F-theory, M5-branes and N=4 SYM with Varying Coupling

Sakura Schäfer-Nameki

COST Conference Milano, February 23, 2017
1610.03663 with Benjamin Assel
1612.05640 with Craig Lawrie, Timo Weigand

Plan

Goal: Understanding the D3-brane sector in F-theory.
I. F-theory in a Flash
\# Geometric progress
\# 8d, 6d, 4d, 2d
II. D3-brane Sector:
\# D3s in F/M5s in M
\# Defect theories
\# New chiral 2d $(0,2)$ Theories

I. F-theory in a Flash

F-theory and Elliptic Fibrations

F-theory on an elliptically fibered Calabi-Yau Y_{6-d}^{τ} results in $N=1$ vacua in $\mathbb{R}^{1,2 d-1}$, with $\tau=C_{0}+i e^{-\phi}$ axio-dilaton and B the spacetime of Type IIB string theory:

$$
\begin{aligned}
\mathbb{E}_{\tau} \rightarrow & Y_{6-d}^{\tau} \\
& \downarrow \\
& B_{5-d}
\end{aligned}
$$

$\Rightarrow \mathbb{E}_{\tau}$ fibers $=$ Tori $\mathbb{C} / \mathbb{Z} \oplus \tau \mathbb{Z}$ with marked point O. There exists a
"zero section" $\sigma_{0}: B \rightarrow \mathbb{E}_{\tau}: b \mapsto O$
\Rightarrow For such fibrations there is a Weierstrass form with $O=[0,1,1]$

$$
y^{2}=x^{3}+f x w^{4}+g w^{6} \quad[w, x, y] \in \mathbb{P}(1,2,3)
$$

Effective Theory from M/F duality

$$
\begin{array}{ccc}
\text { M-theory on } Y_{6-d} & \xrightarrow{\operatorname{Vol}\left(\mathbb{E}_{\tau}\right)=R_{M} R_{A} \rightarrow 0} & \text { F-theory on } Y_{6-d} \\
R_{M} \downarrow & & \downarrow \\
\mathbb{R}^{1, d-2} & \xrightarrow{R_{A} \sim \frac{1}{R_{B}} \rightarrow 0} & \begin{array}{c}
\\
\end{array} \\
& \begin{array}{c}
\\
\text { with Gravity on } \mathbb{R}^{1, d-1}
\end{array}
\end{array}
$$

Gauge bosons and Singular Fibers

Reduce M-theory 3-form along $(1,1)$ forms $\omega^{(1,1)}$ in fiber:

$$
C_{3}=\omega^{(1,1)} \wedge A
$$

Additional $(1,1)$ forms from singularities:

- Elliptic curve is $y^{2}=x^{3}+f x w^{4}+g w^{6}$ singular if

$$
\Delta=4 f^{3}+27 g^{2}=0
$$

Here Δ depends on base:

$$
\Delta(z)=O\left(z^{n}\right) \quad \Leftrightarrow \quad z=0 \text { is surface } S \subset B
$$

- Kodaira fibers from resolutions of singular fibrations
- Physics:

Syncs with 7-branes intuition in IIB, which sources F_{9} and $\tau \sim \log \left(x-x_{0}\right)$ undergoes monodromy $S L_{2} \mathbb{Z}$

F-theory and Singular Fibers: Codim 1

Kodaira classification of singular fibers: Resolution of singularities results in collection of rational curves \mathbb{P}^{1} which intersect in ADE-type Dynkin diagrams:

Affine roots of $\mathfrak{g} \leftrightarrow$ Fibral rational curves
Gauge bosons from $C_{3}=A_{i} \wedge \omega_{i}^{(1,1)}$ and wrapped M2

F-theory and Singular Fibers: Codim 2

Codim 2: Roots can split into weights of matter representation R of \mathfrak{g} : Weights

E.g. $S U(n)$, fundamental weights $L_{i}: \alpha_{i}=L_{i}+\left(-L_{i+1}\right)$.

How exactly this happens: as systematically understood as Kodaira in codim 1

F-theory on elliptic CY

F-theory on an elliptically fibered Calabi-Yau

$$
\mathbb{E}_{\tau} \rightarrow Y_{6-d}^{\tau} \rightarrow B_{5-d}
$$

results in $N=1$ vacua in $\mathbb{R}^{1,2 d-1}$ with the geometric singularities above codim i in the base have the following physical interpretation:

Codim $_{\mathbb{C}}$	\mathbb{P}^{1} s in Fiber	7-brane Gauge Theory
1	Simple roots	Gauge algebra \mathfrak{g}
2	Weights for Reps \mathbf{R}	Matter in \mathbf{R}
3	Splitting gauge invariantly	Cubic interactions
4	Further gauge invariant splitting	Quartic interactions

2n-dimensional F-theory Vacua

Fiber geometry relatively universal. Base B
\# 8d: K3, Geometry highly constrained $B_{1}=\mathbb{P}^{1}$ etc.
\# 6d: Classification of $N=(1,0)$ SCFTs, Geometry of B_{2} constrained (Grassi, Gross)+ Anomalies
\# 4d: $N=1$, MSSM/GUTs, Geometry of B_{3} largely unconstrained and freedom of Fluxes
\# 2d: $N=(0,2)$ gauge theories + gravity, Geometry of B_{4} largely unconstrained, freedom of Fluxes and necessity of D3-branes (tadpole).

II. D3-brane Sector in F-theory

4d $N=4$ SYM with varying τ

F-theory is IIB with varying τ, where there is also a self-duality group $S L_{2} \mathbb{Z}$, which descends upon D3-branes to the Montonen-Olive duality group of $N=4$ SYM.
$4 \mathrm{~d} N=4$ SYM has an $S L_{2} \mathbb{Z}$ duality group acting on the complexified coupling

$$
\tau=\frac{\theta}{2 \pi}+i \frac{4 \pi}{g^{2}}, \quad \tau \rightarrow \frac{a \tau+b}{c \tau+d},
$$

$a d-b c=1$ and integral. Incidentally: the gauge group G maps to the Langlands dual group G^{\vee}.

Usually, we consider τ constant in the 4 d spacetime.
Coming from F-theory, it's very natural to ask whether we can define a version of $N=4$ SYM with varying τ, compatible with the $S L_{2} \mathbb{Z}$ action.
\Rightarrow Network of 3d walls, 2d and 0d duality defects in $N=4$.

Duality Defects

Variation of τ without singular loci are trivial. So the interesting physics will happen along the 4 d space-time where τ is singular.
\Rightarrow around such singular loci, τ will undergo an $S L_{2} \mathbb{Z}$ monodromy.
Usual lore: τ as the complex structure of an elliptic curve \mathbb{E}_{τ}
\Rightarrow Lift to M5-branes
\Rightarrow Setup: elliptic fibration over the 4 d spacetime with $N=4$ SYM in the bulk and duality defects (2d), which can intersect in 0 d .

Key: M5-brane point of view

$\left\{6 \mathrm{~d}(2,0)\right.$ theory on $\left.\mathbb{E}_{\tau} \times \mathbb{R}^{4}\right\}=\left\{N=4\right.$ SYM on \mathbb{R}^{4} with coupling $\left.\tau\right\}$ So the setup that we will study is:
$\{6 \mathrm{~d}(2,0)$ theory on a singular elliptic fibration $\}$
$=\{4 \mathrm{~d} N=4$ SYM with varying τ and duality defects $\}$

Setups:

\# Setup 1:
τ varies over 4d space (with Benjamin Assel)
$\Rightarrow Y_{3}$ elliptic three-fold \subset elliptic CY4
\# Setup 2:
τ varies onver a 2d space: $2 \mathrm{~d}(0, p)$ scfts (with C. Lawrie, T. Weigand)
\Rightarrow D3s on curves in the base of CYn.
In both setups: M5-brane point of view will be instrumental.

The $6 \mathrm{~d}(2,0)$ Theory

\# Lorentz and R-symmetry:

$$
S O(1,5)_{L} \times S p(4)_{R} \subset O S p(6 \mid 4)
$$

\# Tensor multiplet:

$$
\begin{aligned}
\mathcal{B}_{M N}: & (\mathbf{1 5}, \mathbf{1}) \quad \text { with selfduality } \mathcal{H}=d \mathcal{B}=*_{6} \mathcal{H} \\
\Phi^{\widehat{m} \widehat{n}}: & (\mathbf{1}, \mathbf{5}) \\
\rho^{\widehat{m}}: & (\overline{\mathbf{4}}, \mathbf{4})
\end{aligned}
$$

\# Abelian EOMs:

$$
\mathcal{H}^{-}=d \mathcal{H}=0, \quad \partial^{2} \Phi^{\widehat{m} \widehat{n}}=0, \quad \not \partial \rho^{\widehat{m}}=0 .
$$

Setup 1: M5-branes on Elliptic 3-folds

An elliptic fibration $\mathbb{E}_{\tau} \rightarrow Y_{3} \rightarrow B(\mathrm{Y}$ not CY$)$ has metric

$$
d s_{Y}^{2}=\frac{1}{\tau_{2}}\left(\left(d x+\tau_{1} d y\right)^{2}+\tau_{2}^{2} d y^{2}\right)+g_{\mu \nu}^{B} d b^{\mu} d b^{\nu}
$$

Pick a frame e^{a} for the base B and

$$
e^{4}=\frac{1}{\sqrt{\tau_{2}}}\left(d x+\tau_{1} d y\right), \quad e^{5}=\sqrt{\tau_{2}} d y .
$$

Let Y_{3} be a Kähler three-fold, so the holonomy is reduced to $U(3)_{L}$:

$$
\begin{aligned}
S O(6)_{L} & \rightarrow U(3)_{L} \\
\mathbf{4} & \rightarrow \mathbf{3}_{1} \oplus \mathbf{1}_{-3} .
\end{aligned}
$$

On a curve space: Killing spinor equation with ∇_{M} connection

$$
\left(\nabla_{M}-A_{M}^{R}\right) \eta=0
$$

R-symmetry background \Rightarrow constant spinor wrt twisted connection.

M5-branes on Elliptic 3-folds: Twist

\# Standard geometric twist: $U(1)_{L}$ with $U(1)_{R}$

$$
\begin{aligned}
S p(4)_{R} & \rightarrow S U(2)_{R} \times U(1)_{R} \\
\mathbf{4} & \rightarrow \mathbf{2}_{1} \oplus \mathbf{2}_{-1} .
\end{aligned}
$$

\# Topological Twist

$$
T_{U(1)_{\text {twist }}}=\left(T_{U(1)_{L}}-3 T_{U(1)_{R}}\right)
$$

implies that the supercharge decomposes as

$$
\begin{aligned}
S O(6)_{L} \times S p(4)_{R} & \rightarrow S U(3)_{L} \times S U(2)_{R} \times U(1)_{\mathrm{twist}} \times U(1)_{R} \\
(\mathbf{4}, \mathbf{4}) & \rightarrow(\mathbf{3}, \mathbf{2})_{-2,1} \oplus(\mathbf{3}, \mathbf{2})_{4,-1} \oplus(\mathbf{1}, \mathbf{2})_{-6,1} \oplus(\mathbf{1}, \mathbf{2})_{0,-1}
\end{aligned}
$$

$\Rightarrow(\mathbf{1}, \mathbf{2})_{0,-1}$ give two scalar supercharges

Now consider 6d spacetime as $\mathbb{E}_{\tau} \rightarrow Y_{3} \rightarrow B_{2}$ with coordinates x^{0}, \cdots, x^{5}, and $\left(x^{4}, x^{5}\right)$ the directions of the elliptic fiber.
The spin connection along $U(1)_{L}$ is

$$
\Omega^{U(1)_{L}}=-\frac{1}{6}\left(\Omega^{01}+\Omega^{23}+\Omega^{45}\right),
$$

and the twist corresponds to turning on the background gauge field

$$
A^{U(1)_{R}}=-3 \Omega^{U(1)_{L}} .
$$

The base B_{2} is Kähler as well, so the holonomy lies in $U(1)_{\ell} \times S U(2)_{\ell} \subset U(3)_{L}$ with the $U(1)$ generators given by

$$
T_{L}=T_{\ell}+2 T_{45}
$$

Key: $S O(2)_{45}$ rotation is along the fiber, and the non-trivial fibration is characterized through a connection in this $S O(2)_{45}$ direction and the spin connection is

$$
\mathcal{A}_{D}=\omega^{D}=-\frac{\partial_{a} \tau_{1}}{4 \tau_{2}} e^{a}
$$

Duality Twist

This means: from the 4 d point of view the topological twisting requires

$$
\mathcal{A}_{D}=\omega^{D}=-\frac{\partial_{a} \tau_{1}}{4 \tau_{2}} e^{a}
$$

The associated $U(1)$ is in fact what is known as the "bonus symmetry" of abelian $N=4$ SYM [Intrilligator] and we recovered the duality twist of $\mathrm{N}=4$ SYM [Martucci] from the M5-brane theory.
The bonus symmetry exists for the abelian $N=4$ SYM and acts as follows on the supercharges for $a b-c d=1$

$$
\begin{aligned}
& Q^{\dot{m}} \rightarrow e^{-\frac{i}{2} \alpha(\gamma)} Q^{\dot{m}} \quad \text { where } \\
& \tilde{Q}^{m} \rightarrow e^{\frac{i}{2} \alpha(\gamma)} \tilde{Q}^{m} \quad e^{i \alpha(\gamma)}=\frac{c \tau+d}{|c \tau+d|} \\
& \phi^{\widehat{i}} \rightarrow \phi^{\widehat{i}}, \quad \lambda_{+}^{\dot{m}} \rightarrow e^{-\frac{i}{2} \alpha(\gamma)} \lambda_{+}^{\dot{m}}, \lambda_{-}^{m} \rightarrow e^{\frac{i}{2} \alpha(\gamma)} \lambda_{-}^{m} \\
& F_{\mu \nu}^{(\pm)} \rightarrow e^{\mp i \alpha(\gamma)} F_{\mu \nu}^{(\pm)}
\end{aligned} \quad F^{(\pm)} \equiv \sqrt{\tau_{2}}\left(\frac{F \pm \star F}{2}\right) .
$$

Duality Twisted $N=4$ SYM from 6d

6d topological twist + dim reduction to B gives an $N=4$ SYM with varying τ over a Kähler base B

$$
\begin{aligned}
S_{\text {total }}^{U(1)} & =\frac{1}{4 \pi} \int_{B} \tau_{2} F_{2} \wedge \star F_{2}-i \tau_{1} F_{2} \wedge F_{2} \\
& +\frac{8}{\pi} \int_{B} \bar{\partial} \star \psi_{(1,0)}^{\alpha} \chi_{(0,0) \alpha}-\partial \psi_{(1,0)}^{\alpha} \wedge \rho_{(0,2) \alpha}-\partial_{\mathcal{A}} \star \tilde{\psi}_{(0,1)}^{\dot{\alpha}} \tilde{\chi}_{(0,0) \dot{\alpha}}+\bar{\partial}_{\mathcal{A}} \tilde{\psi}_{(0,1)}^{\dot{\alpha}} \wedge \tilde{\rho}_{(2,0) \dot{\alpha}} \\
& -\frac{1}{4 \pi} \int_{B} \bar{\partial} \varphi^{\alpha \dot{\alpha}} \wedge \star \partial \varphi_{\alpha \dot{\alpha}}+2 \bar{\partial}_{\mathcal{A}} \sigma_{(2,0)} \wedge \star \partial_{\mathcal{A}} \tilde{\sigma}_{(0,2)}
\end{aligned}
$$

and non-abelian extension (see paper with Ben Assel).
The twisted fields are form fields and sections of the \mathcal{A}_{D} bundle specified by the charges:

	$F_{2}^{(\pm)}$	$\varphi^{\alpha \dot{\alpha}}$	$\sigma_{(2,0)}$	$\tilde{\sigma}_{(0,2)}$	$\chi_{(0,0)}^{\alpha}$	$\tilde{\chi}_{(0,0)}^{\dot{\alpha}}$	$\psi_{(1,0)}^{\alpha}$	$\tilde{\psi}_{(0,1)}^{\dot{\alpha}}$	$\rho_{(0,2)}^{\alpha}$	$\tilde{\rho}_{(2,0)}^{\dot{\alpha}}$
$L_{D}^{q / 2}$	∓ 2	0	-2	2	0	-2	0	2	0	-2

Singular Elliptic Curves and Defects

We can describe the elliptic fibration by \mathbb{E}_{τ} in terms of a Weierstrass model

$$
y^{2}=x^{3}+f x+g
$$

f and g sections $K_{B}^{-2 /-3}$ and the singular loci are

$$
\Delta=4 f^{3}+27 g^{2}=0
$$

Close to a singular locus $z_{2}=0, \tau \sim i \log z_{2}+\cdots$ with a branch-cut in the complex plane z_{2}. For the M5 this is relevant along $\Delta \cap B$:

Gauge theoretic description of walls and defects

Locally we can cut up $B=\cup B_{i}$ and $W_{i j} 3$ d walls between these regions, where τ has a branch-cut.

Define

$$
F_{D}=\tau_{1} F+i \tau_{2} \star F
$$

then the action of $\gamma \in S L_{2} \mathbb{Z}$ monodromy on the gauge field is

$$
\left.\left(F_{D}^{(j)}, F^{(j)}\right)\right|_{W_{i j}}=\left.\gamma\left(F_{D}^{(i)}, F^{(i)}\right)\right|_{W_{i j}}
$$

This maps the gauge part $S_{F}=-\frac{i}{4 \pi} \int_{B} F \wedge F_{D}$ to itself, except for an offset on the 3d wall (see also [Ganor])

$$
S_{W_{i j}}^{\gamma}=-\frac{i}{4 \pi} \int_{W_{i j}}\left(A^{(i)} \wedge F_{D}^{(i)}-A^{(j)} \wedge F_{D}^{(j)}\right)
$$

E.g. $\gamma=T^{k}$ this is a level k CS term.

Chiral Duality Defects

The wall action S^{γ} is neither supersymmetric nor gauge invariant. At the boundary of the wall $\partial W=\mathcal{C}$ this induces chiral dofs: e.g. for the T^{k} wall this is simply a chiral WZW model with $\beta_{i}, i=1, \cdots, k$, with $\star_{2} d \beta_{i}=i d \beta_{i}$ [Witten]

$$
S_{\mathcal{C}}=\sum_{i=1}^{k}-\frac{1}{8 \pi} \int_{\mathcal{C}} \star_{2}\left(d \beta_{i}-A\right) \wedge\left(d \beta_{i}-A\right)-\frac{i}{4 \pi} \int_{\mathcal{C}} \beta_{i} F
$$

Under gauge transformations $A \rightarrow A+d \Lambda, \beta_{i} \rightarrow \beta_{i}+\Lambda$ this generates $\int F \Lambda$ which cancels the anomaly from the 3d wall.

Duality Defects from M5-branes

From the elliptic fibration and M5-brane we can apply this to any γ :

Singular fibers resolve into collections of $S^{2}=\mathbb{P}^{1} \mathrm{~s}$, intersecting in affine ADE Dynkin diagrams.
Each resolution spheres gives rise to an $\omega^{(1,1)}$ form, along which we can expand \mathcal{B}

$$
d \mathcal{B}=\sum_{i=1}^{k-1}\left(\partial_{z} b_{i} d z \wedge \omega_{(1,1)}^{i}+\partial_{\bar{z}} b_{i} d \bar{z} \wedge \omega_{(1,1)}^{i}\right)
$$

Imposing self-duality, and redefining the basis of chiral modes b_{i} with the "section" of the elliptic fibration, identifies these modes with β_{i}.

Point-defects

These chiral $(0,2)$ supersymmetric defects can intersect at points

$$
P_{\alpha \beta}=\left\{z_{\alpha}=z_{\beta}=z=0\right\}=\mathcal{C}_{\alpha} \cap \mathcal{C}_{\beta}=B \cap \Delta_{\alpha} \cap \Delta_{\beta}
$$

Geometrically: Kodaira fiber \mathbb{P}^{1} s become further reducible $\mathbb{P}_{i}^{1} \rightarrow C_{+}+C_{-}$

Duality defects form network and at intersections:

$$
\left(\int_{C^{+}}+\int_{C^{-}}\right) \mathcal{B}=\int_{\mathbb{P}_{i}^{1}} \mathcal{B} \quad \rightarrow \quad \beta_{+}+\beta_{-}=\beta_{i}
$$

Such point-intersections are generic e.g. in CY4.

Example:

D3-branes wrapping B_{2} intersecting discriminant loci in

$$
\Delta_{1} \cap B=\mathcal{C} \leftrightarrow S U(n) \quad \Delta_{2} \cap B=\tilde{\mathcal{C}} \leftrightarrow S U(m)
$$

E.g. fibers are given in terms of simple roots $F_{i}, i=0,1, \cdots, n-1$ and \tilde{F}_{j}, $j=0,1, \cdots, m-1$ and there are chiral modes localized on each curve

$$
\mathcal{C}: \quad \beta_{i}, \quad i=0,1,2,3,4, \quad \tilde{\mathcal{C}}: \quad \tilde{\beta}_{i}, \quad i=0,1,2
$$

The fibers in codim 2 split as, e.g. for $S U(5)$ and $S U(3): C_{i j}^{ \pm} \equiv \pm\left(L_{i}+\tilde{L}_{j}\right)$.

$$
\mathcal{C}:\left\{\begin{array}{l}
F_{0} \rightarrow F_{0}^{\prime}+C_{\tilde{3} 1}^{-} \\
F_{1} \rightarrow F_{1} \\
F_{2} \rightarrow C_{\tilde{2} 2}^{+}+C_{\tilde{2} 3}^{-} \\
F_{3} \rightarrow F_{3} \\
F_{4} \rightarrow C_{\tilde{1} 5}^{-}+C_{\tilde{1} 4}^{+}
\end{array} \quad \tilde{\mathcal{C}}:\left\{\begin{array}{l}
\tilde{F}_{0} \rightarrow \tilde{F}_{0}^{\prime}+C_{\tilde{1} 5}^{-} \\
\tilde{F}_{1} \rightarrow C_{\tilde{1} 4}^{+}+F_{3}+C_{\tilde{2} 3}^{-} \\
\tilde{F}_{2} \rightarrow C_{\tilde{2} 2}^{+}+F_{1}+C_{\tilde{3} 1}^{-}
\end{array}\right.\right.
$$

In codim 3 the $S U(5)$ and $S U(3)$ singularities collide at points $P=\mathcal{C} \cap \tilde{\mathcal{C}}$ in B :

$$
\left.\left(F_{\mathcal{C}} \sum_{i=0}^{4} \beta_{i}\right)\right|_{P}=\left.F_{\mathcal{C}}\left(\beta_{\tilde{3} 5}^{+}+\beta_{\tilde{3} 1}^{-}+\beta_{1}+\beta_{\tilde{2} 2}^{+}+\beta_{\tilde{2} 3}^{-}+\beta_{3}+\beta_{\tilde{1} 5}^{-}+\beta_{\tilde{1} 4}^{+}\right)\right|_{P}
$$

and likewise

$$
\left.\left(F_{\tilde{\mathcal{C}}} \sum_{i=0}^{2} \tilde{\beta}_{i}\right)\right|_{P}=\left.F_{\tilde{\mathcal{C}}}\left(\beta_{\tilde{3} 5}^{+}+\beta_{\tilde{1} 5}^{-}+\beta_{\tilde{1} 4}^{+}+\beta_{3}+\beta_{\tilde{2} 3}^{-}+\beta_{\tilde{2} 2}^{+}+\beta_{1}+\beta_{\tilde{3} 1}^{-}\right)\right|_{P}
$$

Locally, this enhances the flavor symmetry of the 2d chiral models to $S U(n+m)$.

More generally: What happens for $\gamma \in S L_{2} \mathbb{Z}$? Defect theory will be chiral cft, with flavor symmetry dictated by the singular fiber geometry.

Setup 2: New 2d $(0,2)$ Theories

Consider now $N=4$ SYM on $\mathbb{R}^{1,1} \times C$, with τ-varying only over the curve C :

$$
S O(1,4)_{L} \rightarrow S O(1,1)_{L} \times U(1)_{L}
$$

and to preserve supersymmetry, consider $U(1)_{R} \subset S U(4)_{R}$:

$$
\begin{aligned}
S O(4)_{T} \times \underline{U(1)_{R}} & \mathrm{CY}_{3} \text { Duality-Twist: }(0,4) \\
S U(4)_{R} \quad \rightarrow \quad S U(2)_{R} \times \underline{U(1)_{R}} \times S O(2)_{T} & \mathrm{CY}_{4} \text { Duality-Twist: }(0,2) \\
S U(3)_{R} \times \underline{U(1)_{R}} & \mathrm{CY}_{5} \text { Duality-Twist: }(0,2)
\end{aligned}
$$

Geometric embedding corresponds to D3-branes on $C \times \mathbb{R}^{1,1}$ with

$$
C \subset B_{n-1}=\text { Base of the elliptic } C Y_{n}
$$

$C Y_{n}$ Duality-Twist:

$$
T_{C}^{\mathrm{twist}}=\frac{1}{2}\left(T_{C}+T_{R}\right) \quad T_{D}^{\mathrm{twist}}=\frac{1}{2}\left(T_{D}+T_{R}\right) .
$$

Example: $C Y_{4}$-Duality Twist of $N=4$ SYM

$$
\begin{array}{ll}
& S U(2)_{R} \times S O(1,1)_{L} \times U(1)_{C}^{\mathrm{twist}} \times U(1)_{D}^{\mathrm{twist}} \times S O(2)_{T} \times U(1)_{R} \\
A: \quad & \mathbf{1}_{2,0, *, 0,0} \oplus \mathbf{1}_{-2,0, *, 0,0} \oplus \mathbf{1}_{0,1, *, 0,0} \oplus \mathbf{1}_{0,-1, *, 0,0} \\
& =v_{+} \oplus v_{-} \oplus \bar{a} \oplus a \\
\phi: & \mathbf{1}_{0,0,0,2,0} \oplus \mathbf{1}_{0,0,0,-2,0} \oplus \mathbf{2}_{0, \frac{1}{2}, \frac{1}{2}, 0,1} \oplus \mathbf{2}_{0,-\frac{1}{2},-\frac{1}{2}, 0,-1} \\
& =\bar{g} \oplus g \oplus \varphi \oplus \bar{\varphi} \\
\Psi: & \mathbf{2}_{1, \frac{1}{2}, \frac{1}{2}, 1,0} \oplus \mathbf{1}_{1,1,1,-1,1} \oplus \mathbf{1}_{1,0,0,-1,-1} \oplus \mathbf{2}_{-1,-\frac{1}{2}, \frac{1}{2}, 1,0} \oplus \mathbf{1}_{-1,0,1,-1,1} \oplus \mathbf{1}_{-1,-1,0,-1,-1} \\
& =\mu_{+} \oplus \psi_{+} \oplus \gamma_{+} \oplus \rho_{-} \oplus \lambda_{-} \oplus \beta_{-} \\
\widetilde{\Psi}: & \mathbf{2}_{1,-\frac{1}{2},-\frac{1}{2},-1,0} \oplus \mathbf{1}_{1,-1,-1,1,-1} \oplus \mathbf{1}_{1,0,0,1,1} \oplus \mathbf{2}_{-1, \frac{1}{2},-\frac{1}{2},-1,0} \oplus \mathbf{1}_{-1,0,-1,1,-1} \oplus \mathbf{1}_{-1,1,0,1,1} \\
& =\tilde{\mu}_{+} \oplus \tilde{\psi}_{+} \oplus \tilde{\gamma}_{+} \oplus \tilde{\rho}_{-} \oplus \tilde{\lambda}_{-} \oplus \tilde{\beta}_{-}
\end{array}
$$

Geometric identification:

$$
N_{C / B_{3}}:\left(q_{C}^{\mathrm{twist}}, q_{D}^{\mathrm{twist}}\right)=\left(-\frac{1}{2},-\frac{1}{2}\right)
$$

and q_{D} charge give power of $\mathcal{L}_{D}=\left.K_{B}^{-1}\right|_{C}$

Fermions	Bosons	$(0,2)$ Multiplet	Zero-mode Cohomology
μ_{+}	φ	Chiral	$h^{0}\left(C, N_{C / B_{3}}\right)$
$\tilde{\mu}_{+}$	$\bar{\varphi}$	Conjugate Chiral	h^{0}
$\tilde{\psi}_{+}$	a	Chiral	$h^{0}\left(C, K_{C} \otimes \mathcal{L}_{D}\right)=g-1+c_{1}\left(B_{3}\right) \cdot C$
$\tilde{\psi}_{+}$	\bar{a}	Conjugate Chiral	$h^{0}(C)=1$
γ_{+}	g	Chiral	
$\tilde{\gamma}_{+}$	\bar{g}	Conjugate Chiral	$h^{1}(C)=g$
ρ_{-}	-	Fermi	$h^{1}\left(C, N_{C / B_{3}}\right)=h^{0}\left(C, N_{\left.C / B_{3}\right)-c_{1}\left(B_{3}\right) \cdot C}^{\tilde{\rho}_{-}}\right.$
β_{-}	-	Conjugate Fermi	
$\tilde{\beta}_{-}$	-	Fermi	0
λ_{-}	v_{+}	Conjguate Fermi	
$\tilde{\lambda}_{-}$	v_{-}	Vector	

Central Charges

From the $N=4$ with duality twist, the zero modes contribute

$$
\begin{aligned}
& c_{R}=3\left(g+c_{1}\left(B_{3}\right) \cdot C+h^{0}\left(C, N_{C / B_{3}}\right)\right) \\
& c_{L}=3\left(g+h^{0}\left(C, N_{C / B_{3}}\right)\right)+c_{1}\left(B_{3}\right) \cdot C
\end{aligned}
$$

However, this neglets the contributions from the singularities (unless B_{3} is Calabi-Yau itself and the fibration is trivial).

Quick F-theory excursion: singular loci of τ correspond to 7-branes, and additional defect modes are $3-7$ strings.
Direct computation from $6 d(2,0)$ or anomalies, on the elliptic surface $\mathbb{E}_{\tau} \rightarrow C$ times $\mathbb{R}^{1,1}$ (much like in the earlier discussion) yields

$$
\delta c_{L}^{\text {defects }}=8 c_{1}(B) \cdot C .
$$

Discussion of other cases:

\# $C Y_{3}$ Duality twist $N=(0,4)$:

$$
c_{R}=3 C \cdot C N_{c}^{2}+3 c_{1}(B) \cdot C N_{c}+6, \quad c_{L}=3 C \cdot C N_{c}^{2}+6 c_{1}(B) \cdot C N_{c}+6
$$

This is dual to M5-branes on elliptic surfaces in CY three-folds, i.e. MSW-string. Computation of elliptic genera see e.g. [Haghighat, Murthy, Vandoren, Vafa].
\# $C Y_{5}$ Duality twist:

$$
\begin{aligned}
& c_{L}=3\left(g+h^{0}\left(C, N_{C / B_{4}}\right)-1\right)+9 c_{1}\left(B_{4}\right) \cdot C \\
& c_{R}=3\left(g+c_{1}\left(B_{4}\right) \cdot C+h^{0}\left(C, N_{C / B_{4}}\right)-1\right)
\end{aligned}
$$

Application to $2 \mathrm{~d}(0,2)$ vacua from $C Y_{5}$ compactifications of F-theory [SSN, Weigand], [Apruzzi, Hassler, Heckman, Melnikov]. Tadpole cancellation requires D3-branes wrapped on curves in the class

$$
C=\left.\frac{1}{24} c_{4}\left(Y_{5}\right)\right|_{B_{4}}
$$

BPS-equations and Hitchin moduli space

For τ constant, $N=4$ SYM on $C \times \mathbb{R}^{1,1}$ with Vafa-Witten twist, gives rise to a sigma-model into the Hitchin moduli space, which for the abelian case is just flat connections [Bershadsky, Johansen, Sadov, Vafa].

In all duality-twisted theories the BPS equations imply

$$
\mathcal{F}_{\mathcal{A}}=\frac{1}{2}\left(\bar{\partial}_{\mathcal{A}}\left(\sqrt{\tau_{2}} a\right)-\partial_{\mathcal{A}}\left(\sqrt{\tau_{2}} \bar{a}\right)\right)=0
$$

where the internal components of the gauge field a, \bar{a} are

$$
\begin{aligned}
& \sqrt{\tau_{2}} \bar{a} \in \Gamma\left(\Omega^{0,1}\left(C, \mathcal{L}_{D}^{-1}\right)\right) \\
& \sqrt{\tau_{2}} a \in \Gamma\left(\Omega^{0,0}\left(C, K_{C} \otimes \mathcal{L}_{D}\right)\right)
\end{aligned}
$$

In particular, for this abelian setup, the theory is a sigma-model into $U(1)_{D}$-twisted flat connections. \rightarrow duality twisted Hitchin moduli space

Non-abelian Generalizations

We have seen: M5-brane point of view is useful in systematically assessing the contributions from singularities of τ, i.e. 2 d defects.
\# So far this was $N=4$ with $U(1)$ gauge group. To non-abelianize, there is a conceptual problem: bonus $U(1)_{D}$ is only known to exist in abelian $N=4$, so the direct dimensional reduction from 4 d is not really possible.
\# Start instead in 6d and reduce on an elliptic fibration: as shown in [Assel, SSN] this theory can be non-abelianized. E.g. $C \subset K 3^{\tau}$ get non-abelian version of the heterotic string.
\# M2-branes on $C \times \mathbb{R}$ give rise to Super-QM: i.e. twisted version of the Bagger-Lambert-Gustavsson theory on C.

Summary

\# M5 on an elliptic three-fold give rise to $\mathrm{N}=4$ SYM with varying τ, and a network of intersecting duality defects.
\# If τ varies only over a curve, we get $2 \mathrm{~d}(0, p)$ scfts from this, which correspond to $\mathrm{N}=4$ on a curve with varying τ. These correspond to M5-branes on elliptic surfaces. Example: MSW-string in CY3. These 2d ($0, p$) SCFTs have interesting "F-theory" AdS-duals, i.e. varying- τ IIB solutions [Haghigat, Murthy, Vafa, Vandoren] [Couzens, Martelli, SSN, Wong]

$$
A d S_{3} \times S^{3} \times C Y_{3}^{\tau}
$$

Similarly: $A d S_{3}$ solutions for 2d $(0,2)$ theories from CY4 in F-theory.

