
Introduction to ROOT

Asif Saddique
National Centre for Physics (NCP), Islamabad, Pakistan

ROOT Tree, A useful Tool for Data Analysis
Tutorial # 3

August 25, 2016

5th School on LHC Physics

Asif Saddique (NCP) ROOT Intro August 25, 2016 1 / 24

Why Tree ?

Defining a tree in useful because:

you can store complex types of data, i.e. objects can be stored in a
tree.

ROOT tree is extremely efficient write once, read many times.

All the variable stay connected for all the entries. You can easily
change selection criteria in a small macro.

Trees allow fast direct and random access to any entry.
I Trees have column-wise access. They can directly access to any event,

any branch or any leaf even in the case of variable length structures.
I Makes same members consecutive, e.g. for object with position in X,

Y, Z, and energy E, all X are consecutive, then come Y, then Z, then
E. A lot higher zip efficiency!

Trees are Optimized for network access, and they are buffered to disk.

Asif Saddique (NCP) ROOT Intro August 25, 2016 2 / 24

ROOT Tree

A tree (TTree) contains branches (TBranch) and leaves (TLeaf).

Figure : Examples of split, non-split trees and tree with a branch containing
several leafs (leaves).

Asif Saddique (NCP) ROOT Intro August 25, 2016 3 / 24

Wait !!! Before Tree, Get Concept of Cuts/Filters

In data analysis many variables are linked/dependent to/on each other.

Y-­‐
ax
is
	

X-­‐axis	

θ	
 =	
 60o	

θ	
 =	
 45o	

Detector	

	
 Five	
 Tracks	
 of	
 Par;cles	
 in	
 a	
 Detector	
 	

	
 	
 	
 	
 	
 	
 with	
 Corresponding	
 Momenta	

Cuts/Filters #Tracks

No Cut 5

θ < 60o 3

Px < 10 3

Py > 10 4

θ > 45o 3

45o < θ < 60o 1

θ < 60o && Px > 10 2

Px < 9 && Py > 16 2

Px ≤ 9 && Py > 16 2

Px ≤ 9 && Py ≥ 16 3

Px ≤ 9 && Py ≥ 16 && θ > 60o 2

Your supervisor gives you a task in the morning, and you store Px in one hitso, and Py in second

hitso (after 5hr code running), for θ < 60o . In evening he says, no no its wrong, you need Px

and Py histograms, for θ < 45o . WHAT!!!! I need another 5 hr to run the code again

BUT DON’T WORRY STAY TUNED
Asif Saddique (NCP) ROOT Intro August 25, 2016 4 / 24

Writing a Tree

A tree is defined as:

TTree *mytree = new TTree(”ntuples”,”an example Tree”);

A branches in this tree can be defined as:

mytree→Branch(“px”,&px,“px/F”);

Here, the branch variable “px” (a leaf) must be defined before setting up branch.

Fill the tree in event loop.

for (Int t evt=0; evt<1000; evt++) {
px = gRandom→Gaus(0,2);
mytree→Fill();
}

After the event loop, any leaf histogram can drawn with any cut.

mytree→Draw(“px”,“px>2”);

But here binning is automatic, we look into this matter later.

Asif Saddique (NCP) ROOT Intro August 25, 2016 5 / 24

Writing a Tree

Let’s write several branches in a tree and put it into a root file.

void ATree with ThreeBranches()

{ // ***The code starts****

const Int t kMaxTrack = 500;

// Defining branch variables

Int t ntrack; Float t px, py;

// Creating a root file to put the tree in

TFile file(“mybranches.root”,“recreate”);

// Creating a tree

TTree *mytree = new TTree(”ntuples”,”an example Tree”);

// Creating branches in the tree

mytree→Branch(“ntrack”,&ntrack,“ntrack/I”);

mytree→Branch(“px”,&px,“px/F”);

mytree→Branch(“py”,&py,“py/F”);

for (Int t evt=0; evt<1000; evt++)

{ // ***Event loop starts***

Int t nt = gRandom→Rndm()*(kMaxTrack-1);

px = gRandom→Gaus(0,2);

py = gRandom→Gaus(1,2);

ntrack = nt;

mytree→Fill();

} // ***Event loop ends***

mytree→Draw(“ntrack”,“px<4”);

} // ***The code ends****

htemp
Entries 983
Mean 255.2
RMS 145.4

ntrack
0 100 200 300 400 500

0

2

4

6

8

10

12

14

16

18

htemp
Entries 983
Mean 255.2
RMS 145.4

ntrack {px<4}

The above code defines a tree with three branches, and writes them into “mybranches.root”,

and draws the leaf histogram for “track” for “px<4” (so we started getting rewards !!!)
Asif Saddique (NCP) ROOT Intro August 25, 2016 6 / 24

Writing a Tree (along with an ascii file)

void ATree with ThreeBranches()

{ // ***The code starts****

const Int t kMaxTrack = 500;

// Defining branch variables

Int t ntrack; Float t px, py;

// Defining/opening an ascii file

ofstream outFile;

outFile.open(“myAscii.dat”);

// Creating a root file to put the tree in

TFile file(“mybranches.root”,“recreate”);

// Creating a tree

TTree *mytree = new TTree(”ntuples”,”an example Tree”);

// Creating branches in the tree

mytree→Branch(“ntrack”,&ntrack,“ntrack/I”);

mytree→Branch(“px”,&px,“px/F”);

mytree→Branch(“py”,&py,“py/F”);

for (Int t evt=0; evt<1000; evt++)

{ // ***Event loop starts***

Int t nt = gRandom→Rndm()*(kMaxTrack-1);

px = gRandom→Gaus(0,2);

py = gRandom→Gaus(1,2);

ntrack = nt;

mytree→Fill();

outFile�ntrack�“ ”�px�“ ”�py�endl;

} // ***Event loop ends***

outFile.close();

mytree→Draw(“ntrack”,“px<4”);

} // ***The code ends****

Blue lines are added in the
previous code to make an ascii
file.

The code generates
“myAscii.dat” file, which
contains three columns.

What a tree has to do with an
ascii file ?? see later !!!

Let’s worry about
“mybranches.root” for now.

Asif Saddique (NCP) ROOT Intro August 25, 2016 7 / 24

Browsing a Tree

We can check the created tree by TBrowser.

First connect the root file to prompt:

$ root mybranches.root

Alternatively, you can also load the root file in prompt.
Then open TBrowser:

root[] new TBrowser

Asif Saddique (NCP) ROOT Intro August 25, 2016 8 / 24

Reading a Tree and making Histograms

void ReadTreeMakeHisto() {
// Reading the root file

TFile *file = new TFile(“/PathToRootFile/mybranches.root”, “READ”);

// Go into the file

file→cd();

// Calling branches, and define bins you want

// Putting cuts/set-of-cuts on branches

mytree→Draw(“ntrack�Track px upto 4(100,10,500)”,“px<4”);

mytree→Draw(“ntrack�Track py upto 3(100,10,500)”,“py<3”);

mytree→Draw(“ntrack�Track px4 py3(100,10,500)”,”px<4 && py<3”);

// Defining Histograms and connecting them with tree branches

TH1F *Track 4x = (TH1F*)gDirectory→ Get(“Track px upto 4”);

TH1F *Track 3y = (TH1F*)gDirectory→ Get(“Track py upto 3”);

TH1F *Track xy = (TH1F*)gDirectory→ Get(“Track px4 py3”);

// Drawing an example Histogram

Track 4x→ Draw();

// Creating a root file to put histos obtained from tree

TFile hfile(”myHistofromTree.root”,”recreate”);

// Making a directory inside root file

hfile.mkdir(”Histo”);

// Going inside directory

hfile.cd(”Histo”);

// Writing histos inside directory

Track 4x→ Write();

Track 3y→ Write();

Track xy→ Write();

}

The code generates
“myHistofromTree.root”
file, and also draws an
example plot:

Track_px_upto_4

Entries 983
Mean 260.1
RMS 142.5

50 100 150 200 250 300 350 400 450 500

2

4

6

8

10

12

14

16

18

20

Track_px_upto_4

Entries 983
Mean 260.1
RMS 142.5

Tracks for px < 4 GeV

Please note statistics
from the stat box.

Asif Saddique (NCP) ROOT Intro August 25, 2016 9 / 24

A Tree can easily read an Ascii file

void Tree Reading Ascii()

{
// Defining root file to store tree

TFile *f = new TFile(“basic.root”,“RECREATE”);

// Defining tree to store data from ascii

TTree *T = new TTree(“ntuples”,”data from ascii file”);

// Extracting data from ascii to tree

Long64 t nlines = T→ReadFile(“myAscii.dat”,“tracks:px:py”);

// Printing total # of lines

printf(“ found %lld points /n”,nlines);

// Plot a column (tracks) by putting condition on the other (px).

// Also binning is re-defined for the tracks.

T→ Draw(“tracks�Track px upto 4(100,10,500)”,“px<4”);

// Putting Tree in root file

T→ Write();

// Define Histogram taking input from tree and draw

TH1F *h1 = (TH1F*)gDirectory→ Get(“Track px upto 4”);

h1→SetTitle(“Tracks for px < 4 GeV”);

h1→Draw();

}

The code generates “basic.root”
file with a tree “ntuples”
containing three branches,
“tracks”,“px” and “py”. It also
produces following plot:

Track_px_upto_4

Entries 983
Mean 260.1
RMS 142.5

50 100 150 200 250 300 350 400 450 500

2

4

6

8

10

12

14

16

18

20

Track_px_upto_4

Entries 983
Mean 260.1
RMS 142.5

Tracks for px < 4 GeV

The plot obtained from Ascii file through tree is obtained by using the same binning and

selection criteria as used for the plot on previous slide. The stat box shows the same results.

Hence a tree can efficiently read an ascii file.

Asif Saddique (NCP) ROOT Intro August 25, 2016 10 / 24

Printing a Tree

First load the root file in prompt:

root[] TFile *file=new TFile(”mybranches.root”);

Check if tree is there in the file:

root[] file → ls()

To print information from a tree:

root[] mytree → Print()

It will print the tree structure (sizes, branches, entries etc.) as
following:

Asif Saddique (NCP) ROOT Intro August 25, 2016 11 / 24

Scaning a Tree

To scan information from a tree:

root[] mytree → Scan()

It will print the structure of each entry as following:

Let’s try to put event information in an ascii (text) file.
Asif Saddique (NCP) ROOT Intro August 25, 2016 12 / 24

Making a Class from a Tree

First load the root file in prompt:

root[] TFile *file=new TFile(”mybranches.root”);

Cross check the tree name:

root[] file → ls()

Now make your Class:

root[] mytree → MakeClass(”MyCode”);

It will show the output like following:

Here MyCode.C contains the basic structure of code with an event
loop, and MyCode.h tells you variable that you can access while
building your code in the event loop (inside MyCode.C).
Remember, Its good way to start your code.

Asif Saddique (NCP) ROOT Intro August 25, 2016 13 / 24

Tree Memory

Each node is the branch in Tree

Asif Saddique (NCP) ROOT Intro August 25, 2016 14 / 24

Tree Memory

Each node is the branch in Tree

Asif Saddique (NCP) ROOT Intro August 25, 2016 15 / 24

Tree Memory

Each node is the branch in Tree

Asif Saddique (NCP) ROOT Intro August 25, 2016 16 / 24

Tree Memory

Each node is the branch in Tree

Asif Saddique (NCP) ROOT Intro August 25, 2016 17 / 24

Tree Memory

Each node is the branch in Tree

Asif Saddique (NCP) ROOT Intro August 25, 2016 18 / 24

TChain

If there are three root files, “file1.root”, “file2.root” and “file3.root”,
which have the same tree ”T”. It possible to combine them by
TChain:

TChain chain(“T”)

chain.Add(“file1.root”);

chain.Add(“file2.root”);

chain.Add(“file3.root”);

TChain can be used like TTree.

Asif Saddique (NCP) ROOT Intro August 25, 2016 19 / 24

TChain

If there are three root files, “file1.root”, “file2.root” and “file3.root”,
which have the same tree ”T”. It possible to combine them by
TChain:

TChain chain(“T”)

chain.Add(“file1.root”);

chain.Add(“file2.root”);

chain.Add(“file3.root”);

TChain can be used like TTree.

Asif Saddique (NCP) ROOT Intro August 25, 2016 20 / 24

Making a Class from a Tree

For example, you have data files in root format and you want to analyze the data in those files.

Take any data file and make a class from the tree to start your code.

Preview of “MyCode.C” Preview of “MyCode.h”

Let’s focus on Method1 to read the tree and write some code in event loop.

Asif Saddique (NCP) ROOT Intro August 25, 2016 21 / 24

Making a Class from a Tree→Building/Running Code

For example, you have data files in root format and you want to analyze the data in those files.

Take any data file and make a class from the tree to start your code.

Preview of “MyCode.C”
How to run the code “MyCode.C”

Compile the code:

root[] .L MyCode.C++;

If there is no error, it will make MyCode C.so

Chain up all the input root files:

root[] TChain* chain=new TChain(“mytree”);

root[] chain→ Add(“mybranches.root”);

Load the shared object (so):

root[] gSystem→ Load(“MyCode C.so”);

Run the Loop:

root[] MyCode run(chain);

root[] run.Loop();

The code generates output myCode.root file with two histograms.

Asif Saddique (NCP) ROOT Intro August 25, 2016 22 / 24

Exercises

Writing/Reading a Tree
Exercise#1 Make/write a tree into a ROOT File for 800 entries containing x , y , z and t

branches as floats. Please use {x , y , z , t} = {Gaus(0,1), Gaus(1,2),Gaus(1,3),
Gaus(3,2)}. Draw variable z for x > 0 and t < 4.

Exercise#2 Draw the variable z again with the same conditions but with the bin range from 0
to 3 having 30 bins.

Exercise#3 Make a four columns ascii file containing variables x , y , z and t. Also draw the
same z plot (as in Exercise 2) from the ascii file through a ROOT tree and compare
the entries, mean and RMS values.

TChain/combing trees from different File
Exercise#4 Run the above code 3 times but each time change the name of output ROOT file,

e.g. myfile1.root, myfile2.root and myfile3.root. Join all the files by TChain method
and find total number of entries [Hint: by using chain→GetEntries()] after
combining all the three files.

MakeClass/Building and Running the code
Exercise#5 Make a class from the ROOT file obtained from Exercise#1. Obtain a histogram

for variable “y” for the case of “t<3” in a ROOT file.

Asif Saddique (NCP) ROOT Intro August 25, 2016 23 / 24

Thanks

Asif Saddique (NCP) ROOT Intro August 25, 2016 24 / 24

