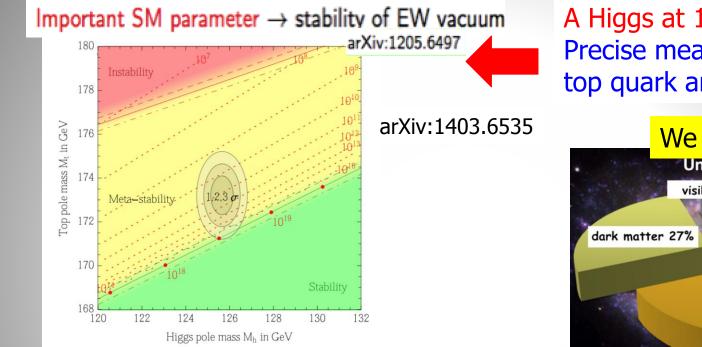
Beyond the Standard Model Searches @ the LHC

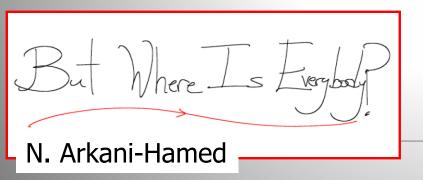
Albert De Roeck CERN, Geneva, Switzerland Antwerp University Beloram UC-Davis California USA NTU, Singapore

August 15 - August 26 Alamabad

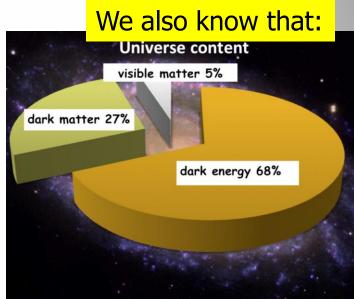
5th School on LHC Physics - 2016

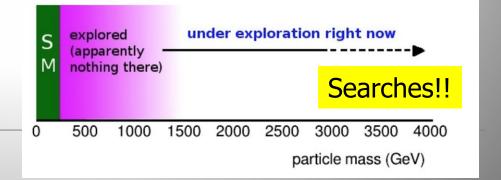


Lecture Plan

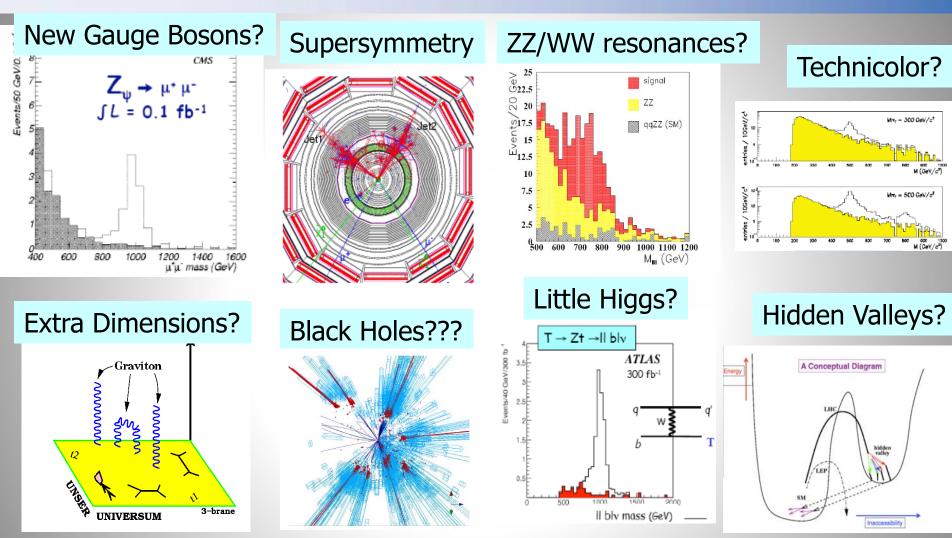

Overview of the 3 lectures in the next days

- Lecture 1:
 - Introduction to searches for new physics
 - Searches for exotica and new phenomena
- Lecture 2:
 - Searches for supersymmetry
 - Searches for real exotic particles
- Lecture 3:
 - The hunt for dark matter
 - Outlook for the LHC and for the Future

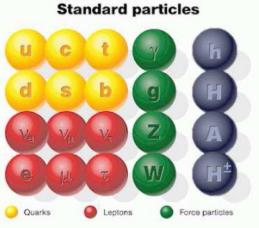

Physics Beyond the Standard Model?

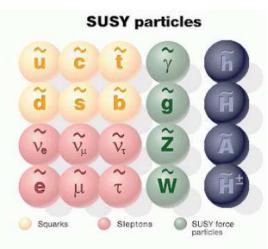


New Physics inevitable? But at which scale/energy?



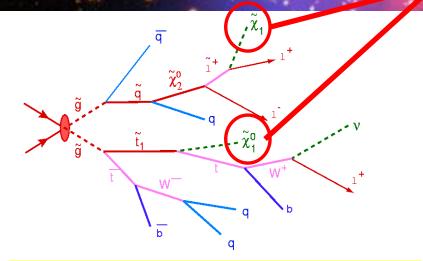
A Higgs at 125 GeV Precise measurements of the top quark and the Higgs mass


New Physics?

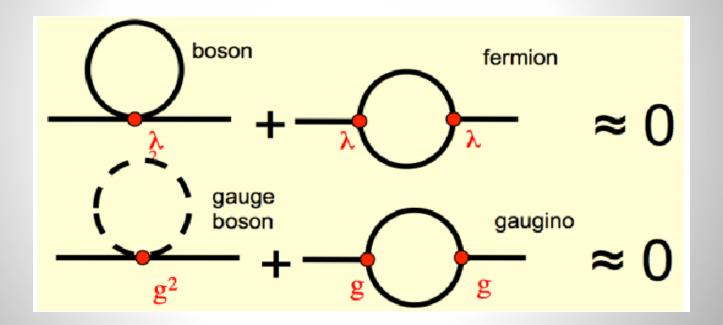


What stabelizes the Higgs Mass? Many ideas, not all viable any more A large variety of possible signals. We have to be ready for that

Supersymmetry: a new symmetry in Nature?



Candidate particles for Dark Matter \Rightarrow Produce Dark Matter in the lab


SUSY particle production at the LHC

"One day all these trees will be SUSY phenomenology papers"

Supersymmetry

Supersymmetry (SUSY) \rightarrow assumes a new hidden symmetry between the bosons (particles with integer spin) and fermions (particles with half integer spin). Can stabelize the Higgs mass up to the Planck scale

Fermion and boson loops cancel, provided $m_{\tau} \leq \text{TeV}$.

Barbieri & Giudice (1988): Natural Models!

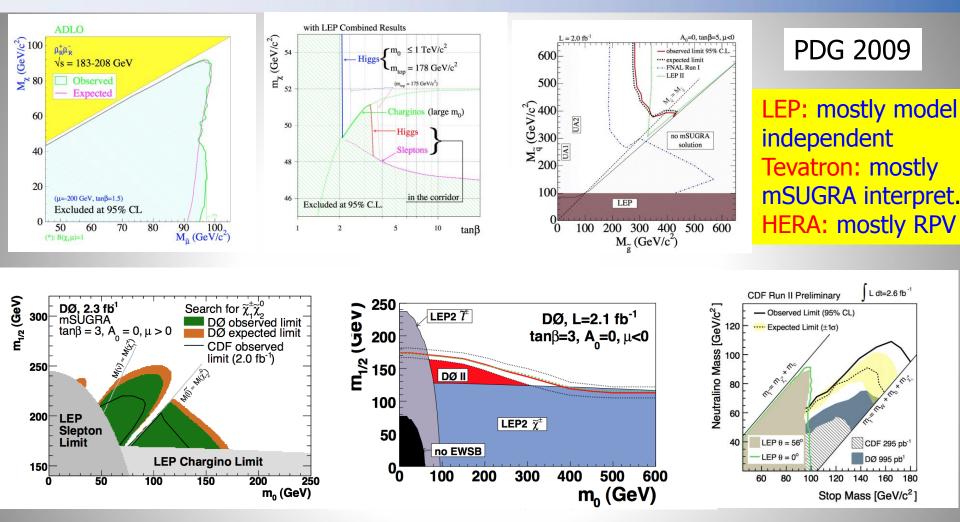
Why weak-scale SUSY ?


- \sim stabilises the EW scale: $|m_F m_B| < O(1 \text{ TeV})$
- ✓ predicts a light Higgs m_h < 130 GeV</p>
- accomodates gauge unification
- accomodates heavy top quark
- dark matter candidate: neutralino, sneutrino, gravitino, ...
- consistent with EW precision tests

Discovering SUSY – A revolution in particle physics!!

Supersymmetry

Supersymmetry (SUSY) \Box assumes a new hidden symmetry between the bosons (particles with integer spin) and fermions (particles with half integer spin) to explain the Hierarchy problem (Planck \Box Electro-weak scale)

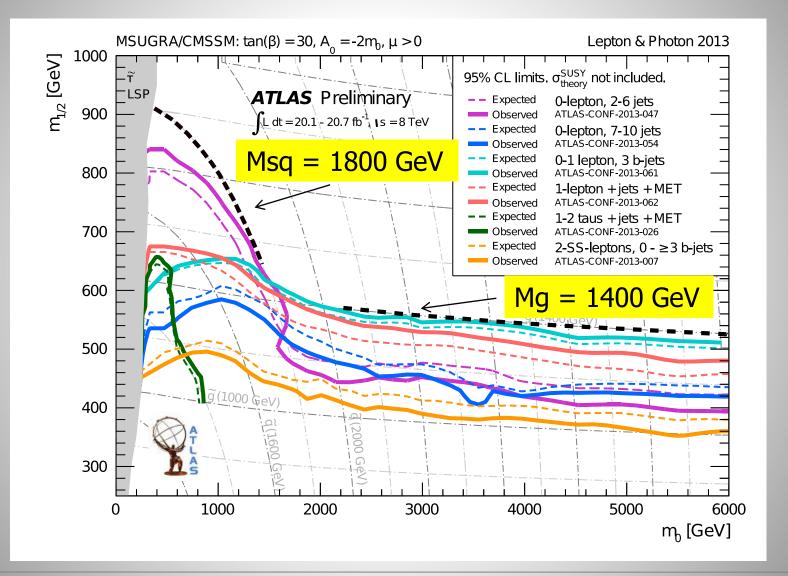

 \Rightarrow Lots of new particles (squarks, sleptons,...) predicted with masses in the range from 10's of GeV's up to several TeV range

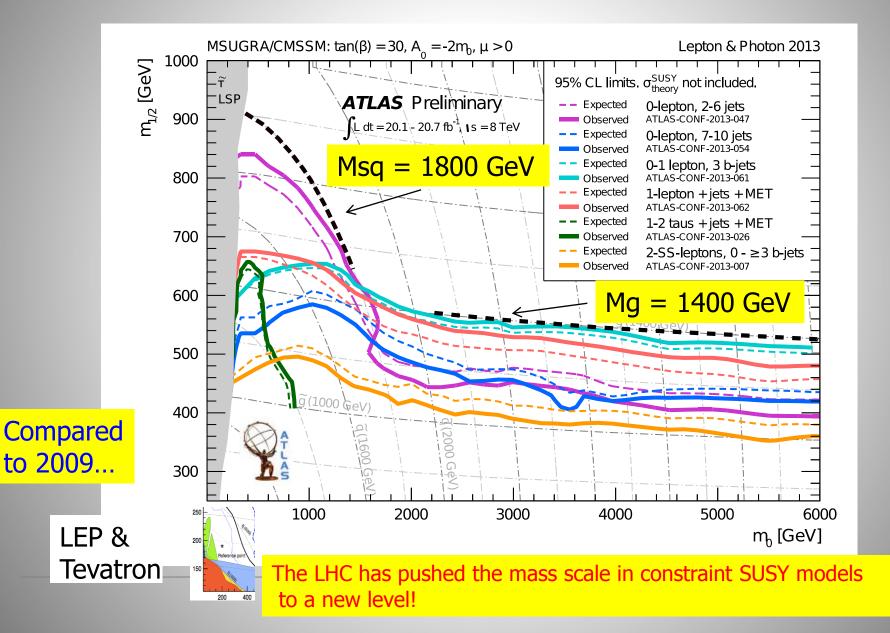
Supersymmetry is broken We don't see the superpartners E.g. Minimal supersymmetric model 105 new parameters! :masses, mixing angles... SUSY breaking mechanisms: reduces # of param. •Minimal SUSY Gravity (mSUGRA) •Gauge mediated SUSY breaking •Anomaly mediated SUSY breaking •Gravitino mediated SUSY breaking... etc.

LHC is expected to have access to at least some part of the SUSY spectrum!

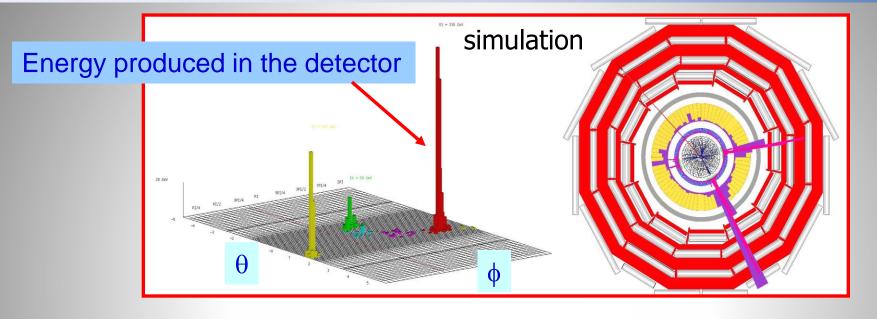
SUSY Searches in 2009: Pre-LHC

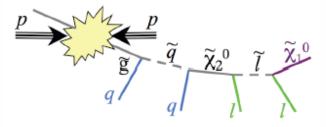
Squark/gluino limits: 300-400 GeV Electroweakinos (except LSP): >100 GeV


1993: Early Tevatron SUSY Searches


rising cost of experiments has prompted public and political criticism.

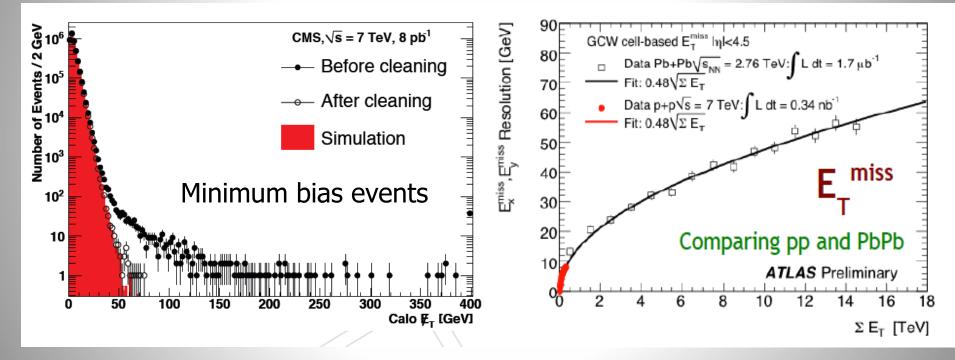
They did not find any...


Inclusive SUSY Searches by 2013



Inclusive SUSY Searches by 2013

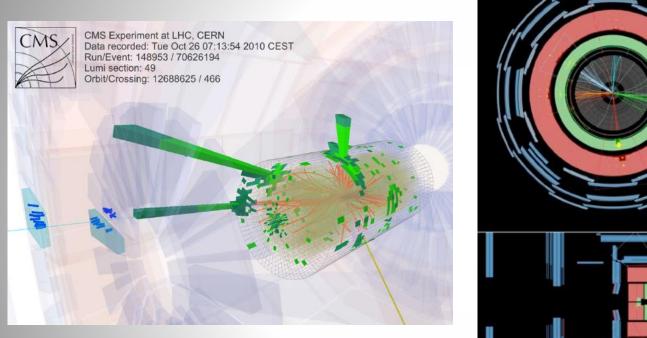
Detecting Supersymmetric Particles

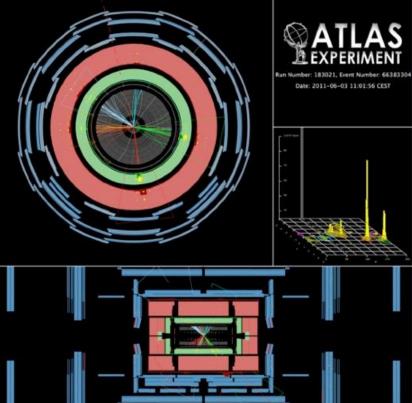

Supersymmetric particles decay and produce a cascade of jets, leptons and missing transverse energy (MET) due to escaping 'dark matter' particle candidates

Very prominent signatures in CMS and ATLAS

Missing Transverse Energy

Total transverse momentum imbalance


Generally appreciated to be a difficult quantity to measure Very sensitive to fluctuations, miss-measurements, noise, backgrounds

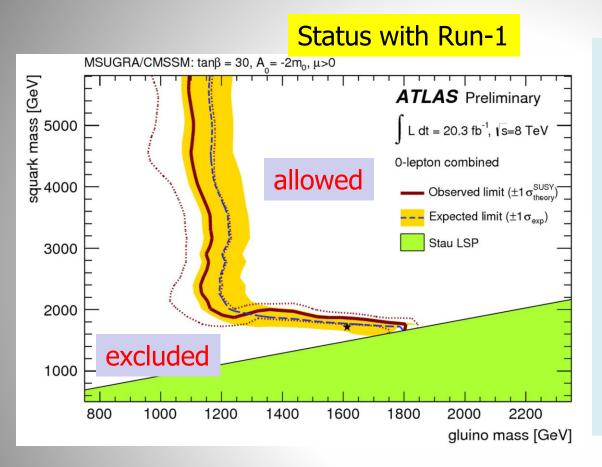


In practice, rather well under control, from the start (2010)
Good resolution using 'particle flow' ie maximally identifying particles
More pile-up in future will NOT make this simpler

...Some Interesting Collisions...

...already in 2010...

Events with five jets of particles and large missing energy which could come from a possible dark matter particle
But a few events is not enough too prove we have something new No visible excess has been building up with time...

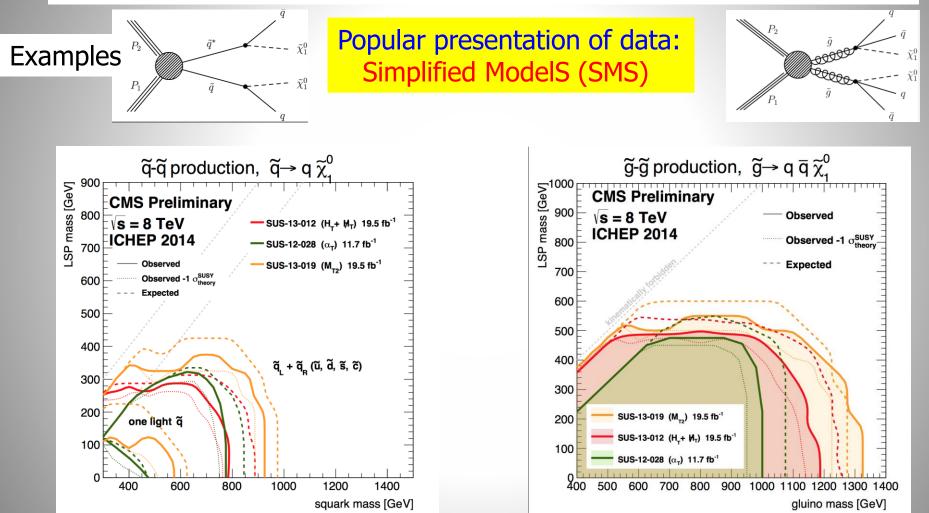

General SUSY Searches

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET
Large SM backgrounds Low					1	
sensitivity to strongly produced SUSY						ivity to liated SUSY

Early on SUSY searches at the LHC:

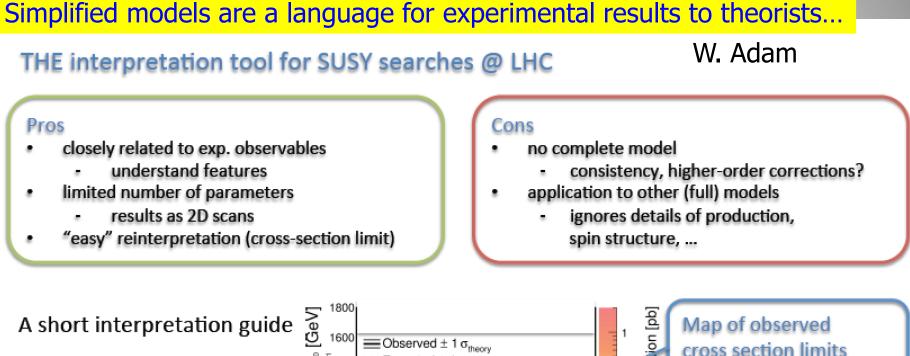
- Divide the searches in different categories
- •The zero lepton (all hadronic) search has typically a wide reach and is done early on with the new data.
- •Several hadronic searches are performed as independent searches? (MHT, MT, MT2, MCT, α_T , razor). Make use of specific kinematic properties
- New analyses in categories as above have already been performed for 13 TeV data

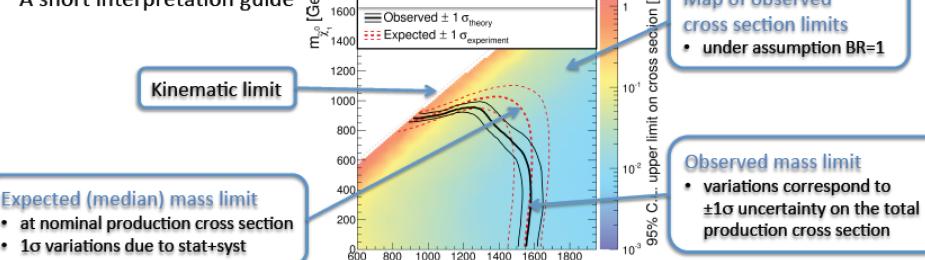
SUSY in Run-1: No Significant Signals


mSUGRA/CMSSM scenarios

- •So far NO clear signal of supersymmetric particles has been found
- •We can exclude regions where the new particles could exist.
- •Searches now continue with the higher energy in Run-2

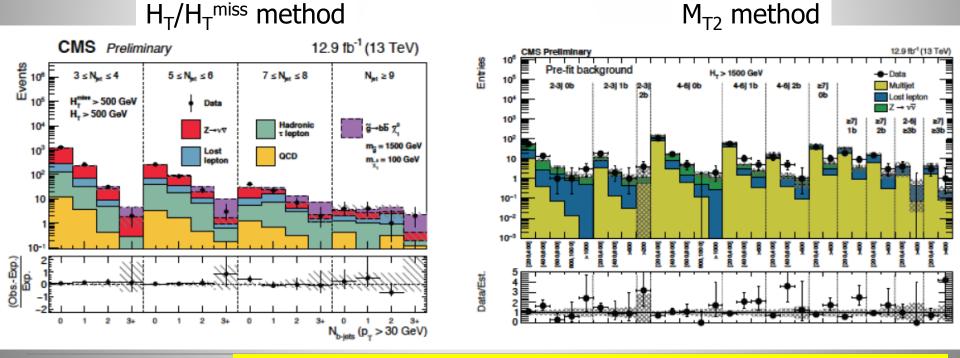
Plenty of searches ongoing: with jets, leptons, photons, W/Z, top, Higgs, with and without large missing transverse energy Also special searches for more contrived model regions


Run-1: Limits on Squarks and Gluinos


Results depend on the topologies studies, assumed mass of the LSP etc.

Combined limits typically > 1-1.3 TeV on sparticle masses

Simplified Models



All Hadronic Searches

Searches with 12.9 fb⁻¹ data: examples

- •Divide data in many different classes, eg depending on the number of jets, the number of b-jets,...
- •Optimize class for background estimate with data driven methods
- Combine classes for optimal sensitivity to SMS channel

No significant excess observed over background prediction

Run-2: Gluino Searches

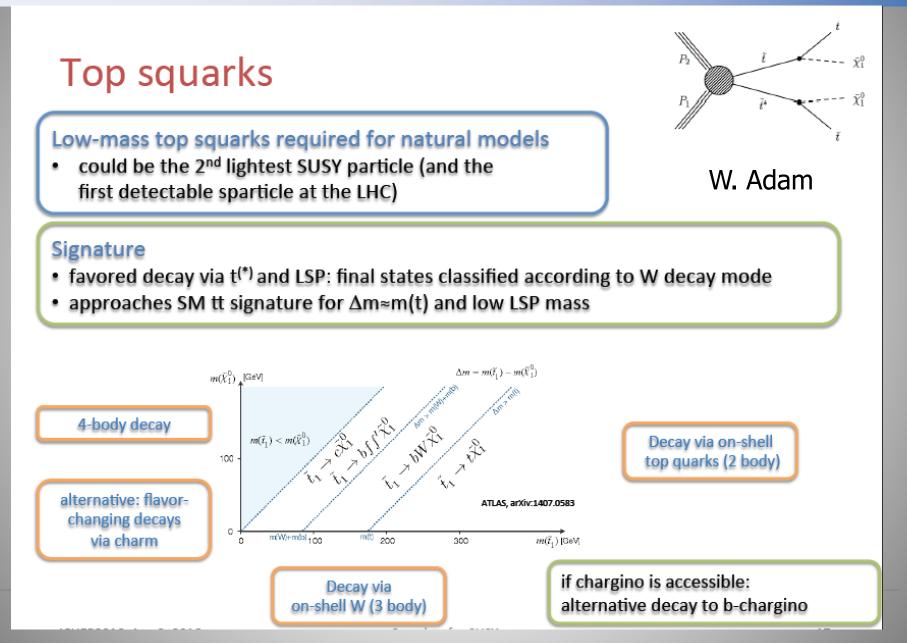
Within the context of the SMS: Exclude with masses up to 1900 GeV for neutralino masses up to 800 GeV Sensitivity is like 400-500 GeV better than Run-1 reach

What is really needed from SUSY?

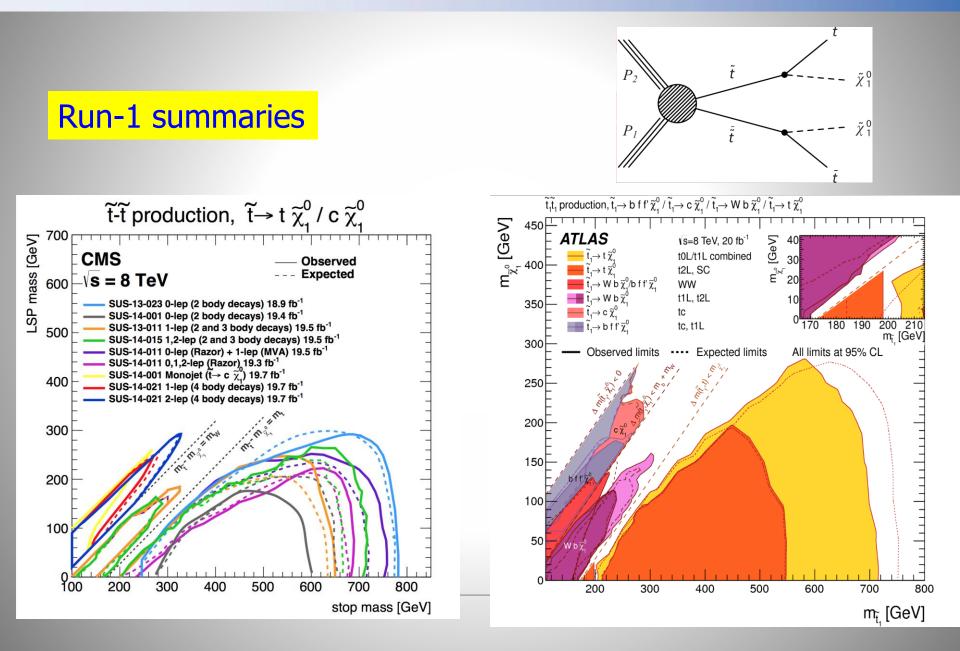
End 2011: Revision!

N. Arkani-Ahmed CERN Nov 2011

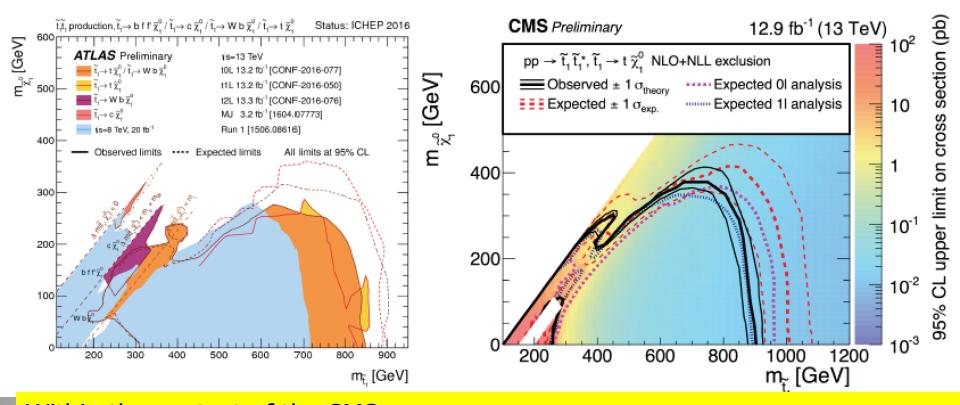
Papucci, Ruderman, Weiler arXiv:1110.6926


LHC data end 2011 Stops > 200-300 GeV Gluino > 600-800 GeV

Moving away from constrained SUSY models to 'natural' models


Natural SUSY survived LHC so far, but we are getting close to push it to its limits!

Cumpulsory Natural SUSY 1500 Ĩt.R,b 400 120 Unavoidable tunings: $\left(\frac{400}{m_{1}^{2}}\right)^{2}$, $\left(\frac{4m_{1}^{2}}{M_{q}^{2}}\right)^{2}$

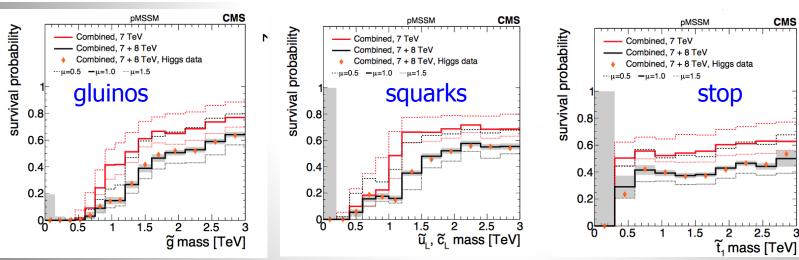

Top Quark Searches

Stop Searches @ 8 TeV

Top Squark Search Summaries

Within the context of the SMS: Exclude with masses up to 900 GeV for neutralino masses up to 400 GeV Sensitivity is like 100-200 GeV better than Run-1 reach & gaps being covered

Is this getting critical for Natural Models??


Phenomenological MSSM analysis

SMS don't always fully cover signatures...

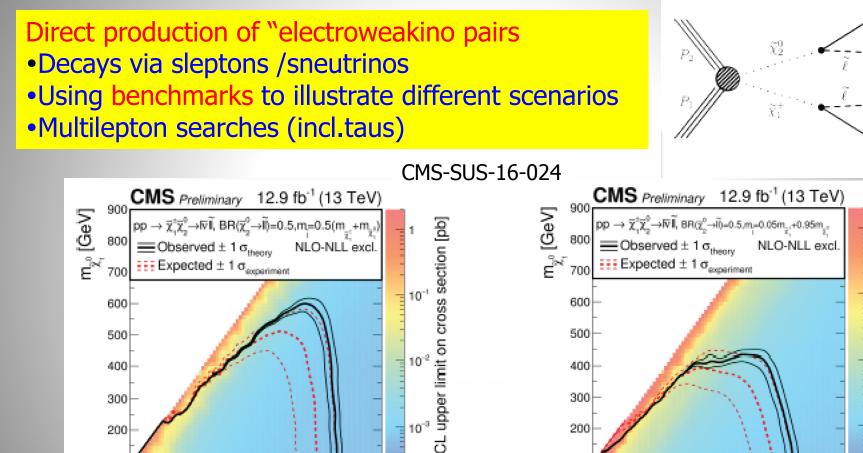
-> the 19 parameter phenomenological MSSM (pMSSM) analyses

arXiv:1606.03577

- three independent gaugino mass parameters M_1 , M_2 , and M_3 ,
- the ratio of the Higgs vacuum expectation values $\tan \beta = v_2/v_1$,
- the higgsino mass parameter μ and the pseudoscalar Higgs boson mass m_{A_i}
- 10 independent sfermion mass parameters $m_{\tilde{F}_{1}}$ where $\tilde{F} = \tilde{Q}_{1}$, \tilde{U}_{1} , \tilde{D}_{1} , \tilde{L}_{1} , \tilde{E}_{1} , \tilde{Q}_{3} , \tilde{U}_{3} , \tilde{D}_3 , \tilde{L}_3 , $\tilde{\tilde{E}}_3$ (for the 2nd generation we take $m_{\tilde{Q}_2} \equiv m_{\tilde{Q}_1}$, $m_{\tilde{L}_2} \equiv m_{\tilde{L}_1}$, $m_{\tilde{U}_2} \equiv m_{\tilde{U}_1}$, $m_{\tilde{D}_2} \equiv m_{\tilde{U}_1}$, $m_{\tilde{D}_2} \equiv m_{\tilde{U}_1}$, $m_{\tilde{D}_2} \equiv m_{\tilde{U}_1}$, $m_{\tilde{U}_2} \equiv m_{\tilde{U}_2}$, $m_{\tilde{U}_2}$ $m_{\tilde{D}_1}$, and $m_{\tilde{E}_2} \equiv m_{\tilde{E}_1}$; left-handed up- and down-type squarks are by construction mass degenerate), and
- the trilinear couplings A_t , A_b and A_{τ} .

10⁸ points sampled: Leads to softer limits on the sparticles masses Gluinos > 500 GeV, stops > 250 GeV => there is still low mass phase space left!

ATLAS: arXiv: 1508.06608


 $-3 \leq M_1, M_2 \leq 3 \text{ TeV},$ $M_3 \leq 3 \,\mathrm{TeV}$ 0 < \leq 3 TeV, -3 <и $m_{\rm A} \leq 3 \, {\rm TeV}$ 0 < $2 \leq \tan \beta \leq 60$, $0 \le m_{\tilde{O}_{1,2}}, m_{\tilde{U}_{1,2}}, m_{\tilde{D}_{1,2}}, m_{\tilde{L}_{1,2}}, m_{\tilde{E}_{1,2}}, m_{\tilde{O}_{3}}, m_{\tilde{U}_{3}}, m_{\tilde{D}_{3}}, m_{\tilde{L}_{3}}, m_{\tilde{E}_{3}} \le 3 \text{ TeV},$

$$-7 \leq A_{\rm t}, A_{\rm b}, A_{\tau} \leq 7 \,{\rm TeV},$$

CMS

2.5

Chargino and Neutralino Production

CL upper limit on cross section [pb]

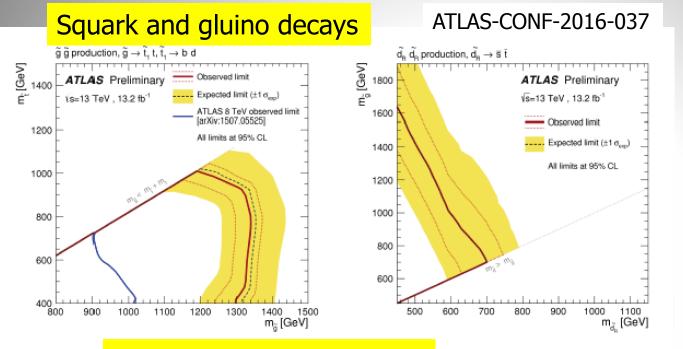
95%

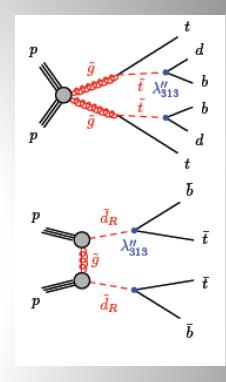
Exclude masses up to 1000 GeV for neutralino masses up to 400 GeV

 10^{-4}

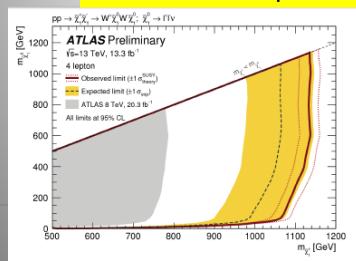
 $m_{\tilde{\chi}_1^{\pm}} = m_{\chi_1^{\pm}}$ [GeV]

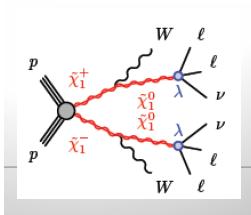
 $m_{\chi_1^{\pm}} = m_{\chi_1^{\pm}}$ [GeV]


GMSB Scenario


Gluino induced Z/γ + gravitino final state

ATLAS-CONF-2016-048 Photons + jet +MET search ලි 2000 ස්^{දිදි} 1800 AS 8 TeV, 20.3 fb⁻ \overline{q} qObserved limit (±1 of theory) Expected limit ($\pm 1 \sigma_{exc}$) p√s = 13 TeV, 13.3 fb⁻¹ 1600 SR, and SR, 1400 1200 1000 800 qQ 600 400 ATLAS Preliminar 200 1200 1300 1400 1500 1600 1700 1900 2100 1800 2000 m_a [GeV]


More GMSB searches in ATLAS-CONF-2016-048 and CMS-SUS-16-021


RPV Violating Searches

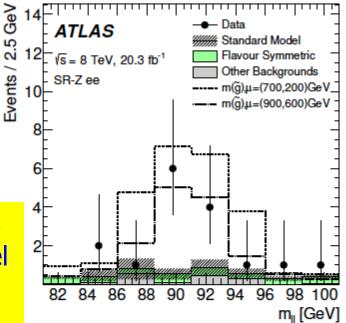
Electroweakino production

RPV Scenarios without "neutralino" missing E_T No dark matter candidate

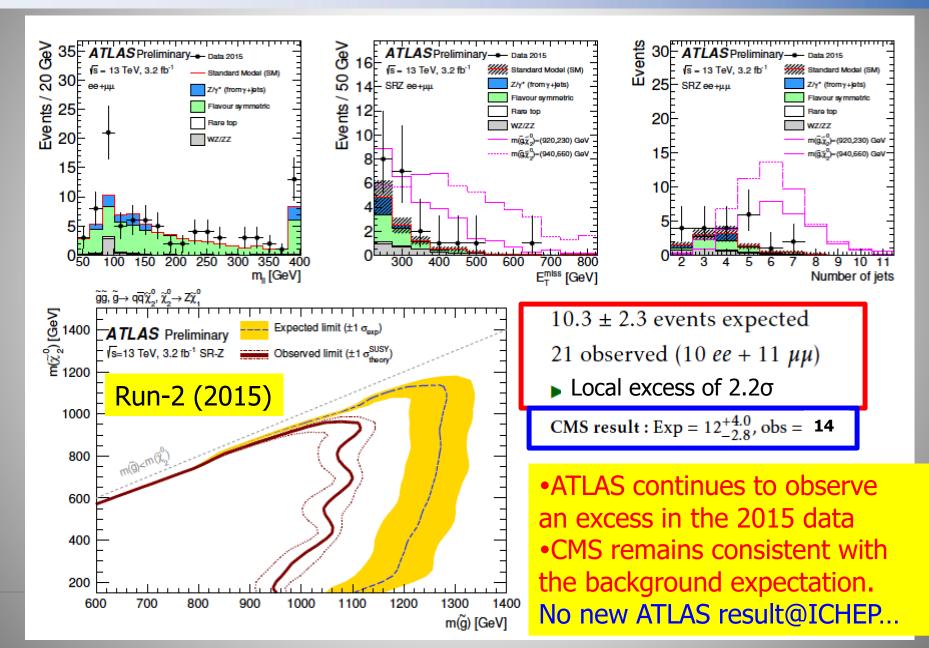
ATLAS-CONF-2016-075

What about analyses that showed some excess in Run-1?

Search in the Z+Jets+MET Channel

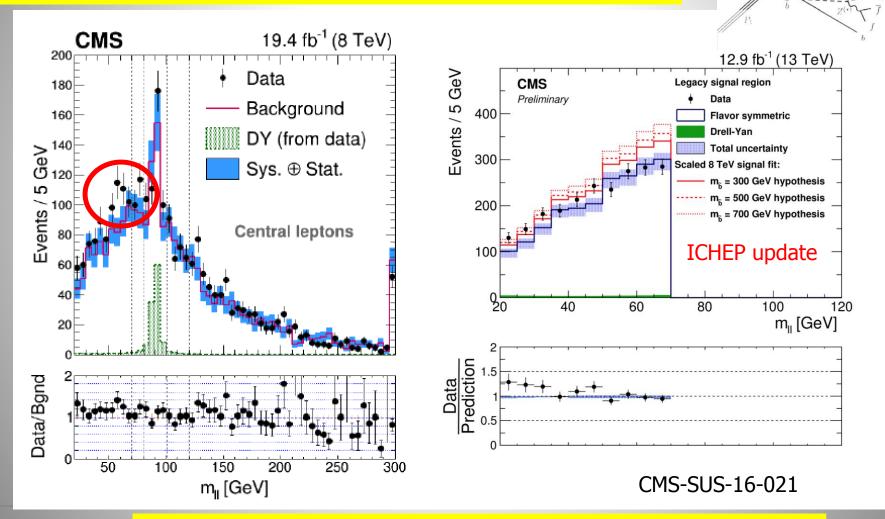

ATLAS-CONF-2015-082

Search for gluino or squark production with Z in decay chain


In Run-1 ATLAS observed an excess in this channel: 3 (1.7) σ excess in ee (μμ) channel
No excess observed in CMS in Run-1

Reproduce the Run-1 analysis in Run-2:

- 2 ℓ $(e^+e^- \text{ or } \mu^+\mu^-)$ with $p_{\rm T}>50,25~{\rm GeV}$ and $81 < m(\ell\ell) < 101~{\rm GeV}$
- ≥ 2 jets with $\Delta \phi_{\min}(E_T, jets) > 0.4$
- $\not\!\!E_T > 225 \text{ GeV}$ and $H_T > 600 \text{ GeV}$



Search in the Z+Jets+MET Channel

Opposite Sign Dilepton Analysis

CMS had "it's own" mild excess in run-1 dileptons in the Region below the Z at 8 TeV. The local excess was 3.4σ

The new 2015 data so far does not confirm this excess...

Many Other Searches for SUSY

- Searches with many jets (8 or more)
- Searches with hard photons
- Searches for electroweakinos in multi-lepton final states
- Searches with soft leptons
- Searches fort sbottoms and staus
- Specific analyses for compressed spectra
- RPV analyses without missing E_T requirement
- VBF production of sparticles
- SUSY with long lived particles

-> So far no outstanding surviving signal!!

Real Exotic Objects!

Many new searches for truly exotic particles, ie long-lived particles or other unusual signatures

Searches for Unusual Particles

7 m

Long-lived searches are signature-driven. ^{W. Wulsin}

LL particle may be neutral or charged (or both) Region of BSM particle decay displaced jets lepton jets displaced leptons displaced vertices displaced / delayed photons stopped particles heavy stable charged particles disappearing tracks -

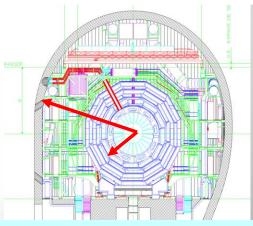
Very Long Lived Particles

Split Supersymmetry

- The only light particles are the Higgs and the gauginos
 - Gluino can live long: sec, min, years!
 - R-hadron formation (eg: gluino+ gluon): slow, heavy particles

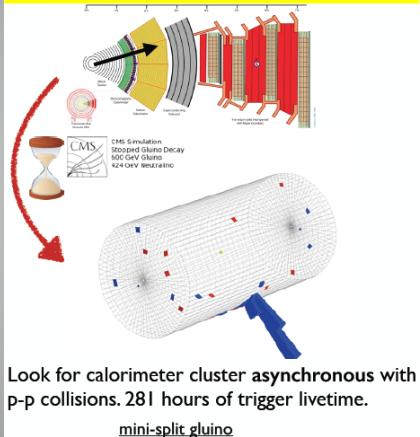
Gravitino Dark Matter and GMSB

- In some models/phase space the gravitino is the LSP
- → NLSP (neutralino, stau lepton) can live 'long': "heavy muon-like?
- \Rightarrow non-pointing photons


Hidden Valley modes!...

Plethora of possibilities for long lived neutrals

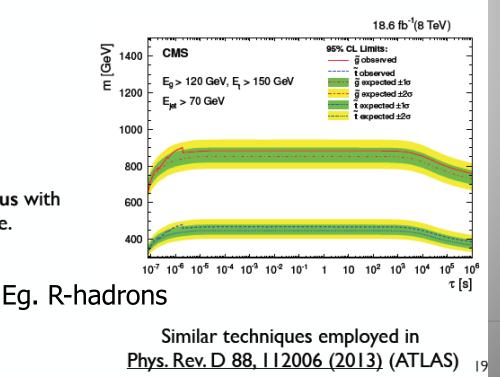
 \Rightarrow Challenges to the experiments!


EG: K. Hamaguchi, M Nojiri, ADR hep-ph/0612060 ADR, J. Ellis et al. hep-ph/0508198

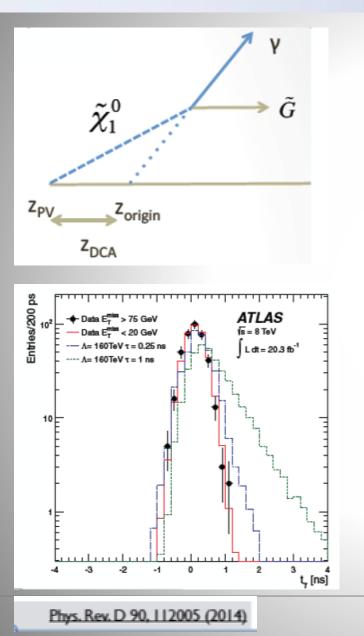
Sparticles stopped in the detector,walls of the cavern, or dense 'stopper' detector. They decay after hours---months...

Stopped Particles

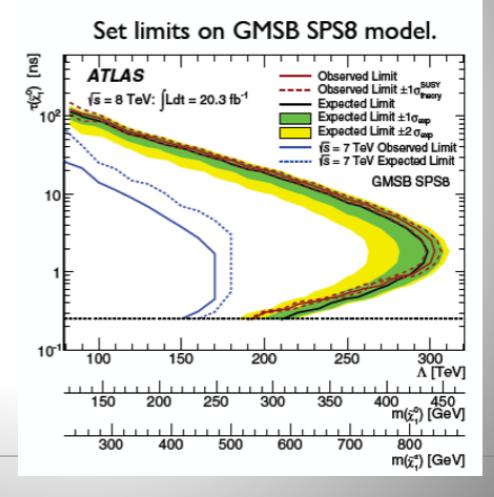
Data collected when there are no collisions in the IP

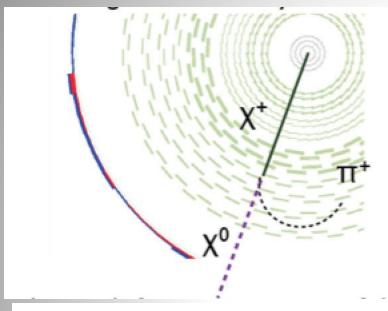

 \tilde{g} \tilde{q}^* $\tilde{\chi}_1^0$

arXiv:1501.05603


Backgrounds: beam halo muons, cosmic rays, HCAL noise.

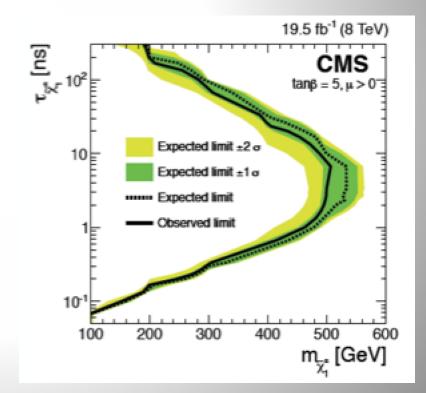
	Signal region
Expected bkgd	13.2 ^{+3.6} -2.5
Observation	10


Limits on gluino, stop mass for over 13 orders of magnitude!


Displaced/Delayed Photons

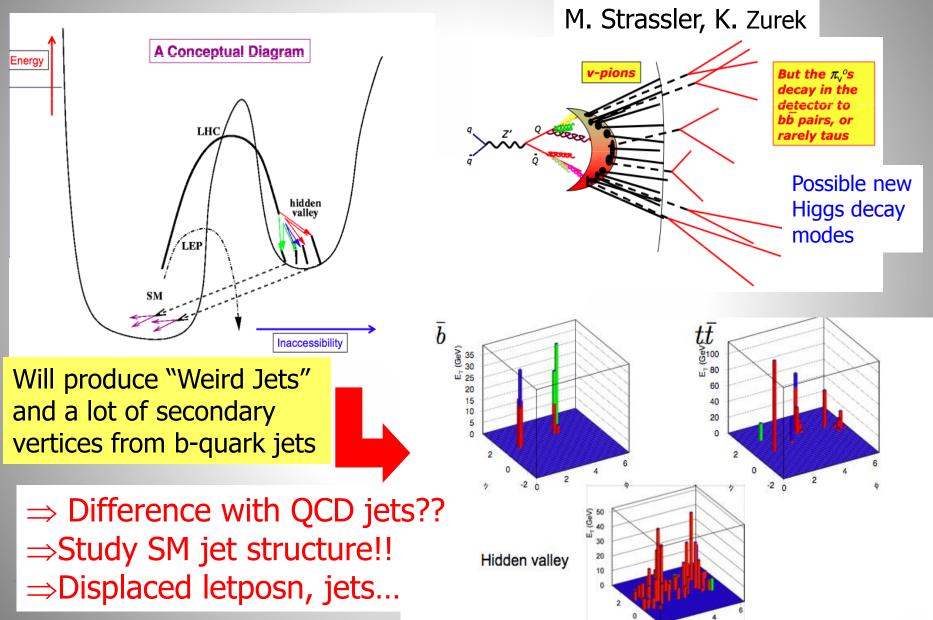
Search for photons that do not point back to the primary vertex (via timing/pointing)

Disappearing Tracks

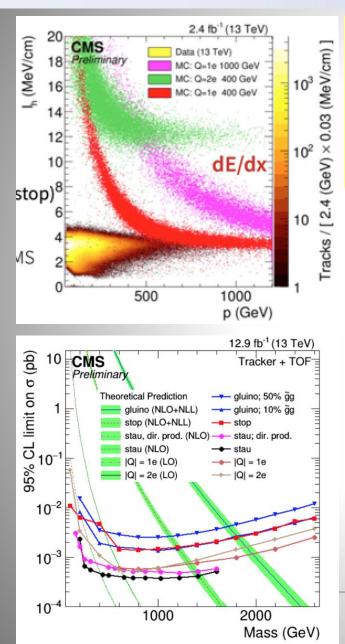


Typical for AMSB SYSY scenarios

JHEP 01 (2015) 096


Search for high p _T stopping tracks					
Signal region					
Expected bkgd	1.4 ± 1.2				
Observation	2				

Tracks "appears" to stop Decay results in a very slow pion that remains undetected



Similar constraint from <u>Phys. Rev. D 88, 112003 (2013)</u> (ATLAS)

Hidden Valley Physics: New Signatures

Heavy Stable Ionizing Particles

Detection techniques used for (multiple/fractional) heavy stable charge particles

- Abnormal energy loss (de/dx)
- Slower than speed of light (low β) via time of flight measurements with the muon system

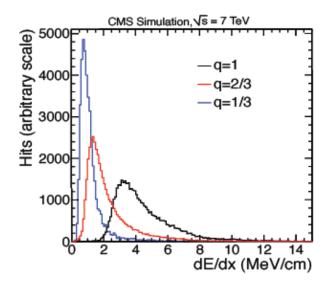
Time of flight $\frac{1}{\beta} = 1 + \frac{c\delta_t}{L}$

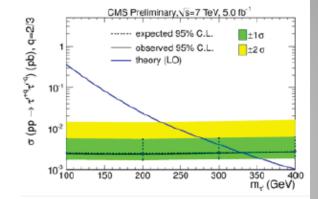
CMS-EXO-16-036

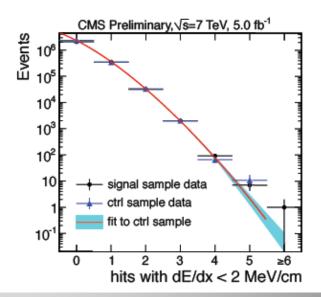
Analysis	Mass Limits
tracker-only	M > 1850(1850) GeV
tracker+TOF	M > 1810(1810) GeV
tracker-only	M > 1840(1840) GeV
tracker-only	M > 1760(1760) GeV
tracker+TOF	M > 1720(1720) GeV
tracker-only	M > 1800(1800) GeV
tracker-only	M > 1250(1250) GeV
tracker+TOF	M > 1200(1200) GeV
tracker-only	M > 1220(1220) GeV
tracker-only	M > 660(660) GeV
tracker+TOF	M > 660(660) GeV
tracker-only	M > 170(170) GeV
tracker+TOF	M > 360(360) GeV
tracker-only	M > 720(720) GeV
tracker+TOF	M > 730(730) GeV
tracker-only	M > 670(750) GeV
tracker+TOF	M > 890(890) GeV
	tracker+TOF tracker-only tracker-only tracker+TOF tracker-only tracker-only tracker+TOF tracker-only tracker+TOF tracker-only tracker+TOF tracker-only tracker+TOF

Particles with Fractional Charge

Free quarks?

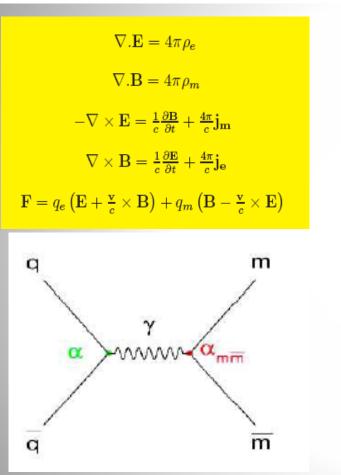

[CMS PAS EXO-11-074]


Search for long-lived particles with fractional charge

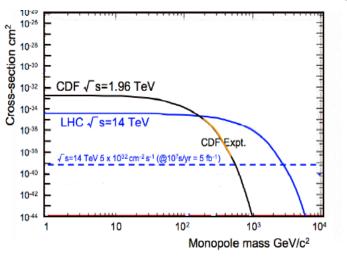

 $-\frac{dE}{dx} = K \frac{2}{z} \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln f(\beta) - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$

- Backgrounds
 - Cosmics: estimate from d_{xy} sidebands
 - Collisions: using $Z \rightarrow \mu \mu$ data, fit N_{hits} with low dE/dx
- Assume lepton-like spin=1/2 particle masses

Exclude: Q= e/3: m > 210 GeV Q=2e/3: m > 330 GeV



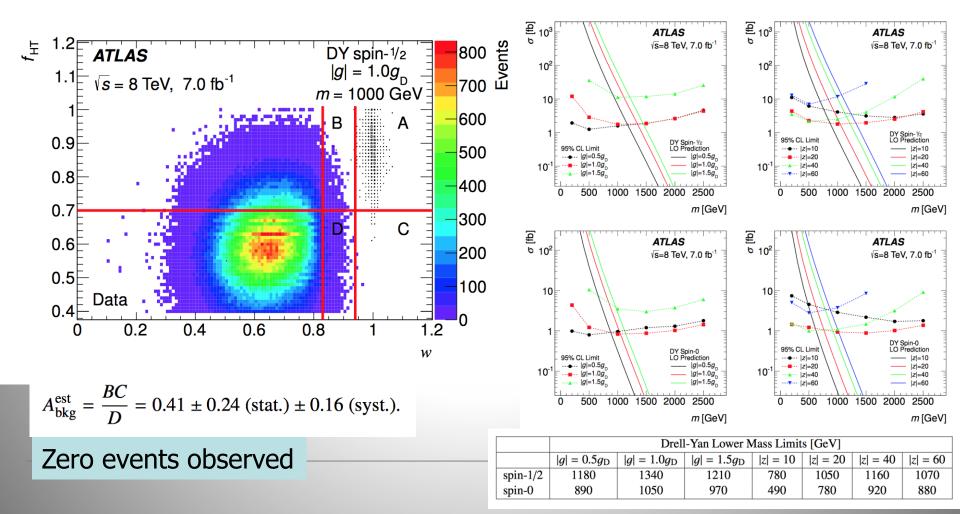
Monopoles


Magnetic Monopoles to explain the quantization of electric charge (Dirac '31)

$$eg = n\hbar c/2 = ng_D$$
 = n 68.5e

$$\sigma_{D(m)} = \left(\frac{g_D}{e}\right)^2 \times \sigma_{\mu\mu} (> 2m) \times (1 - 4\frac{m^2}{s})$$

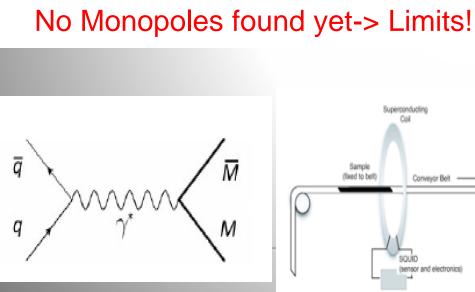
Symmetrizes Maxwell equations Searched for at all colliders Tevatron limits ~ 400-800 GeV

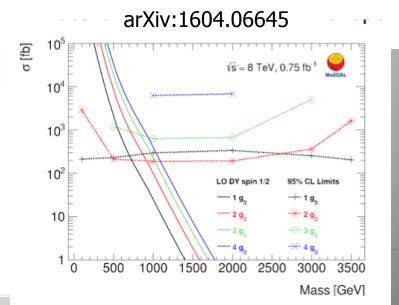

Sensitivity of LHC experiments to exotic highly ionising particles

A. De Roeck^{1,2,3}, A. Katre⁴, P. Mermod^{\overline{a} , \overline{a} , D. Milstead⁶, T. Sloan⁷}

arXiv: 1112.2999

Monopole Searches: ATLAS


For Monopoles, expect tacks with high de/dx and particle stopped in ECAL
 Use fraction of hits in TRT above a high threshold f_{HT} and narrowness *w* of the shower in ECAL arXiv:1509.08059



MoEDAL: Search for Monopoles

160 kg Magnetic Monopole Trapper prototype made of 198 aluminium rods of 2.5 cm diameter and 60 cm length (0.75 fb⁻¹ [@] 8 TeV)

Summary of SUSY Searches

In short: no clear sign of SUSY with the data collected so far (similar for CMS)

ATLAS Preliminary

ATLAS SUSY Searches* - 95% CL Lower Limits

	Model	e, μ, τ, γ	/ Jets	$E_{\rm T}^{\rm miss}$	∫L dt[fb	⁻¹] Mass limit $\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{x}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{x}_{1}^{0} \\ (\text{compressed}) \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \tilde{x}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \tilde{x}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q \tilde{x}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q W \tilde{x}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q W Z \tilde{x}_{1}^{0} \\ \text{GMSB} (\ell \text{NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino LSP)} \\ \text{Gravitio LSP} \end{array} $	$\begin{array}{c} 0\text{-3 } e, \mu/1\text{-2 } \tau \\ 0 \\ \text{mono-jet} \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1\text{-2 } \tau + 0\text{-1 } \tau \\ 2 \ 2 \\ \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{array}$			20.3 3.2 3.2 3.2 3.3 20 3.2 3.2 3.2 3.2 3.2 20.3 20.3	\$\vec{v}\$\vec{v}\$ 1.85 TeV \$m(\vec{v})=m(\vec{k})\$ \$\vec{v}\$ 1.03 TeV \$m(\vec{v})=m(\vec{k})\$ \$m(\vec{v})=m(\vec{k})\$ \$\vec{v}\$ 608 GeV \$m(\vec{v})=m(\vec{k})\$ \$m(\vec{v})=m(\vec{k})\$ \$m(\vec{v})=m(\vec{k})\$ \$\vec{v}\$ 1.51 TeV \$m(\vec{v})=m(\vec{k})\$ \$S GeV \$m(\vec{v})=m(\vec{k})\$ \$\vec{v}\$ 1.51 TeV \$m(\vec{v})=m(\vec{k})\$ \$S GeV \$m(\vec{v})=m(\vec{k})\$ \$\vec{v}\$ 1.51 TeV \$m(\vec{v})=m(\vec{k})\$ \$S GeV \$m(\vec{v})=m(\vec{k})\$ \$m(\vec{v})=m(\vec{k})\$ \$\vec{v}\$ 1.38 TeV \$m(\vec{v})=m(\vec{k})\$ \$m(\vec{v})=0.5 (m(\vec{k}^1)+m(\vec{v}))\$ \$m(\vec{k})^1=0.6 GeV\$ \$\vec{v}\$ 1.38 TeV \$m(\vec{k})=0.5 (m(\vec{v})=0.1 mm, \mu < 0\$ \$m(\vec{k})^1=0.0 GeV\$ \$m(\vec{k})^1=.950 GeV\$ \$m(\vec{k})=.950.1 mm, \mu < 0\$ \$m(\vec{k})^1=.950 GeV\$ \$m(\vec{k})^1=.950 GeV\$ \$m(\vec{k})^1=.950 GeV\$ \$m(\vec{k})=.950.1 mm, \mu < 0\$ \$m(\vec{k})^1=.950 GeV\$ \$m(\vec{k})=.18 VO^2\$ \$m(\vec{k})=0.1 mm, \mu > 0\$ \$m(\vec{k})=.18 VO^2\$ \$m(\vec{k})=.18 VO^2\$ \$m(\vec{k})=.18 VO^2\$ \$m(\vec{k})=.18 VO^2\$ \$m(\vec{k})=.18 VO^2\$ \$m(\vec{k})=.18 VO^2\$	1507.05525 1605.03814 1604.07773 1605.03814 1605.04285 1501.03555 1602.06194 <i>To appear</i> 1606.09150 1507.05493 1507.05493 1503.03290 1502.01518
3 rd gen. § med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\ell} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{\ell} \tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> , μ 0-1 <i>e</i> , μ	3 b 3 b 3 b	Yes Yes Yes	3.3 3.3 20.1	ž 1.78 TeV m($\tilde{\xi}_1^0$)<800 GeV ž 1.8 TeV m($\tilde{\xi}_1^0$)=0 GeV ž 1.37 TeV m($\tilde{\xi}_1^0$)=0 GeV	1605.09318 1605.09318 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{l} & \tilde{b}_1, \tilde{b}_1 \rightarrow \tilde{b} \tilde{\chi}_1^0 \\ & \tilde{b}_1, \tilde{b}_1 \rightarrow \tilde{k} \tilde{\chi}_1^1 \\ & \tilde{t}_1, \tilde{b}_1 \rightarrow \tilde{k} \tilde{\chi}_1^1 \\ & \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{k} \tilde{\chi}_1^1 \\ & \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{k} \tilde{\chi}_1^0 \\ & \tilde{t}_1 \tilde{\chi}_1, \tilde{t}_1 \rightarrow \tilde{t}_1 \\ & \tilde{t}_1 \tilde{t}_1 \tilde{t}_1 \end{pmatrix} \\ & \tilde{t}_1 \tilde{t}_1 \tilde{t}_1 \tilde{t}_1 \\ & \tilde{t}_1 \tilde{t}_1 \tilde{t}_1 \tilde{t}_1 \\ & \tilde{t}_1 \tilde{t}_1 \tilde{t}_1 \tilde{t}_1 \\ & \tilde{t}_1 \\ & \tilde{t}_1 \\ & \tilde{t}_1 \tilde{t}_1 \\ & \tilde{t}_1 \\ & \tilde{t}_1 \\ & \tilde{t}_1 \tilde{t}_1 \\ & \tilde{t}$		2 b 0-3 b 1-2 b 0-2 jets/1-2 mono-jet/c-ta 1 b 1 b 6 jets + 2 b	b Yes ag Yes Yes Yes	3.2 3.2 4.7/20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1606.08772 1602.09058 1209.2102, 1407.0583 1506.08816, 1606.03903 1407.0608 1403.5222 1403.5222 1506.08616
EW direct	$ \begin{array}{l} \tilde{t}_{L,R}\tilde{t}_{L,R}, \tilde{t} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}_{\nu}(\ell \bar{\nu}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}_{\nu}(\ell \bar{\nu}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow \ell_{L} \tilde{\chi}_{L}^{\ell}(\ell \bar{\nu}), \ell \bar{\nu} \tilde{\ell}_{L} \ell(\bar{\nu}\nu) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \lambda \tilde{\chi}_{1}^{*}, h \rightarrow b \bar{b} / W W / \tau \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{0} \gamma_{L} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ GGM (\text{bino NLSP) weak prod.} \end{array} $	$\begin{array}{c} 2 e, \mu \\ 2 e, \mu \\ 2 \tau \\ 3 e, \mu \\ 2 - 3 e, \mu \\ e, \mu, \gamma \\ 4 e, \mu \\ 1 e, \mu + \gamma \\ 2 \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1501.07110 1405.5086 1507.05493
Long-lived particles	Direct $\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}$ Direct $\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{c}, \tilde{\mu}) + \tau$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{g}_{\tilde{g}}, \tilde{\chi}_{1}^{0} \rightarrow \varphi \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{g}_{\tilde{g}}, \tilde{\chi}_{1}^{0} \rightarrow Z \tilde{G}$	trk dE/dx trk	- 1-5 jets - - - - μμ -	Yes Yes - - Yes -	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1310.3675 1506.05332 1310.8584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{\mathbf{v}}_{\tau} + X, \ \tilde{\mathbf{v}}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{X}_1^+ \tilde{X}_1^-, \ \tilde{X}_1^+ \rightarrow W \tilde{X}_1^0, \ \tilde{X}_1^0 \rightarrow ee \tilde{v}_{\mu}, e\mu \tilde{v}_1 \\ \tilde{X}_1^+ \tilde{X}_1^-, \ \tilde{X}_1^+ \rightarrow W \tilde{X}_1^0, \ \tilde{X}_1^0 \rightarrow \tau r \tilde{v}_{e}, er \tilde{v}_1 \\ \tilde{g}_1^*, \ \tilde{g}_1 \rightarrow g q q \\ \tilde{g}_2^*, \ \tilde{g} \rightarrow qq \tilde{Q}_1^0, \ \tilde{X}_1^0 \rightarrow qq q \\ \tilde{g}_1^*, \ \tilde{t}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \rightarrow b\ell \end{array} $	$\begin{array}{c} e\mu, e\tau, \mu\tau \\ 2 \ e, \mu \ (\text{SS}) \\ e & 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 0 \\ 2 \ e, \mu \end{array}$	- 0-3 b 	Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	\$\vec{v}_r\$ 1.7 TeV \$\lambda_{1,1}^r\$ =0.11, \$\lambda_{1,22/133/233}=0.07\$ \$\vec{v}_r\$ 1.45 TeV m(\$\vec{v}]=m(\$\vec{v}]\$), \$\vec{c}_{1,5,r}<1\$ mm	1503.04430 1404.2500 1405.5086 1502.05686 1502.05686 1404.2500 ATLAS-CONF-2016-022 ATLAS-CONF-2015-015
	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$			10000	20.3	č 510 GeV m(ξ ⁰ ₁)<200 GeV	

End of Lecture II