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Near horizon limit of (extremal) black holes

AdS2 arises in the near horizon limit of extremal black holes [Bardeen, Horowitz ’99;
Kunduri, Lucietti, Reall ’07]. The near horizon metric of the extreme Kerr black hole is

ds2 =

(
1 + cos2 θ

2

)(
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r2

r20
dt2 +

r20
r2
dr2 + r20dθ

2

)
+
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(
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r
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)2

where r0 = 2M2.

(Conformal) AdS2 arises in the near horizon limit of certain non-extremal black
holes of the STU model with magnetic flux known as subtracted geometries
[Cvetič, Larsen ’12; Cvetič, Gibbons ’12]. The near horizon geometry is
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Holographic RG flows at finite charge density

AdS2 also arises in extremal electrically charged planar AdS black holes [Chamblin,
Emparan, Johnson, Myers ’99] whose near horizon limit is AdS2 × R2

ds2 = R2
2dy

2 + µ2∗R
2(−e−2ydt2 + dx21 + dx22), At =

µ∗√
2
e−y

where R2 = R/
√

6 is the AdS2 radius.

Such backgrounds provide a holographic description of a semi-local quantum
liquid [Iqbal, Liu, Mezei ’11].
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Sachdev-Ye-Kitaev model

AdS2 holography has seen renewed interest due to its connection with the
Sachdev-Ye-Kitaev (SYK) model [Sachdev, Ye ’93; Kitaev ’15].

The simplest version of the SYK model is a quantum mechanical system of 2N
Majorana fermions perturbed by quenched disorder, i.e.

SSYK =

ˆ
dt
(∑

a

ψa∂tψ
a −

∑
a,b,c,d

1

4!
Jabcdψ

aψbψcψd
)

where Jabcd are random all-to-all couplings.

It has been suggested that such models admit a 2D gravity dual, mainly on the
basis that their effective low energy description exhibits an emergent conformal
symmetry and they saturate the chaos bound on the Lyapunov exponent of
certain out-of-time ordered four-point correlators.
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Holographic Kondo model model

The Kondo effect admits a low energy description in terms of a free fermion CFT2

interacting with an SU(N) impurity spin at the origin:

H =
1

2π
ψ†αi∂xψα + λ δ(x)SAψ†αT

A
αβψβ

Writing the impurity spin in terms of Abrikosov pseudo-fermions as SA ∼ χ†TAχ
allows one to describe the system in terms of the free fermion Kac-Moody
currents J ∼ ψ†ψ, an auxiliary impurity current j ∼ χ†χ, and a complex scalar
operator O ∼ ψ†χ.

In the large-N limit this system admits a holographic description in terms of an
AdS2 defect in AdS3 [Erdmenger, Hoyos, O’Bannon, Wu ’13]

S = −N
ˆ

AdS2

d2x
√
−g
(

1

4
fmnfmn + (DmΦ)†(DmΦ) +M2Φ†Φ

)

−
N

4π

ˆ

AdS3

A ∧ dA
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AdS2 holography

The above examples suggest that AdS2 holography is useful for:

Identifying the microstates responsible for the macroscopic black hole entropy of
extremal and non-extremal black holes.

Studying the strongly coupled IR dynamics of condensed matter systems.

Understand quantum gravity in the simple possible setting.

Our goal here is to develop the holographic dictionary for general asymptotically
AdS2 and conformally asymptotically AdS2 backgrounds of a broad class of
two-dimensional Einstein-Maxwell-Dilaton models.
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2D Einstein-Maxwell-Dilaton (EMD) model

We want to obtain the holographic dictionary for the 2D Einstein-Maxwell-Dilaton
(EMD) model

S2D =
1

2κ22

(ˆ
d2x
√
−g e−ψ

(
R[g] +

2

L2
−

1

4
e−2ψFabF

ab
)

+

ˆ
dt
√
−γ e−ψ2K

)

This model is rather special since it can be obtained by circle reduction of 3D
Einstein-Hilbert gravity

S3D =
1

2κ23

(ˆ
d3x
√
−g3

(
R[g3]− 2Λ3

)
+

ˆ
d2x
√
−γ2 2K[γ2]

)

Analogous to the relation between D4 and M5 brane holography [Kanitscheider,
Skenderis, Taylor ’08], e.g. conformal anomaly.
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General solution in Fefferman-Graham gauge

We seek the most general solution in the Fefferman-Graham gauge

ds2 = du2 + γtt(u, t)dt
2, Au = 0

The equations of motion imply that Q = 1
2

√
−γe−3ψFut is a constant.

This allows the equations of motion to be solved analytically.
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Running dilaton solutions

The general solution with running dilaton takes the form

e−ψ = β(t)eu/L

√(
1 +

m− β′2(t)/α2(t)

4β2(t)
L2e−2u/L

)2

−
Q2L2

4β4(t)
e−4u/L

√
−γ =

α(t)

β′(t)
∂te
−ψ

At = µ(t) +
α(t)

2β′(t)
∂t log

(
4L−2e2u/Lβ2(t) +m− β′2(t)/α2(t)− 2Q/L

4L−2e2u/Lβ2(t) +m− β′2(t)/α2(t) + 2Q/L

)

where α(t), β(t) and µ(t) are arbitrary functions of time, while m and Q are
arbitrary constants.

This solution is regular provided m > 0.

The leading asymptotic behavior of this solution is

γtt = −α2(t)e2u/L+O(1), e−ψ ∼ β(t)eu/L+O(e−u/L), At = µ(t)+O(e−2u/L)

and so the arbitrary functions α(t), β(t) and µ(t) should be identified with the
sources of the corresponding dual operators.
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Constant dilaton solutions

Another family of solutions is [Castro, Grumiller, Larsen, McNees ’08 ]

e−2ψ = LQ

√
−γ = α̃(t)eu/L̃ +

β̃(t)
√
LQ

e−u/L̃

At = µ̃(t)−
1
√
LQ

(
α̃(t)eu/L̃ −

β̃(t)
√
LQ

e−u/L̃

)

where α̃(t), β̃(t) and µ̃(t) are arbitrary functions, Q > 0 is an arbitrary constant,
and L̃ = L/2.

As above, the functions α̃(t) and µ̃(t) are going to be identified with sources of
local operators, but we shall see that the function β̃(t) corresponds to the
one-point function of an irrelevant scalar operator of dimension 2.

Notice that the gauge field diverges at the boundary u→ +∞. This is a generic
property of rank p ≥ d/2 antisymmetric tensor fields in AdSd+1 and leads to
certain subtleties in the holographic dictionary.
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An RG flow

Since the two classes of solutions have different AdS radii, one might expect that
there is an RG flow from the running dilaton solution to the constant dilaton
solution.

For the extremal solutions this is indeed the case. Setting
m− β′2/α2 = 2Q/L > 0 and µ = −α/β and expanding the hairy solution for
u→ −∞ gives

e−ψ =
√
LQ+

β2

2
√
LQ

e2u/L +O(e4u/L)

√
−γ =

αβ
√
LQ

e2u/L
(

1−
β2

2LQ
e2u/L +O(e4u/L)

)
At = −

αβ

LQ
e2u/L

(
1−

β2

LQ
e2u/L +O(e4u/L)

)
The limit β → 0 keeping αβ fixed results in an exact bald solution with
α̃ = αβ/

√
LQ. This limit sets m = 2Q/L and µ→ −∞, and corresponds to the

“Very-Near-Horizon Region” [Strominger ’98].
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Holographic dictionary for running dilaton solutions

For the running dilaton solutions the boundary counterterms are

Sct = −
1

κ22

ˆ
dt
√
−γ L−1 (1− uoL�t) e−ψ

The renormalized one-point functions are given by the renormalized radial
canonical momenta:

T = 2π̂tt , Oψ = −π̂ψ , J t = −π̂t

where

π̂tt =
1

2κ22
lim
u→∞

eu/L
(
∂ue
−ψ − e−ψL−1

)
π̂t = lim

u→∞

eu/L
√
−γ

πt

π̂ψ = −
1

κ22
lim
u→∞

eu/Le−ψ
(
K − L−1

)
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Holographic dictionary for running dilaton solutions

Evaluating these expressions using the general solutions with running dilaton
gives the one-point functions

T = −
L

2κ22

(
m

β
−

β′2

βα2

)
, J t =

1

κ22

Q

α
, Oψ =

L

2κ22

(
m

β
−

β′2

βα2
− 2

β′α′

α3
+ 2

β′′

α2

)
All three operators are crucial to describe the physics. In particular, these
one-point functions satisfy the Ward identities

∂tT − Oψ∂t log β = 0, DtJ t = 0

T +Oψ =
L

κ22

(
β′′

α2
−
β′α′

α3

)
=

L

κ22α
∂t

(
β′

α

)
≡ A

From these relations we deduce that the scalar operator Oψ is a marginally
relevant operator and the theory has a conformal anomaly due to the source of
the scalar operator.
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The renormalized on-shell action can be obtained (up to a constant that depends
on global properties) by integrating the relations

T =
δSren

δα
, Oψ =

β

α

δSren

δβ
, J t = −

1

α

δSren

δµ

using the above expressions for the one-point functions.

This gives the exact generating function:

Sren[α, β, µ] = −
L

2κ22

ˆ
dt
(
mα

β
+
β′2

βα
+

2µQ

L

)
+ Sglobal
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Schwarzian derivative effective action

Under Penrose-Brown-Henneaux (PBH) transformations the sources

α = eσ(1+ε′+εσ′)+O(ε2), β = eσ(1+εσ′)+O(ε2), µ = ϕ′+ε′ϕ′+εϕ′′+O(ε2),

where the primes ′ denote a derivative with respect to t.

Inserting these expressions in the renormalized action and absorbing total
derivative terms in Sglobal we obtain

Sren =
L

κ22

ˆ
dt ({τ, t} −m/2) + Sglobal, σ = log τ ′,

where the Schwarzian derivative is given by

{τ, t} =
τ ′′′

τ ′
−

3

2

τ ′′2

τ ′2

The Schwarzian derivative action is a manifestation of the conformal anomaly!
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Holographic dictionary for constant dilaton solutions

The holographic dictionary for constant dilaton solutions is a bit more subtle,
mainly due to the fact that the AdS2 gauge field diverges close to the boundary:

At ∼ µ̃(t)−
α̃(t)
√
LQ

eu/L̃

Two different boundary counterterms have been proposed to cancel the
corresponding divergences of the on-shell action:

[Castro, Grumiller, Larsen, Mc Nees ’08]

∼
ˆ

dt
√

−γAtA
t

[Grumiller, McNees, and Salzer ’14; Grumiller, Salzer, Vassilevich ’15]

∼ −
ˆ

dt πt
At +

ˆ
dt
√

−γ
√

1 + α0πtπt

Although both types of counterterms cancel the divergences of the on-shell action,
neither in general respects the symplectic structure of the space of solutions,
which can lead to inconsistencies at the level of correlation functions.
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Holographic renormalization as a canonical transformation

The boundary counterterms must correspond to a certain canonical
transformation [I. P. ’10].

For the usual gauge field asymptotics the counterterms satisfy

δ (Sreg + Sct[γ,A, ψ]) =

ˆ
dt
(
πt +

δSct

δAt

)
δAt + · · ·

so that Sct[γ,A, ψ] is the generating function of the canonical transformation(
At
πt

)
→
(
At
Πt

)
=

(
At

πt + δSct
δAt

)
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Since the gauge field modes are reversed for constant dilaton solutions, the
generating function of the relevant canonical transformation is

−
ˆ

dt πtAt + Sct[γ, π, ψ]

where

Sct = −
1

2κ22L

ˆ
dt
(√
−γ e−ψ +

(Lκ22)2
√
−γ

e3ψπtπt

)

This implements the canonical transformation(
At
πt

)
→
(
−πt
Aren
t

)
=

(
−πt

At − δSct
δπt

)
such that

πt ∼ −
1

κ22
Q, Aren

t = At −
δSct

δπt
∼ At +

1
√
LQ

√
−γ ∼ µ̃(t)

preserving both the symplectic structure and the gauge symmetries.
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Boundary counterterms and holographic dictionary

Since Q is constant it does not define a local dual operator, but µ̃(t) does define a
local current. The renormalized generating functional in the theory that possesses
a local current operator is

Sren = lim
u→∞

(
Sreg + Sct −

ˆ
dt πtAt+

ˆ
dt πtAren

t

)
If the finite term that implements the Legendre transformation is omitted one
obtains the generating function of a theory without a current operator. This is a
choice of boundary conditions.

The renormalized one-point functions obtained from this renormalized action are

T = 2π̂tt = 0, Oψ = −π̂ψ = −
2

κ22L̃

β̃

α̃
, J t = −π̂t =

1

κ22

Q

α̃

In particular, the non-extremality parameter β̃ of the constant dilaton solutions is
identified with the VEV of the (irrelevant) scalar operator Oψ .
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Ward identities

Besides the current conservation DtJ t = 0, the Ward identities are trivially
satisfied, but become non-trivial once a perturbative source ν̃ for the scalar
operator is turned on:

∂tT +Oψ∂tν̃ = O(ν̃2), T − ν̃Oψ = −
L̃(LQ)1/2

κ22α̃
∂t

(
ν̃′

α̃

)
+O(ν̃2)

These imply that Oψ has dimension 2, while the conformal anomaly matches that
of the running dilaton solutions.

The stress tensor is nonzero if and only if a source for the irrelevant scalar
operator is turned on.
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General solution of 3D gravity with Λ < 0

In Fefferman-Graham gauge, the general solution of 3D gravity with a negaitve
cosmological constant takes the form [Skenderis, Solodukhin ’99]

ds2 = du2 + e2u/L
{
g(0)ij + 2e−2u/L

(
κ23L

2
τij −

L2

4
R[g(0)]g(0)ij

)
+e−4u/L

(
κ23L

2
τik −

L2

4
R[g(0)]g(0)ik

)(
κ23L

2
τkj −

L2

4
R[g(0)]δ

k
j

)}
dxidxj

where τij satisfies the constraints

D(0)iτ
i
j = 0, τ ii =

c

24π
R[g(0)],

and
c =

12πL

κ23
=

3L

2G3
,

is the Brown-Henneaux central charge.
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Solving the contraints

Any solution of the divergence and trace constraints can be expressed locally in
terms of an auxiliary scalar field ϕp as

τij =
2

q2
e

q
2
ϕp

(
D(0)iD(0)j −

1

2
g(0)ij�(0)

)
e−

q
2
ϕp +

1

2q2
R[g(0)]g(0)ij

where 1/q2 = c/24π and ϕp satisfies the Liouville equation

q�(0)ϕp − peqϕp = R[g(0)],

with some value of the parameter p.

Since both the running and constant dilaton solutions in 2D solve all equations of
motion, including the constraints, their uplift to 3D should automatically solve the
divergence and trace constraints, and hence provide a solution to the Liouville
equation.

This solution helps identify the subspace of 3D gravity phase space that is
relevant for 2D dilaton gravity. The subspace corresponding to running dilaton
solutions is different from that of constant dilaton solutions.
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KK ansatz

To make contact with the solutions of the EMD theory in two dimensions we
parameterize the AdS3 coordinates as xi = {u, t, z}, where xa = {u, t} cover the
AdS2 subspace and z is periodically identified as z ∼ z +Rz with period Rz .

Using the Kaluza-Klein ansatz [Strominger ’98; Castro, Song ’14]

ds23 = e−2ψ (dz +Aadx
a)2 + gabdx

adxb = du2 + γttdt
2 + e−2ψ (dz +Atdt)

2 ,

leads to the following relations between the metric in three dimensions and the
various fields of the EMD theory in two dimensions:

γ
(3)
tt = γtt + e−2ψA2

t , γ
(3)
tz = e−2ψAt, γ

(3)
zz = e−2ψ .

Moreover, the gravitational constants in two and three dimensions are related as

κ23 = Rzκ
2
2.
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3D uplift of running dilaton solutions

The boundary metric is

g(0)zz = β2 6= 0, g(0)zt = β2µ, g(0)tt = −(α2 − β2µ2)

while the stress tensor is given by

Rzτzz = βOψ

Rzτzt = βµOψ +
α2

β
J t

Rzτtt = −
α2

β
T + βµ2Oψ +

2α2µ

β
J t

The Ricci curvature of the boundary metric is

R[g(0)] = 2

(
β′′

α2β
−
α′β′

α3β

)
which exactly matches the conformal anomaly of the 2D running dilaton theory.
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Liouville solution

The corresponding solution of the Liouville equation has p = 0 and takes the form

ϕ0(t, z) = c0z + h(t), h′(t) = c0µ+ c1
α

β
−

2β′

qβ

where

m =
κ22Rz

2L
(c20 + c21), Q =

κ22Rz

2
c0c1

From the 3D point of view, these integration constants parameterize the mass and
angular momentum of the BTZ black hole.

Integrating the conformal anomaly of the 2D CFT gives the Polyakov action
ˆ
d2x
√
−g(0)R[g(0)]

1

�(0)

R[g(0)]

which upon KK reduction reproduces the Schwarzian derivative effective action.
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3D uplift of constant dilaton solutions

The boundary metric and stress tensor in this case are

g(0)zz = 0, g(0)zt = −
√
LQ α̃, g(0)tt = −2

√
LQ α̃µ̃

and

κ23τzz = Q = κ22α̃J t

κ23τzt = Qµ̃ = κ22α̃µ̃J t

κ23τtt = −
2α̃β̃
√
LQ L̃

+Qµ̃2 = κ22α̃

(
α̃
√
QL
Oψ + µ̃2J t

)
The KK reduction circle z is null (at the boundary) in this case and so constant
dilaton solutions of 2D dilaton gravity are obtained from an ( asymptotically) null
reduction of 3D gravity.

This form of the boundary metric and stress tensor match precisely those arising
in the generalized boundary conditions for 3D gravity found in [Compère, Song,
Strominger ’13]. Namely,

α̃ =
1

2
√
LQ

, µ̃ = −P ′(t), Q =
κ23
2π

∆, β̃ = −
L2Qκ23

4π
LCSS(t)
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Liouville solution

The corresponding solution of the Liouville equation again has p = 0 and takes
the form

q ϕ0(t, z) = log ∂+F(x+) + log ∂−G(x−)

where

x+ = 2
√
LQ

ˆ t
dt′α̃(t′), x− = z +

ˆ t
dt′µ̃(t′)

and

∂−G = sech2

(√
Q

L
x−

)
, β̃ =

L2

2
(LQ)3/2 α̃

(
∂+

(
∂2+F
∂+F

)
−

(∂2+F)2

2(∂+F)2

)

with F(x+) arbitrary.

In contrast to the running dilaton phase space, the constant dilaton solutions
contain an arbitrary function, corresponding to the arbitrary VEV of the irrelevant
scalar operator.
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Running dilaton solutions

The PBH transformations that preserve the form of the general running dilaton
solution are parameterized by three arbitrary functions ε(t), σ(t) and ϕ(t), and act
on the sources as

δPBHα = ∂t(εα) + ασ/L, δPBHβ = εβ′ + βσ/L, δPBHµ = ∂t(εµ+ ϕ)

These three functions correspond respectively to time reparameterizations, i.e.
boundary diffeomorphisms, Weyl transformations, and gauge transformations.

The asymptotic symmetries are obtained by imposing

δPBH (sources) = 0

are

ε = ξ1
β

α
, σ/L = −ξ1

β′

α
, ϕ = ξ2 − ξ1

β

α
µ

where ξ1,2 are arbitrary constants. The symmetry algebra is therefore
u(1)⊕ u(1), whose corresponding charges are the mass and the electric charge:

Q1 = −
(
βT −

L

2κ22

β′2

α2

)
=
mL

2κ22
, Q2 = αJ t =

Q

κ22
.
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Constant dilaton solutions with Dirichlet BCs

The PBH transformations of the sources for the constant dilaton solution are

δPBHα̃ = ∂t(εα̃)+α̃σ/L̃+O(ν̃), δPBHν̃ = εν̃′+ν̃σ/L̃, δPBHµ̃ = ∂t(εµ̃+ϕ).

Setting the source ν̃ of the irrelevant scalar operator to zero and demanding that
δPBH (sources) = 0 in this case gives

ε(t) =
ζ

2
√
LQα̃

, σ(t) = −
L̃

2
√
LQα̃

ζ′, ϕ = −
ζ

2
√
LQα̃

µ̃+ ξ2,

where ζ(t) is an arbitrary function, ξ2 an arbitrary constant.

The symmetry algebra of boundary conformal Killing vectors in this case is
Witt⊕ u(1), where the Witt algebra is the classical Virasoro algebra, i.e. with
zero central charge.
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However, the scalar operator Oψ transforms anomalously:

δζOψ = ζ∂+Oψ + 2(∂+ζ)Oψ −
2L(LQ)3/2

κ22
∂3+ζ

which breaks the Witt algebra to the global sl(2,R).

The conserved charges are given by

Q[ε] = α̃T ε(t) = 0, Q = α̃J t =
Q

κ22
=
mL

2κ22

and so the conformal algebra is realized trivially on the 1D boundary.
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Constant dilaton solutions with CSS BCs

Compère-Song-Strominger boundary conditions correspond to keeping Q fixed
instead of µ̃ and arise from the variation

δS′ren = δ
(
Sren +

ˆ
dt α̃J tµ̃

)
=

ˆ
dt(T δα̃− α̃Oψδν̃ + µ̃δ(α̃J t))

Since Q transforms trivially under PBH transformations, this allows for an
additional arbitrary function that preserves the boundary condition, namely

ε(t) =
ζ(t)

2
√
LQα̃

, σ(t) = −
L̃

2
√
LQα̃

ζ′(t), ϕ(t)

The symmetry algebra in this case is Witt⊕ û0(1), but the conserved charges
are realized trivially:

Q[ε] = α̃T ε(t) = 0

while there is no conserved charge associated with the Kac-Moody symmetry.
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Symmetry algebras from 3D

The conserved charges and the corresponding asymptotic symmetry algebras are
realized non-trivially on the phase space of 3D gravity solutions.

To obtain these one needs to consider 3D PBH transformations, which involve
derivatives along the circle direction.

Although the phase spaces are isomorphic, the extra coordinate leads to
non-trivial conserved charges.

The resulting symmetry algebras are as follows:
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Running dilaton solutions with Dirichlet boundary conditions:

Two copies of the Virasoro algebra with the Brown-Henneaux central charge. Only
L±0 are realized non-trivially on the phase space of 2D dilaton gravity solutions,
corresponding to the mass and electric charge.

Constant dilaton solutions with Dirichlet boundary conditions:

Two copies of the Virasoro algebra with the Brown-Henneaux central charge. One
copy of the Virasoro is realized non-trivially on the phase space of 2D dilaton
gravity solutions, while from the other copy only L−0 is non-trivial, corresponding to
the extremal mass and electric charge.

Constant dilaton solutions with CSS boundary conditions:

One Virasoro with the Brown-Henneaux central charge and one ŝl(2,R)k
Kac-Moody algebra at level k = −4∆. The full Virasoro and a û(1)k subalgebra of
ŝl(2,R)k are realized non-trivially on the phase space of 2D dilaton solutions.
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Summary and Conclusions

The equations of motion of 2D Einstein-Maxwell-Dilaton theories can be solved
analytically in full generality.

We obtained the most general solutions for the model corresponding to a circle
reduction of pure 3D gravity and we provided a one-parameter family of consistent
KK ansätze that allows us to uplift any solution of this 2D theory to a family of
solutions of the 4D STU model.

The resulting 4D solutions include extremal and non-extremal 4D black holes that
are asymptotically (conformally) AdS2 × S2.

We constructed the holographic dictionary for both running and constant dilaton
solutions and found that the conformal anomaly plays a central role, leading to
the Schwarzian derivative effective action. Moreover, we derived the boundary
counterterms necessary to consistently describe holographic dictionary.

The symmetry algebras are realized trivially on the phase space of the 2D
theory, but non-trivially on their 3D uplift.
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