
Large Extra Dimensions and Black Hole Searches using
CMS RunII Data

Asif Saddique
BH Team@NCP

Asif Saddique, Wajid Ali Khan, Muhammad Ahmad

5th School on LHC Physics, NCP

August 23, 2016

NCP Islamabad BH Searches in RunII August 23, 2016 1 / 27



Black Holes

Astronomical Black Holes

A spacetime region with sufficiently compact mass produces an immense
gravitational pull to prevent everything including light, from escaping.
Classically, an event horizon is a surface around the a Black Hole which is
called point of no return. Anything that touches event horizon, will be
trapped and won’t go back.

Microscopic Black Holes

In high energy particle collider,
mini Black Holes can be
produced if there is a strong
gravity at small scales.
Microscopic Black Holes will
evaporate quickly unlike
astronomical Black Holes.
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Event Horizon and Schwarzchild Radius

Event Horizon
It is the surface around a black
hole beyond which nothing even
light can escape. Assume horizon
radius RH .

Schwarzschild Radius
The radius of black hole in which
all the mass of black hole is
packed. Assume Schwarzschild
radius Rs .

Schwarzchild Black Hole
It is an uncharged, spherically
symmetric and non-rotating black
hole, for this case
RH = Rs ≡ rs

If Earth becomes a black hole, its all mass would be pressed in rs =8.7 mm
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Black Holes
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Why A Micro Black Hole Evaporates ?

In 1974, Stephen Hawking predicted that

Quantum/Vacuum
fluctuations produce virtual
pairs of particle-antiparticle
near horizon

Gravitational field of black
hole converts them into real
particles at expense of its
mass

One member falls into
horizon and other escapes

It seems the escaped particle
is emitted from black hole

Black hole loses its mass
and quickly evaporates by
emitting Hawking radiation

Smaller the mass of black hole quickly it evaporates, as TBH ∝ 1
MBH
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A Desert between Energy Scales

As energy and length are related: E = hc
`

Scales Energy (GeV) Length (m) Experimentally Probed

Strong Scale 1 10−15 Yes

Electroweak Scale (Fundamental scale) 102 10−18 Yes

Grand Unification Theory (GUT) Scale 1015 10−31 No

Planck Scale -Theory of Everything (TOE) Scale 1019 10−35 No

How the Micro Black Hole can remove/fix this desert ? Stay tuned -
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Fundamental Particles
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Normally quarks exist in bound state, called Hadrons; Baryons (qqq)
and Mesons (qq̄)

Quarks and Gluons are collectively called partons.

How do these fundamental particles interact?
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Fundamental Forces

All the particles interact via four fundamental forces in nature

Standard Model of particle physics incorporates Electromagnetic,
Weak and Strong forces but not gravity.
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Gravity appears to be much weaker than other force.

Is gravity really a very weak force?

NCP Islamabad BH Searches in RunII August 23, 2016 8 / 27



Extra-dimensions and Strong Gravity

Gravity is the only force that can propagate in extra dimensions and
most of its strength goes into extra dimension.
At current fundamental scale 10−18 m we are not able to see
extra−dimensions that’s why gravity appears to be very weak.
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Let's zoom in 

more smaller scale

If go to more smaller scale than 10−18 m then we can see extra
dimensioned and strong gravity
Microscopic Black Holes are possible to produce in high energy
colliders like LHC
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Scales are important to explore extra-dimensions
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Motivation for Searching Mini Black Holes

Hierarchy Problem

Why is there a large difference between the Electroweak scale
(MEW ∼O(TeV)) and the Planck scale (MP ∼1016 TeV)

or

Why gravity appears weaker as compared to the SM forces ?

Low-scale gravity models propose a solution to this problem with the
concept of extra spatial dimensions.
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Low-scale Gravity

In ADD model, there are large extra
dimensions and only gravity can propagate
in extra spatial dimensions (n).

The extra dimensions are compactified in a
sphere of radius R, e.g.,
R ∼ submillimeter scale for n ≥ 3.

At such a low scale (∼ R), gravity will
appear as strong as other forces, i.e., the
apparent Plank scale (MP) reduces to the
true Planck scale (MD

1).

As a consequence of strong gravity at
low-scale, production of microscopic
black holes (MBH) is possible in a high
energy collision under certain conditions.

SM	  Forces	  in	  usual	  	  
	  	  	  	  	  4-‐dimensions	  

Ex
tr
a	  
Di
m
en

si
on

s	  (
n)
	  

e-‐	  	  

e+	  	  

γ	  	  

G	  

ADD	  Model	  of	  large	  extra	  dimensions	  

MP~	  1016	  TeV	  

R!

Extra	  dimensions	  (n)	  are	  
compac2fied	  in	  a	  	  sphere	  

MD
n+2	  	  	  = R -‐n	  MP

2	  

	  	  	  	  MD
	  	  ~ 	  1	  TeV	  

	  

D	  (total	  #	  dimensions)	  =	  n	  (extra)	  +	  4	  (usual)	  

1where D = n + 4, total number of dimension
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MBH Formation and Decay
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Available SM Degrees of Freedom

dof = nQ × nS × nF × nC

Particle Type Charge Spin Flavour Colour dof

State (nQ ) State (nS ) State (nF ) State (nC )

Quarks 2 2 6 3 72

Charged leptons 2 2 3 12

Neutrinos 2 1 3 6

Gluons 1 2 8 16

Photon 1 2 2

Z boson 1 3 3

W bosons 2 3 6

Higgs boson 1 1

Table : Number of degrees of freedom (dof) of the Standard Model particles

Quarks and Gluons are dominant in MBH decay
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MBH Decay
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Signatures at the LHC

Mini black holes (MBH) may be produced in high energy
proton-proton (pp) collisions at the Large Hadron Collider (LHC).

Once produced, MBH may be distinguished by
▸ high number of SM particles in final states, i.e. multiplicity (N),
▸ democratic (with equal probabilities) and
▸ highly isotropic (same in all directions) decays

with the final state particles carrying several hundreds of GeV
energy.

Hence,
▸ high-N, and
▸ high-ET (transverse energy)

in the detector coverage are the key signatures of MBH.

Therefore, we select high multiplicities with high ST = ∑ET in the
data recorded by the CMS detector at the LHC.
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CMS Detector at the LHC
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Major Backgrounds

Backgrounds considered are:

γ + jets

V (W ,Z) + jets

tt̄

QCD - The dominant one
▸ ST shape is invariant for all N
▸ The shape of N = 2 is used to

extract background for N > 2
▸ The N = 2 shape is extracted

from Ansatz fitting method
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ST shape invariance with different multiplicities is investigated further
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ST Shape Invariance

The ST ratio of N > 2 to N = 2 is computed and many tests are performed

Functions are fit to N = 2 because:

The dominant dijet case is
well-studied, and

it has no new physics

The shape of N = 2 is used to extract background for N > 2 by shape
invariance assumption
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Background Estimation for N > 2
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Everything for N > 2
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Systematic Uncertainties

In a physics data analysis, beside statistical uncertainties, there are also
systematic uncertainties involved that depend on analysis techniques.

No. Uncertainties Range

1 Function Fitting 5-100%

2 Choice of kinematic Regions 2-10%

3 Parton Distribution Functions (PDF) ∼6%

4 Jet Energy Uncertainties ∼5%
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Example of a Candidate Event for Black Hole Searches

Figure : Event display for a black hole candidate collected in Run 257645, Event 1610868539.
This event has 12 jets, E miss

T of 120 GeV, and the multiplicity N = 12
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What if there is no Signal found?

If there is no new physics (such as black hole) found then

Exclusion Limits are drawn by model-dependent or model independent
way
A fake signal is added on top of estimated background in the signal
region up to the level of 95% Confidence Level (CL) and cross section
is recomputed.
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Model-independent and Model-dependent Limits

Figure : The observed (black solid line) and expected (black dotted line) model independent
upper limits along with one sigma (green) and two sigma (yellow) bands. The model dependent
limits (colored dotted lines) are also shown for multiplicity N ≥ 8 with 95% confidence.
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Summary

Background Estimation
▸ QCD is the main background estimated purely from data
▸ Background is estimated using ST shape invariance
▸ Background is estimated using N = 2 multiplicity as a baseline

New Physics
▸ All the data were consistent with the background
▸ No new physics was found
▸ Exclusion limits are computed

Exclusion Limit
▸ Upper limits with 95% CL are shown on the production of new physics
▸ Many BH models were checked for the exclusion limits
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Thanks

NCP Islamabad BH Searches in RunII August 23, 2016 27 / 27


