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« A brief introduction of QCD

Classical QCD Lagrangian
Quantization
Green functions of QCD and SDE’s

« Perturbative QCD
Perturbative calculation of QCD Green functions
Feynman Rules of QCD
Renormalization
Running of QCD coupling (Asymptotic freedom)

« Non-Perturbative QCD
Confinement
QCD phase transition
Dynamical breaking of chiral symmetry



Elementary Particle Physics Today

Elementary particles:

Quarks Leptons Gauge Bosons Higgs Boson
(can interact through (cannot interact through (mediate interactions) (impart mass to the elementary
strong interaction) strong interaction) particles)
u C Meson: s = 0,1,2 ...
G (;) () (p) — edo 1
d S b Baryons: s = Z, 7, ...

- (Ve) (vu) (Vr) Meson: Baryon
e u T
_ Y, W, Z° and 8 gluons

399 Mesons, 574 Baryons have been discovered
_ H (God/Mother particle)

* Strong interaction (Quantum Chromodynamics)
* Electro-weak interaction (Quantum electro-flavor dynamics) The Standard Model




How these elementary particles and the SM is discovered?

1. Scattering Experiments :

Cross sections, Decay Constants,
2. Decay Processes M Spin C i r fact :
3. Study of bound states asses, Spin, Couplings, Form factors, etc.

Particle
g —) Accelerators Models Ca— g ——
and detectors

Particle Physics Theaq'retical Particle
Phenomenologist  Physicist

Experimental
Particle Physicist

Measured values of Calculated~alues of
~ . .
physical observables ~ physicai’observables

It doesn’t matter how beautifull your theory is, It is more important to have beauty
It doesn’t matter how smart you are. If it doesn’t in one's equations than to have
agree with experiment, it’s wrong... R.P. Feynmann them fit experiment..... PA.M Dirac

Decades of observation and calculations show that the Standard Model of particle physics
can describe almost every thing which we have observed in the labs of high energy physics.



A Quick review of QFT's

* The standard model is a quantum field theory.
* Infield theories, fields (defined by field functions) act as fundamental dof of the system.

* To every different kind of a particle we associate a field.
(e.g., electron field, proton field, photon field etc)

Particles appear as quanta of field.

Quantization Quanta of field has particle properties.

)

* Equation of motion of the fields

(s = 0) (s=1) (s=1)
Free abelian Vector Field: Fee Non-abelian Vector Field:
d,0*AY + 0V (9, A*) =0
& ( “ ) £0=_1FuvaFaw
- _ v
“o =g fuf” FLY = 0k AY — 8V Al + gofanc A AL

(s=1/2) Fy = 0,4, — 0,4,




A Quick review of QFT's

* Interaction is introduced by the coupling of fields .

For example: £; = eyy* A, for QED

* Only Lorentz invariant couplings are allowed.

* In gauge theories coupling are further constrained by
the gauge symmetries.

i) SU(2); Q U(1)y for electroweak interaction.
i) SU(3), for strong interaction.



Quantum Chromo Dynamics (QCD)

(Foundations)

» QCD is the theory of strong interaction of quarks, which is based on SU(3). color symmetry.
« It assumes each flavor of quark comes in three different colors.

* The color states of quarks are SU(3) triplets.

f=123..N;
c=rcs

plets. '

The color states of quarks are SU(3). tri

¢ f i6,t, f
-

R G B
Free Lagrangian of the Quarks:

h a I . This Lagrangian is invariant under
Where ¢* are Gell-Mann matrices. global SU(3), gauge transformation.

ifabctc

[t,.t,]= Free and Classical QCD Lagrangian



Quantum Chromo Dynamics (QCD)
(Foundations)

« Extending the global gauge symmetry to local symmetry.

Local gauge transformation:
o' >Uloy' Global gauge transformation

rf o i0, (0t f _
y =er "y =Uy
o' —>U(5,,l// )+l(5,,t9a)tUl//f Local gauge transformation

Free Lagrangian does not possess local symmetry: :
0,—>D,=0,-1g,t Aaﬂ(x)

= t,A, =UtA U - (6HU)J‘1

Including kinetic energy term of gauge fields

This complete Lagrangian is invariant under local SU(3). gauge transformation.

f




Quantum Chromo Dynamics (QCD)
(Foundations)

Interacting Classical QCD Lagrangian:
o - = 1
£ =pliykopf +mpd Y 4 g v ta Ay - 7 FuvaFa”

where, F*Y = gHAY, — 9V AL + gofabcA’gA‘c’, (a = 1,2,...,8)

1 H AV

v 1 LAV v 1
_ZFa,qual = _Z(a,uAav _at'Aa,u)(al Aa _a 2 )_Ego fabc(a,uAav _avAa,u)Ab Ac

e Quark-gluon interaction
* 3-point gluon interaction
* 4-point gluon interaction



Quantum Chromo Dynamics (QCD)
(Quantization)

$

Cross sections

Decay constants
Bound State masses
Couplings

Form factors

Generating function of QCD:

. . i) dx* (Locp+# 7' +77 " f+J;‘Aﬂa)
2(7,m,3,) = [ dlya, e e

The path integration over gauge fields diverges due to
integrating over gauge equivalent configurations.

A2 (x) = A () - D" (x)
1 1 Jdo

Fixing the gauge means choosing one configuration
out of gauge equivalent configurations.



Quantum Chromo Dynamics (QCD)
(Quantization)

Gauge fixing implies

— — — _ iJ.dx“(LQC fl7f+77fl//+AﬂaJ:+5a8a+§aa)a)
Z(n7,n,J,.&,¢)= jd[t//wAﬂa)a)]e

1 . _ N PN Not gauge invariant due
Ler =—§(5ﬂA;) ; Lepg = (0"0%) |- g, f ™ (0"0%) 0" A, Ny
0

The generating function Z must be gauge invariant because gauge transtcrmation amounts to
redefine the variables integration.

This trivial requirement of Gauge invariance of the generating function translates into
non-trivial identities which all Green functions carrying gauge field(s) must satisfy.

QED: QCD:
Wards-Green-Takahashi identities (WGTI) Slavnov Taylor identities (STI)

2

q,D;. =2—0qv

iq, [, (k, p)L+b(k*)) = L~ B(k, p))S (k)
-S7(p)(L-B(k, p))

iq, [, (k, p)=S7(k)=S™(p)




Green Functions of QCD

2-point Green functions:

(QIT ), P)}0) = —@—
(QT{ (A% (), AL ()} ) = TGO
(@IT{ (® . c® E)lla) = - @

3-Point Green functions: 4-Point Green functions:

@ oo

.
¥
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W
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Schwinger-Dyson Equations (SDEs) of QCD

« In QFT the Green functions satisfy a set of exact mathematical equations called SDEs.

« Corresponding to each green function we have a SDE.

« These are exact equations and can be used to find Green functions perturbatively
as well as non-perturbatively.



Quark propagator: Gluon propagator:

5 -1 -1
1+ﬂ TWECRET = e+

Ghost propagator:

=1

Ghost-gluon vertex:

.%m = J;%‘H +
" . " ., - 9

Quark-gluon vertex:

A




Schwinger-Dyson Equations of QCD
SDE of Quark Propagator:

Non Perturbative Truncation:
y y m One or more Green functions are
- - @ modeled subjecting to some

general field theoretical constraints.
Or

=I5 @ir (Gl (Aol Using the results obtained from |QCD.

+ 5 terms

-1 -1
TTTTEPTTTO = TTTOOOOEOO  —

SDE of quark-gluon vertex:

e

Perturbative Truncation:




End of Lecture 1

Summery:

* |n QCD we have 5 different interactions

i) Quark-Gluon interaction
ii) 3 Gluon interaction

iii) 4 Gluon interaction

iv) Ghost-Gluon interaction

* QCD green functions satisfy SDE’s which are exact but unsolvable unless truncated.

* In perturbative truncation the amplitude of QCD green functions can be written
directly from the Feynman diagram using Feynman rules.



Feynman Rules of Perturbative QCD
QCD full Lagrangian:

, 1 AV v 7 1 v
P FL =7 0,A, ~0,A)0" A ~0 A~ 0 T4 (0,A, ~0,A)AA

2
- %TO fabc fab'c'Ab,u A:\Nl A;/

Vertices:

-0, 1™ [(P-), 4, +(a-K), 0, 93 f ™ (0,00~ 0., 0,0)
+(k=p),9,] + 1 (0,09, — 92,9,

abe ¢ cde _
Propgators: + 100,69, —92,9,,)}

Free Quark propagator : S; (k) = J; ﬁ
- &

uv

Free gluon propagator : D% (q) = -6, L(gm, -

q° +ie
Free ghost propagator : G, (k) =9, ﬁ
&



Color Algebra:




Leading order QCD green functions

Quark propagator:

4 oo k3dk | . ,
SU(p)= (- p=m)=iC [ 5 03Dy, (07, oo o f;° 85 (Linearly divergent)
— llilg

Gluon propagator:

D4D

e = i1, 3 [ 9 gerety, L

_.Cup dk*
2 4 (2n)*

m, v g+ K- mf)
[- 2k +0),9,,+(k-0),07 +(2q+k), 9]
<[~ (2k+ ), 9 + (k—q)? 9% + (29 + k)" g’

95Dy, (K)Dy,, (0 + k){

, K, (k+0),
®k2(k +q)

X fooo k dk (Quadratically divergent)



Quark gluon vertex (1PI):

e fooo dk /k (Logarithm divergent)

If theory is renormalizable then at any order of perturbation, all the divergences can be
absorbed by redefinitions of the coupling and fields.

Redefinitions of coupling and fields are made through multiplicative constants called
renormalization constants.

Voo (X) = Z£y (X), o (X) = 2%, (X),
AL (X) = 25 AS(x),

a)Oa (X) = cholza)a (X)1 a_)Oa (X) = cholza_)a(x)’

1 Z
0y =240, My =Z,;m', —

A

Gauge invariance which is expressed in terms of STI’s enforce that

i) All quarks are renormalized by same constant Z.
ii) All gluons are renormalized by same constant Zp.
iii) All ghost are also renormalized by same constant Z,.



Procedure of Renormalization:

* Regularize the field theory.
(i.e., to modify it temporarily in such way that all divergent integrals become finite)

i) Dimensional regularization

(breaks only scale invariance)

“‘ dk* J‘ dk® Idevg_D

e e T @op

ii) Pauli-Villars regularization

1_)1 1
K

K2+i0  K2+i0 KZ—A%+i0

(breaks Hermicity and gauge invariance in non-Abelian gauge theories)
iii) Lattice regularization
continuous space-time is replace by discrete Lattice of space-time.

Lattice spacing acts as regularizing parameter.

(breaks Poincaré invariance)



S7(p)=(y- p—my)—2(p)

kD4D

9o DO,uv (k)h

2(p) =(p—-mq )A(p*)+m, B(p)

A(p?) =C, % {—(E—y+log4ﬂ)+l+2ll(p2)}
167 E

B(p?)=—C, % {-{3-y+|og47z)+1+2|2(p2)}
167 E

L(p) = [ a- x)log[%}

Vo

L) = [ @+ x)log[%}

Vo




2

2N, (2 ]
e 2(-9Wq +4,9,) 3 2-7""0947[ —-41,(9%)

19( 2 1 11( 2 2
{[E(z‘”"’g“”)‘z"4(‘12)]9*””2'[?(E‘”"’g“”)*?'S(qz’]"”q"}

1(2 1 1(2
{[E(;—7+Iog4n)+g—IG(qZ)]quz—[—g(g—7+|094ﬁ)+2|6(q2)]quv}

[T} (a) = 2T,

The l'[lg;,uon and thOSt do not satisfy the condition of transversality.

uon 0s 10( 2 62 10
" + 119 = -C 3902 (-9,,0°+0,0, ){—3(——7*"09477)-?*‘?'09@ )}

M =(-g,,9°+4q,9,)1"(q%)

2 4N 10} 2 31 5
T (g?) = 90 T =1 £=-y+10a4 ——— | > |-8T.1,(q?
(@?) == {( -~ +Ch 6)(3 y+log n)+CA(9 31094 ) 8T 15(q )}




(E_ v +log 472) + (Finit Part)
&

. g 2 ..
370[2 7ﬂ(;—7/+ log 472)+ (Finit Part)

2 .
—27/#(—— v +log 472')+ (Finit Part)
67 g



Renormalization:
Wo. () =ZF W, (X), Wo () =2, (%),
A, (X) = Z5 2 A% (x),

a)Oa (X) = Zi)lza)a (X)’ a_)Oa(X) = cholza_)a (X)1

1 Z
9o =240, mof=zm,fmf’ =

_Le
So &

1. Multiplicative Renormalization Strategy:
S(p)=Z#'S(p)
D,,(@)=2;D,,(a)

- yA .
F},(p,p)=fzg’é,zrﬂ(p,p)




2. Counter terms Strategy:

1c v 1 a
L = Ilr//O yayWO - m0 WO l//O + gOWO ﬂtaWo Aan (X) Oaﬂv Foﬁ - 2§ (aﬂAﬂ)Z
0

+0“® 5 — g, 0" o, w; AO

s —1f u f f U2—f u Z uv o _ ZBZ(,E T AY
LB=ZF”// 7/ a,uvl —-m Zm, ZFl// l// +gz Z ZB l// 7/ tal// Aa,u(x)__Favaa 5 (a A,u)

+2,0"9°0,0° -9 2,2,2,* ™ 0"a 0" A,

Lo =1+AZ;, Zy=1+AZy, Z,=1+AZ,

A= ! — — /i 1 v a
Ly =iy ' y0 ' -m'v'y' +9w fV‘tawaa,,(X)——Fam F/ - 2 (a“A;,)2

+0“®w"0 0" — ¢ f*0 D0’ A
- ! —_— = 1 AZ LV
+AZiy 0y = (Zemy —m") 'y —(ZgZFZé’Z—l)gt//f;/‘tal//an,,(X)+ 45 Fo P

1 —a a 1/2 abc —a b
+AZ,0"0%0,0" +-(2,2,2)" -1)g f*0*®

9w




Renormalization Schemes: A renormalization constant Z:
Z = (divergent part) + (finte part)

S(
B,M (@)=2;'D,,(q)

* The divergent part is chosen in such a way that it cancels
the pole in un-renormalized Green function.

L,(p,p)==—7T,(p p)

Ze Zl/z e Each different way of choosing the finite part defines a

different renormalization scheme.

Minimal subtraction (MS) scheme:
The renormalization constants only cancel the divergent parts of the Green functions
without affecting their finite part.

Modified Minimal subtraction (MS) scheme:
The renormalization constant also cancel a finite part in the Green function

N, =E—]/+|Og47l'
g

These renormalization schemes are called mass independent renormalization schemes.

The results of perturbative calculations are scheme dependent.



Renormalization constants of QCD in MS at 1 loop order:

Renormalized gluon propagator
at 1 loop order:

D_l (q) DO,uv (q) + H(a”)

v

Dy, () = —qz(g

1 (@) = (- o%g,, +a,9, )0 (o)

Renormalized quark propagator
at 1 loop order:

ST (p)=(p—-m')-2(p)

2(p)=(p-m")A(p*)+m'B(p?)

A(P?) =Cp - L+ 21,(p))

B(p?) = ~C; 7 fi+21,(p)}

1+ A(p?)
p—mf1+ B(p?))

S(p)=




Scale dependence in QCD:

* Dimensional regularization necessitate the introduction of a scale parameter v,.

SD(p’VO)’ DD[uv(q’VO)’ FDy(p’ p"VO)

* This dependence on v, can easily be removed by redefining the renormalization
constants Z’s.

dk* dk Pv? 2 Vo
Z ——y+logdr+log| —
I(Z”)4 —)I 27)° V=7 p y+liogar Q(VZ

S(p,v) = ZZ(v,V)Sp (P, Vo)

IS/JV (ql V) = Zgl(v’ VO) DD,uv (q’VO)
Z,(V,V,)
Z, (V) ZE2(,V,)

r,(p p,v)= T, (P, P V,)

« Renormalized Green functions are now function of arbitrary scale parameter v.

« However, the physical observables must not depend upon the choice of v. This is ensured by
a correct v dependence of fundament constants (m’s and g’s) of the field theory.

A(obs.)zA(m(v), g(v), gre.fun. (v))



The running of QCD coupling:

Z,(M9(v) =g,

Taking the derivative w.r.t log(v).

0Z, oy
yd =
dlogv g+ 2, ologv

Coupling constant,og (E)
0,4

2
2_ y+logdr+ Iog(v—g)
g v

50 100 200
Enargy, GeV




END of Lecture 1

Lecture 2 (non-perturbative QCD)



Quantum Chromodynamics

(Non-perturbative aspects)
Lecture 2

Faisal Akram

International Symposium on Physics Beyond the Standard Model
NCP Islamabad
2015



QOutlines

Characteristics of QCD

Asymptotic freedom

Confinement

QCD phase transition

Dynamical breaking of chiral symmetry
Non-Perturbative truncation of Schwinger-Dyson equations
Models of quarks-gluon vertex and gluon propagator
Numerical Solution of SDE of quarks propagator

Results and comparison with the experiments



Characteristics of QCD

<« Asymptotic freedom
* Quarks Confinement
* QCD phase transition

* Dynamical Breaking of Chiral Symmetry

, Oa,
Q along_ﬂ(as)

Pla)==7>f,+0(2)
S CERMIE] N < 16.5 (Asymptotic freedom)

Coupling constant,og (E)

100 200

Energy, GeV

* D.J Cross and F. Wilczek, PRL. 30, 1343 (1973); H. D. Politzer, PRL 30, 1346 (1973).



Characteristics of QCD

 Asymptotic freedom
« Quarks confinement
 QCD phase transition

* Dynamical Breaking of Chiral Symmetry

V(r) = br
F = ov b
= e

* K.J. Juge, J. Kuti, and C. Morningstar, Phys. Rev. Lett. 90, 161601 (2003).



QCD phase transition

Confined State of Matter De-Confined State of Matter

QGP is expected to produce at T, = 170 MeV =2 x 102 K = 130,000 Ty; and § =0

Evidence of QGP? — Theoretical Evidence

nclusive

7 72'2 72'2 0 arno ER‘:I sour
EQGP:(Zf'28'2q°3c§+25'8cj%1—4:37%1-4




Quantum Chromo-dynamics

Asymptotic Freedom
Quarks confinement
QCD phase transition

Dynamical Breaking of Chiral Symmetry

(2008 Nobel Prize)

Current mass: my, ,q = 3 — 6 MeV

Self interaction of quarks

M, = 939 MeV

Currentmass 3 100 1100 4200
(MeV)

Constituent 350 350 530 1500 4600
mass (MeV)




Dynamical Breaking of Chiral Symmetry in QCD
Fermionic part of QCD Lagrangian for light quarks:
Vi =u,d, sl This Lagrangian is invariant under SU(3) ®SU(3)g
' symmetry if the current masses of light quarks
Free quark propagator: are Z€ro.

_ 1 Pole mass
EIUl ™My q = 3.7MeV

Mass function
(dynamical mass) 1

Full propagator: M@ = o2

=
ip+M (p*)

Perturbative

expansion B 0.001 -
0001 001 0.1 10 100 1000

——————————————
——
-

Pole mass,

0.1
M, 4 = 390MeV

M{p%) (GeV)

0.01

If the current mass m = 0 then M(p2) = 0
Schwinger-Dyson equations (A non-perturbative technigue)

Renormalization point independent
Quark condensate

—<qq>°=(0.241)’GeV?®

Non-zero value of M(p?) even when m = 0 means chiral symmetry
is dynamically broken.



Green Functions of QCD

2-point Green functions:

(QIT ), P)}0) = —@—
(QT{ (A% (), AL ()} ) = TGO
(@IT{ (® . c® E)lla) = - @

3-Point Green functions: 4-Point Green functions:

@ oo
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Schwinger-Dyson Equations of QCD

SDE of Ouark Propaaator:

SDE of Gluon Propagator:

. ]
oo @TTTO = TOOOOO0O0 - Nf  +5terms

SDE of quark-gluon vertex:

L

Perturbative Truncation: Non Perturbative Truncation:

pis S, One or more green functions are
modeled subjecting to some
general field theoretical constraints.
Or
Using the results obtained from |QCD.




Green Functions of QCD (continued)

\ 4

Quark Propagator: - ‘ Free Quark Propagator:

1
1K+ m

F(k?) 1
T ik+M (K2 iKAKK?)+ B(k?)

S(K) = S, (K) =

q

Gluon Propagator: o0 aoere

1
D,.(@)=D" (qz)?(% -

Free Gluon Propagator:

R

upt 2
QL. £, &4 \WGTI of gluon propagator implies D*(q?) = &,

p * In covariant gauge Green functions are function
Quark-Gluon Vertex: of arbitrary gauge fixing parameter €.

22 S(k, E)l Dﬂv (q' 5)1 F[,L (k' p; E)

A necessary condition that physical observable

12 . . .
_ ) will not depend upon the choice of ¢ is that all
Lu(k.P) 'Z_,l:P‘(k LS WGTI/STI’s should be satisfied.

iun# =S1(k) - 5_1(29) WGTI of quark gluon vertex




SDE of Quark Propagator:

) : @,
o E o

S(p) = 17+ M)~ [ 563D, @5 7,800 5 T3k P

To solve the SDE of quark propagator we require the knowledge
of full gluon propagator and quark-gluon vertex.

We model gluon propagator and quark-gluon vertex subjecting

to some general field theoretical constraints or using results from
QCD.

What necessary and sufficient knowledge of
gluon propagator and quark-gluon vertex is
required in order to describe the complete

e Gauge Invariance (WGTI’s or STI’s). and correct behavior of quark propagator?

e Gauge covariant relations.

* Multiplicative renormalizability.

* Agreement with perturbation theory in weak coupling limit.

Field Theoretical Constraints:

The model should also agree with IQCD in construction as well as in its implications.
* Phenomenological agreement is an ultimate condition.



Models of Quark-gluon Vertex

1. Replacing by free vertex

>’m ~>f5m F,,(k, p)=7,, Rainbow Truncation

This model breaks WGTI/STI of quark gluon vertex.
iq,l, =S7'(k) =S (p)

Constraint on the vertex due to WGTI:

E, (k. p) €T (c, )T (K, P))- 2 R0 k- IV, (kP

iq,U; = S~ (k) — S (p) qul; =0

I :(A(k2)+ A(pﬁjn +(A(kZ)—A(pZ)j (k+p)

Y7

T“(k+ p)

8
F; :ZTi (k*, p* k- p)Tiy
i1

2 k2_p2

+(B(k23_ ngz)j(m p)
k?—p “

Multiplicative renormalizability of SDE
Longitudinal part is called Ball Chiu (BC) part. can be used to constrain FJ (k,p)



Renormalization of SDE of quark propagator

SDE of Quark Propagator:

The MR requires that all Green functions should be
renormalizable by using finite number of multiplicative

renormalization constant.

The condition of MR cannot be satisfied by any arbitrary
SH(p)=(iy-p+m,) - I X goDw(q)—;/#S(k) quark-gluon vertex ansatz in SDEs.

. ~1/2
How to do renormalization: Y =7, "y S\ 71 .
. YRV G (v 2. S (i )
Regularize the theory by # P ;1/2 # D, (a; )= Z; (1, N) D, (a;A)
243 ~

applying hard momentum
cutoff.

9o L, (k, ps ) =2Z,(u, AT, (K, p; A)

« Renormalized green functions are function of arbitrary scale parameter p.

« However, the physical observables must not depend upon the choice of u. This is ensured by
a correct u dependence of fundament constants (m'’s and g’s) of the field theory.

A(obS.)=A(m(u), g(u), gre.fun. (,u))

S™(p)= zoyp+m)21 49Qﬁm—vﬁwﬁ(km




The condition of MR cannot be satisfied by any arbitrary quark-gluon vertex ansatz in SDEs.

(An example)
Quark renormalization function in leading-logarithm approximation: S(k) =

F (k%)

ik + M (k2)

MR requires that 4, , = Ail/l!

If we use bare approximation of quark-gluon vertex in quark propagator SDE we get

MR can be used to constrain FMT(k, p)
2 /1! e =2 as the BC vertex itself doesn’t satisfy
the condition of MR.

In which 4, , = %A




Models of Quark Gluon Vertices

2. Curtis Pennington (CP) Vertex:

BC 1 2 ¢ Tﬂe
L, (ki P) =T (k, )+ (A - ACPY) ) e

CP vertex satisfies the condition of MR in quench approximation for zero as well
as non-zero quark mass.

3. Kizilersu Pennington (KP) Vertex:

L,k p)=Cckp+ Dol

MWMW5}

(A(k2)+A(p2))In( AT

— = (AK)-A =
p4)( ( ) p +p2)2
.

(A - APY)-5 o

MWM@%J
A@>) )

e (AK?)+ A(pz))ln(

— = (A=A 2,
+¢¢( )—A(p?))

KP vertex satisfies the condition of MR in un-quenched approximation only for zero quark mass.



Models of gluon propagator
SDE of Quark Propagator:

éé@ % >;ainbow Truncation
- R NP
dk“ A

Maris-Tandy Model: It is based on Rainbow truncation of vertex.
Gluon propagator:

q.q,
/11 (q) g ;q )(5/1\/ ——

<

WCRECSER (Perturbative calculation)

0?’D(q})  4r° "y 1_ g9 /4m
== DV 44— %= Maris-Tandy Model

¢ o U2+ 0 )] O

Infrared dominant; A Model UV dominant; Given by perturbative QCD [l % | MTmodel

w = 0.4 so that the first term don’t perturb with 2" in UV region.
D = 0.93 GeV? is fitted to IQCD result of quark condensate ,

—(qq) =1 gev = (0.241)3GeV>.

4 Perturbative "+

This model does not include any N, dependence in the infrared part.




Solution of SDE of quark propagator in Rainbow truncation + MT model

S (p)=Zy(iy- pr ) - 2, ok IP@ 5 BT sy,

2

(27z)* o

* We need to first fix the renormalization constants Z, and Z,.
Z, = Z1 (WGTI of quark-gluon vertex)
* On-mass shell renormalization scheme.

Renormalization BC:

Renormalized current mass

F(pz)
S(p)_w p+M(p?)

(“127, Idk4g "D(@°) _ F(k’) [k,p+2(k-q)(p-q)

q2 2+M2(k2) q2

2 2 M 2(L2Y
q? KM >}



Quark Propagator using MT model

o
. [F]
<)
r.:::\.
S
=

0.001

My q = 0.00374 GeV |
ms = 0.083 GeV
m,. = 0.88 GeV
my, = 3.8 GeV

— =19 GeV

MT model of gluon propagator function:

1000

How the model generates Dynamical mass?

* The 1stterm of the MT model enhance
the coupling strength in IR region through
the controlling parameter D.
e ltis this enhancement which generates dynamical
mass in IR region.
* Gradual decrease in parameter D shows that DCS is
e restoredif D <0.261.

2 2 2 , _ a-0?/4m?
g ng )=4L6que_q | +47Z' ymﬂ. 1 €

q ® 1/2In[z+@+9°/ Ayep)’]l O



Comparison with Qu-IQCD results: — : ————
Pseudoscalar (PM, Roberts, PRCS6, 3369)

Old data expl. calc.

New ‘improved action” data o 3 L Ead
- m, =0.168GeV “@4)y | (026Gev)”  (0.2417)

m_=0.030GeV My 0.1385GeV  0.128

m_ =0.225GeV fa 0.0924 GeV  D.023"

m = 0.055GeV

m_ =0.110GeV
q

m, = 0.0GeV fr

M 0.496 GeV 0.4977
0.113 GeV 0.109

Weclor mesons (PM. Tandy, PRCE0, 055214)
M fn 0.770 GeV 0742

Jojw 0.216 GeV  0.207

0.892 GeV 0936

Jis 0.225 GeV  0.241

My 1.020 GeV  1.072

Jo 0.236 GeV  0.259

Strong decay (Jarecke, PM, Tandy, PRCE7, 035202)
Eprn 6.02 5.4

EoEE 4.64 43

M) [GeV]

8K*kn 4.60 4.1

- 1|:upt01:order in Eq. (9)
— wupto3 order

2 25 3
Q° [GeV




Quark Mass functions using KP Vertex

Troubles with MT model:

* Rainbow truncation breaks Gauge invariance
as the WGTI/STI of quark-gluon is not satisfied.

As a result physical observable may develop
dependence on gauge fixing parameter €.

e Violates multiplicative renormalizability.

As a result physical observable may develop
dependence on arbitrary scale parameter p.

Kizilersu Pennington (KP) Vertex:
r,kp=rkp+ DT,

2 1 2 2 Ak*)A(p?)
(AK?) = A(p?))- m(A(k )+ A(p ))In(—),

-p%) A(g?)

(Ak?) -

2 2 Ak?*)A(p?)
(AKk?)+ A(p ))In(w}

- p?) +p?)

(AK?) - A(p?))

(k*+p°)

KP vertex satisfies the condition of MR in un-quenched approximation



Critical number of quark flavors in QCD

* Asymptotic freedom requires that N> 16.5 (at 1 loop order).
* Dynamical breaking of chiral symmetry may also require a critical number of quark flavors.

SDE of Quark Propagator: MT model does not allow as to study the flavor
dependence of quark propagator in the infrared
region as the gluon propagator is itself taken
Flavor independent.

S(p) =Z,(iy- p+my) - ZJ 4gZD,w<q)—y,,S(k)r (k. p)

(27)

p_-s 80 (N =0)
=2

_ z2(4*)9*(9* +M?)
q*+*(M? -13g*( A%}/ 24 )+ M *m;

B=1.90 (N=4)

my(N,)=1.011(9.161— N, ) 2GeV
g*(A*)(N,)=0.474(16.406— N ) GeV
M? =4.85GeV

A. Ayala, A. Bashir, D. Binosi M. Cristofretti, and J. Rodriguez-Quintro, Phys. Rev. D 86, 074512 (2012)



Solution of SDE of the Quark Propagator
SDE of Quark Propagator:

) : @,

a

S(P N, ) =Z,(iy- p+my)— ZI -0°D,,.(GN) = 5 7SN ) r(k p)

General form of quarks propagator:

Lattice QCD KP Vertex

10 4 0.01

q (Current mass m = 0)



Final remarks
* Asymptotic freedom in QCD requires that Ny < 16.5.

e Latest lattice results of gluon propagator when used in SDE of quark propagator
truncated by KP vertex shows that Nr < 7.2 if QCD is to exhibit DCSB.



Extra slides



Elementary Particle Physics Today

Elementary particles:

Quarks Leptons Gauge Bosons Higgs Boson
(can interact through (cannot interact through (mediate interactions) (impart mass to the elementary
strong interaction) strong interaction) particles)
u C Meson: s = 0,1,2 ...
G (;) () (p) — edo 1
d S b Baryons: s = Z, 7, ...

- (Ve) (vu) (Vr) Meson: Baryon
e u T
_ Y, W, Z° and 8 gluons

399 Mesons, 574 Baryons have been discovered
_ H (God/Mother particle)

* Strong interaction (Quantum Chromodynamics)
* Electro-weak interaction (Quantum electro-flavor dynamics) The Standard Model




Elementary Particle Physics

1. Scattering Experiments :

Cross sections, Decay Constants,
2. Decay Processes c i . fact M Spin et
3. Study of bound states ouplings, Form factors, Masses, Spin etc

Particle
g —) Accelerators Models Ca— g ——
and detectors

Particle Physics Theaq'retical Particle
Phenomenologist  Physicist

Experimental
Particle Physicist

Measured values of Calculated~alues of
~ . .
physical observables ~ physicai’observables

It doesn’t matter how beautifull your theory is, It is more important to have beauty
It doesn’t matter how smart you are. If it doesn’t in one's equations than to have
agree with experiment, it’s wrong... R.P. Feynmann them fit experiment..... PA.M Dirac

Decades of observation and calculations show that the Standard Model of particle physics
can describe almost every thing which we have observed in the labs of high energy physics.



The Standard Model

* The standard model is a field theory.

* Infield theories we associate a field to every different kind of a particle.
(e.g., electron field, proton field, photon field etc)

* Particles appear as quanta of field.

Quantization Quanta of field has particle properties.

* Equation of motion of the fields

(s = 0) (s =1)
Free Abelian Vector Field:
d,0"AY + dv(9,A*) =0

1
Lo =~ FuP*

(s =1/2) Eyn = 0,4, — 0,4,




The Standard Model

* Interaction is introduced by the coupling of fields .

For example: £; = eyy* A, for QED

* Only Lorentz invariant couplings are allowed.

* Possible coupling are further constrained by the
gauge symmetries.

i) SU(2); Q U(1)y for electroweak interaction.
i) SU(3), for strong interaction.



