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Quantum field theory is a theoretical framework that combines quantum mechanics
and special relativity. Generally speaking, quantum mechanics is a theory that
describes the behavior of small systems, such as atoms and individual electrons.
Special relativity is the study of high energy physics, that 1s, the motion of
particles and systems at velocities near the speed of light (but without gravity).
physical observables are mathematical operators in the theory.
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In quantum field theory,

* Position x and momentum p are not operators—they are just numbers like
in classical physics.

e The fields @(x,7)and their conjugate momentum fields 7(x,7) are
operators.

* Canonical commutation relations are imposed on the fields.
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Klein-Gordon field theory
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free field solution of the Klein-Gordon equation
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conjugate momentum to the field is
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the conjugate momentum to the field
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[7(x), (y)] =

equal time commutation relations.

Suppose that a real scalar field i1s given by
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States in Quantum Field Theory
ack)|0)y=0

‘ k > —d (k ) ‘ U> This describes a one-particle state

the two-particle state ‘ k],k2> Is created by

K.k, )=a'(k)a' (k,)|0)
By extension, we can create an n-particle state using

—

Kk k, ) ="k (Ky) ... 4" (K,)]0)

Each creation operator a'(k;) creates a single particle with momentum #%k. and
energy ho,
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Positive and Negative Frequency
Decomposition

(f k — i (x®—E7)

A
P (x)= J‘(_}E) ma( )€

P (x)|0) =

d’k

7 j(2;rr) " 2o,

(i" (E)(Jf‘.m‘kfu—ﬂ_\?}

. A’k
¢ (ft')\(l):_[(_,}mmm
= k

73 _
d k il =k %)

) -[ 2r)" 2o, ‘

E?;‘{mkxn—ﬁ-ﬂ&i-(;)‘ 0)

k)




Number Operators
N(k)=a'(kyack)
The eigenvalues of the number operator are called occupation numbers.
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which tell us how many particles there are of momentum k& for a given state.
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From the vacuum state
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number density of particles in a given state

N = J.(f}k .-:3"‘(1?)&(1?)

K

s

Exercise: Find N




Normalization of the States
(0]0)=1
Compute the normalization of the state ‘E > by considering the inner product (E ‘ k ">
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ENERGY AND MOMENTUM

The Hamiltonian density
H=rm(x)p(x)—L
H=[%#d'x

Starting with the operator expansion of the field
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The momentum in the field l:> P= j d’kk [N(k ) +;}

Exercise: For the real scalar field, find the energy of the vacuum.
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Find the energy of the state ‘k> using the renormalized Hamiltonian



Normal and Time-0rdered Products
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A time-ordered product is a mathematical
representation of the physical fact that a
particle has to be created before It gets
destroyed. Time ordering iIs accomplished
using the time-ordering operator which acts

on the product

)y (1) if 1 > 1,
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The Complex Scalar Field
complex scalar field represents particles with charge ¢
and antiparticles with charge —¢

—

at (k) a(k) (particles)
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b' (k) !;(E ) (antiparticles)
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N, = d’ka' (k)ack)
N, = [ d*kb (k)bk)
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A complex field corresponds to a charged field.
Particles and antiparticles have opposite charge.
The total charge is found by subtracting the
charge due to antiparticles from the charge due
to particles. The charge operator

$

0 = jdﬂk [&*(E Ya(k)+b' (k)b(k )]
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Summary

The Klein-Gordon equation results from a straightforward
substitution of the quantum mechanical operators for energy
and momentum into the Einstein relation for energy,
momentum, and mass from special relativity. This leads to
Inconsistencies such as negative probabilities and negative
energy states. We can get around the inconsistencies by
reinterpreting the equation. Rather than viewing it as a single
particle wave equation, we instead apply it to a field that
Includes creation and annihilation operators similar to the
harmonic oscillator of quantum mechanics. There Is one
difference, however, in that the creation and annihilation
operators now create and destroy particles, rather than
changing the energy level of an individual particle.



(=

ds* = g detdz” = —(1—2M/r)dt* + T 2M/r + r2d0? |
A0 = d#* +sin®6 :1»}?2 ..

Schwarzschild Solution

Reissner-Nordstrom solution (1916, 1918).
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In partial derivative form above equation changes into
1
a oY

Also
Where RN metric is given by
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I 0 0 72 0 As for the scalar field
\ 0 0O 0 ";"2 quQ 4 ) the equation is Klein
L_ ' Gordon i.e

A scalar field @ propagates in RN spacetime ( +m )(I) — ()
The equation which govern through the
evolution of massless scalar field is,
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