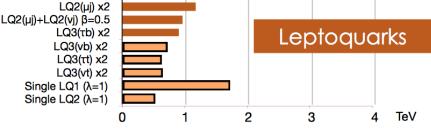
ATLAS Preliminary

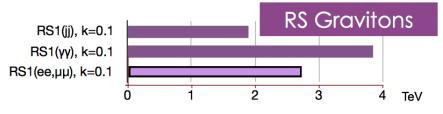
 $\int \mathcal{L} \, dt = (3.2 - 20.3) \, \text{fb}^{-1} \qquad \sqrt{s} = 8, \, 13 \, \text{TeV}$ Reference

	Model	ί, γ	Jets	E _T	JT at Itp	Limit		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH multijet ADD BH multijet RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} - \\ 2 \ e, \mu \\ 1 \ e, \mu \\ - \\ 2 \ e, \mu \\ 2 \ \gamma \\ 1 \ e, \mu \\ - \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\geq 1 j$ $-$ $1 j$ $2 j$ $\geq 2 j$ $\geq 3 j$ $-$ $1 J$ $4 b$ $\geq 1 b, \geq 1J$ $\geq 2 b, \geq 4$		3.2 20.3 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.3 20.3 3.2	Mg 6,58 TeV Ms 4.7 TeV Min 5.2 TeV Min 6.7 TeV Min 8.7 TeV Min 8.2 TeV Min 9.55 TeV GKK mass 2.68 TeV GKK mass 3.2 TeV GKK mass 3.2 TeV KKK mass 1.24 TeV KKK mass 1.46 TeV	$\begin{split} n &= 2 \\ n &= 3 \text{ HLZ} \\ n &= 6 \\ n &= 6 \\ m &= 6, M_D = 3 \text{ TeV, rot BH} \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ k/\overline{M}_{Pl} &= 0.1 \\ k/\overline{M}_{Pl} &= 0.1 \\ k/\overline{M}_{Pl} &= 0.1 \\ BR = 0.925 \\ \text{Tier} (1,1), BR(A^{(1,1)} \to tt) = 1 \end{split}$	1604.07773 1407.2410 1311.2006 ATLAS-CONF-2016-069 1606.02265 1512.02586 1405.4123 1606.03833 ATLAS-CONF-2016-062 ATLAS-CONF-2016-049 1505.07018 ATLAS-CONF-2016-013
Gauge bosons	$\begin{array}{l} {\rm SSM} \ Z' \to \ell\ell \\ {\rm SSM} \ Z' \to \tau\tau \\ {\rm Leptophobic} \ Z' \to bb \\ {\rm SSM} \ W' \to \ell\nu \\ {\rm HVT} \ W' \to WZ \to qqq\nu \ {\rm model} \ {\rm A} \\ {\rm HVT} \ W' \to WZ \to qqqq \ {\rm model} \ {\rm B} \\ {\rm HVT} \ V' \to WH/ZH \ {\rm model} \ {\rm B} \\ {\rm LRSM} \ W'_R \to tb \end{array}$		- 2 b - 1 J 2 J el 2 b, 0-1 j ≥ 1 b, 1 J		13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	Z' mass 4.05 TeV Z' mass 2.02 TeV Z' mass 1.5 TeV W' mass 4.74 TeV W' mass 2.4 TeV W' mass 2.3 TeV W' mass 2.31 TeV W' mass 1.92 TeV W' mass 1.92 TeV W' mass 1.76 TeV	$g_V = 1$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2016-045 1502.07177 1603.08791 ATLAS-CONF-2016-061 ATLAS-CONF-2016-082 ATLAS-CONF-2016-082 1A10-05621 1410.4103 1408.0886
CI	Cl qqqq Cl ℓℓqq Cl uutt	_ 2 e,μ 2(SS)/≥3 e,	2 j ,µ ≥1 b, ≥1 _	_ _ j Yes	15.7 3.2 20.3	Λ Λ Λ 4.9 TeV	19.9 TeV $\eta_{LL} = -1$ 25.2 TeV $\eta_{LL} = -1$ $ C_{RR} = 1$	ATLAS-CONF-2016-069 1607.03669 1504.04605
MD	Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) $ZZ_{\chi\chi}$ EFT (Dirac DM)	0 e, μ 0 e, μ, 1 γ 0 e, μ	≥1j 1j 1J,≤1j	Yes Yes Yes	3.2 3.2 3.2	mA 1.0 TeV mA 710 GeV M. 550 GeV	$\begin{array}{l} g_q{=}0.25,g_\chi{=}1.0,m(\chi)<250~{\rm GeV}\\ g_q{=}0.25,g_\chi{=}1.0,m(\chi)<150~{\rm GeV}\\ m(\chi)<150~{\rm GeV} \end{array}$	1604.07773 1604.01306 ATLAS-CONF-2015-080
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3	_ _ j Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV	$egin{array}{ll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 0 \end{array} \end{array}$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WqWq \\ VLQ \ T_{5/3} \ T_{5/3} \rightarrow WtWt \end{array} $	1 e, μ 1 e, μ 1 e, μ 2/≥3 e, μ 1 e, μ 2(SS)/≥3 e,	≥ 4 j	j Yes j Yes - Yes	20.3 20.3 20.3 20.3 20.3 3.2	T mass 855 GeV Y mass 770 GeV B mass 735 GeV G mass 755 GeV Q mass 690 GeV T _{5/3} mass 990 GeV	T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 ATLAS-CONF-2016-032
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton v^*	1 γ 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j –	– – Yes –	3.2 15.7 8.8 20.3 20.3 20.3	q* mass 4.4 TeV q* mass 5.6 TeV b* mass 2.3 TeV b* mass 1.5 TeV * mass 3.0 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1512.05910 ATLAS-CONF-2016-069 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	1 e, μ, 1 γ 2 e, μ 2 e (SS) 3 e, μ, τ 1 e, μ - - = 8 TeV	2 j - 1 b - √s = 1	Yes Yes 3 TeV	20.3 20.3 13.9 20.3 20.3 20.3 7.0	ar mass 960 GeV Nº mass 2.0 TeV H** mass 570 GeV H** mass 400 GeV spin-1 invisible particle mass 657 GeV molto-harged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1	$\begin{split} m(W_R) &= 2.4 \text{ TeV}, \text{ no mixing} \\ \text{DY production, BR}(H_{L^{\pm}}^{\pm \pm} \to ee) = 1 \\ \text{DY production, BR}(H_{L^{\pm}}^{\pm \pm} \to \ell \tau) = 1 \\ a_{\text{non-res}} &= 0.2 \\ \text{DY production, } q = 5e \\ \text{DY production, } g = 1g_D, \text{ spin } 1/2 \\ \end{split}$	1407.8150 1506.06020 ATLAS-CONF-2016-051 1411.2921 1410.5404 1504.04188 1509.08059
							made source [rev]	

Limit

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded.

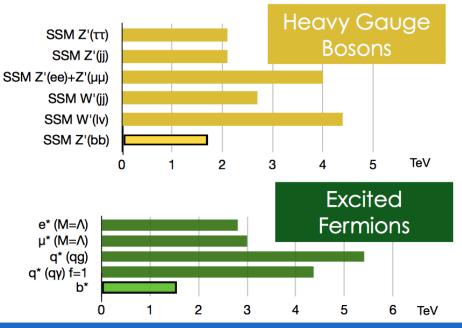

†Small-radius (large-radius) jets are denoted by the letter j (J).

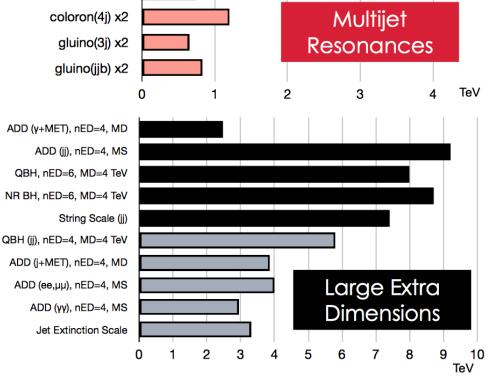

13 TeV

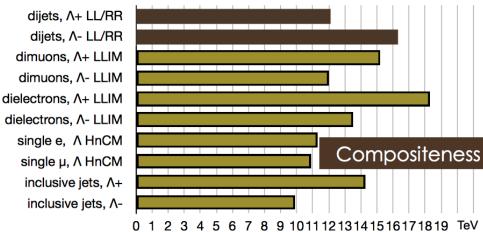
8 TeV

coloron(jj) x2

Leptoquarks






CMS Preliminary

LQ1(ej) x2

LQ1(ej)+LQ1(vj) β =0.5

CMS Exotica Physics Group Summary – ICHEP, 2016

Summary

- Searches at 13 TeV cover quickly new ground.
- So far no exotica/ non-susy smoking guns. The 750 GeV bump was not confirmed in the 2016 data sample analysed up to ICHEP. The VV decay channel does not show a clear excess in Run-2. Some other enhancements from run-1 (eg in the LQ channel) not confirmed.
 - Contact Interaction energy: 25.2 TeV
 - ADD BH mass: 9.55 TeV
 - W' mass: 4.74 TeV
 - Dark photon lifetime: 2.5~100 mm (dark photon 400 MeV)
 - Magnetic charge: |g|>1.5g_D (up to 4 g_D)
- Let's look at Supersymmetry next

End of Lecture I

S.C. Hsu ICHEP 2016

Backup