Deformations, Moduli Stabilisation and Loop-Corrected Gauge Couplings for Particle Physics on D-Branes

Gabriele Honecker

Cluster of Excellence PRISMA & Institut für Physik, JG|U Mainz

based on arXiv:1702.WXYZ[hep-th] with Isabel Koltermann & Wieland Staessens

The String Theory Universe, Milano, 23 February 2017

Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter PRISMA

Gabriele Honecker

Deformations, Moduli Stabilisation and Loop-Corrected Gauge

Motivation: Moduli Dependences of String Vacua

Standard a priori assumption:

- moduli not stabilised unless fluxes
 - no known particle physics vacua beyond twisted torus

Argue here:

presence of D-branes stabilises (part of the c.s.) moduli

Motivation cont'd: Deformations & 1-Loop Effects

here: IIA string theory with D6-branes; IIB via mirror Kähler \leftrightarrow complex str.

Field theoretic expectation:

- SUSY D6-branes wrap special Lagrangian (sLag) 3-cycles
- deformations either:
 - SUSY via $\langle \zeta_j
 angle \propto$ FI parameter
 - constitute flat directions of $\frac{1}{g^2}$

 $\leftarrow \mathsf{modulus} \mathsf{ stabilised}$

 $\leftarrow \mathsf{stronger}/\mathsf{weaker} \ \mathsf{possible}$

1-loop gauge thresholds:

- can also take negative values
- compete with deformations

... so far only explicitly known for simple backgrounds

Questions:

- how many stabilised moduli?
- can $M_{\rm string} \ll M_{\rm GUT}$ appear?

- Motivation
- D6-brane set-up & moduli
- Description of deformations
- 1-loop results
- Conclusions & Outlook

D6-Brane Set-Up: Type IIA Orientifolds

special Lagrangians:

- needed for SUSY D6-branes
- symplectic geometry & sLags very limited knowledge

see e.g. Joyce '01-03; Morrison, Plesser '15

- need also O6-planes for model building
 - ▶ IIA requires anti-holomorphic involution on CY₃

partial results for hypersurfaces in weighted projective spaces by Palti '09

▶ here:
$$T^6/\Gamma$$
 as background (with $\mathbb{Z}_2 \times \mathbb{Z}_2 \subset \Gamma$)

- advantage:
 - geometry (e.g. metric) well-known
 - CFT tools for vector-like spectrum & effective field theory

disadvantage:

- ▶ not all *singularities* resolvable/deformable ← duality arguments //?
- tiny class of backgrounds with set of CY₃

D6-Brane Set-Up: $T^6/(\Gamma \times \Omega \mathcal{R})$ with $\mathbb{Z}_2 \times \mathbb{Z}_2 \subset \Gamma$

Hodge numbers:

- ▶ singularities at Z₂ × Z₂ fixed loci: e⁽ⁱ⁾ at each C²_(i)/Z⁽ⁱ⁾₂
- ▶ $\mathbb{Z}_2^{(j,k)}$ acts with phase $\eta = \pm 1$ on $\mathbb{Z}_2^{(i)}$ -twisted sector:

without/with discrete torsion

notation: $T^6 = \bigotimes_{i=1}^3 T^2_{(i)}$ $T^4_{(i)} = T^2_{(i)} \times T^2_{(k)}$

▶
$$\eta = +1$$
: 2-cycle per singularity
▶ $\eta = -1$]: 3-cycle instead $e^{(i)} \otimes [1$ -cycle on $T^2_{(i)}]$
▶ suitable for D6-brane model building
▶ $T^6/(\mathbb{Z}_2 \times \mathbb{Z}_2)$ has $(h^{11}, h^{21}) = (3_{\text{bulk}}, 3_{\text{bulk}} + 3 \times 16_{\mathbb{Z}_2})$
▶ can add \mathbb{Z}_3 symmetry for model building:
 $T^6/(\mathbb{Z}_2 \times \mathbb{Z}_6) \simeq (T^2_{(1)} \times T^4_{(1)}/\mathbb{Z}_6)/\mathbb{Z}_2^{(3)}$ has
 $(h^{11}, h^{21}) = (3_{\text{bulk}} + 8_{\mathbb{Z}_3} + 2 \times 4_{\mathbb{Z}_6'}, 1_{\text{bulk}} + [6 + 2 \times 4]_{\mathbb{Z}_2} + [2 + 2]_{\mathbb{Z}_3 + \mathbb{Z}_6})$

Fractional 3-cycles:

unimodular lattice contains

$$\boxed{\Pi^{\mathsf{frac}} = \frac{\Pi^{\mathsf{bulk}} + \sum_{i} \Pi^{\mathbb{Z}_2^{(i)}}}{4}}$$

•
$$\Pi^{\mathbb{Z}_2^{(i)}}$$
 couples to $\leq h^{21}_{\mathbb{Z}_2^{(i)}}$ deformation modul

Deformations & Orientifold Symmetry

General considerations:

 $| \Pi^{\text{frac}} = \frac{\Pi^{\text{bulk}} + \sum_{i} \Pi^{\mathbb{Z}_{2}^{(i)}}}{4} | \text{ couples to (some) twisted moduli}$

- N D6-branes $\rightsquigarrow U(N)$
 - U(1) D-term vanishes $\Leftrightarrow \Pi^{\text{frac}}$ is *sLag*
 - ▶ related twisted moduli stabilised \Leftrightarrow FI term for $\langle \zeta_j \rangle \neq 0$
- ▶ not all couplings generate D-term: e.g. USp(2N) or SO(2N)
 - ▶ no D-term $\Leftrightarrow \Pi^{\text{frac}}$ is *sLag* for any deformation

Orientifold symmetry:

- IIA requires anti-holomorphic involution ${\cal R}$
- ► $(h_+^{11}, h_-^{11}) = (4_{\mathbb{Z}'_6}, 3_{bulk} + 8_{\mathbb{Z}_3} + 4_{\mathbb{Z}'_6})$ one \mathbb{Z}'_6 sector does not have any scalars that could resolve the singularities
- $(h^{21}+1) \Omega \mathcal{R}$ -even + $(h^{21}+1) \Omega \mathcal{R}$ -odd 3-cycles
 - deformation SUSY \Leftrightarrow only $\Omega \mathcal{R}$ -even contribution to $\Pi^{\mathbb{Z}_2^{(i)}}$

Deformations con't: Hypersurface Technique

Blaszczyk, G.H., Koltermann '14-15 & G.H., Koltermann, Staessens '17 • use \mathbb{P}^2_{112} with coord. (x_i, v_i, y_i) to describe $T^2_{(i)}$ $-v_i^2 + F_i(x_i, v_i) \stackrel{!}{=} 0$ $F_i(x_i, v_i) = 4v_i x_i^3 - g_2^{(i)} v_i^3 x_i - g_3^{(i)} v_i^4$ • $g_2^{(i)} = 0$: square torus • $g_2^{(i)} = 0$: hexagonal lattice ▶ take product and impose $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry: $y_i \stackrel{\mathbb{Z}_2}{\rightarrow} -y_i$ $(T^2)^3/(\mathbb{Z}_2 \times \mathbb{Z}_2) \simeq \{-y^2 + F_1F_2F_3 = 0\}$ with $y \equiv y_1y_2y_3$ • deform fixed points $\alpha\beta \in T^4_{(i)} \equiv T^2_{(i)} \times T^2_{(k)}$: $-v^2 + F_1 F_2 F_3 + \sum \sum_{\alpha} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\beta}$

$$F + F_1 F_2 F_3 + \sum_{i \neq j \neq k \neq i} \sum_{\alpha \beta} \varepsilon_{\alpha \beta}^{(\gamma)} F_i \, \delta F_j^{(\gamma)} \, \delta F_k^{(\gamma)} = 0$$

with $\delta F_j^{(\alpha)}(x_j, v_j)$ also polynomials of degree 4

deformation method based on Vafa, Witten '95

Deformations con't: *sLag*s

sLags: probe
$$\operatorname{Re} \int_{\Pi_a} \Omega_3 > 0$$
 and $\operatorname{Im} \int_{\Pi_a} \Omega_3 = 0$

- specify calibration via anti-holomorphic involution $\sigma_{\mathcal{R}}$
- ▶ in general too complicated ~→ concentrate on anti-linear maps

$$\begin{pmatrix} x_i \\ v_i \end{pmatrix} \to A \begin{pmatrix} \overline{x}_i \\ \overline{v}_i \end{pmatrix}, \quad y_i \to e^{i\beta} \overline{v}_i \quad \text{s.t.} \quad \overline{A}A = \mathbf{1}, \quad \sigma_{\mathcal{R}}(F_i(x_i, v_i)) = e^{-2i\beta} F(\overline{x}_i, \overline{v}_i)$$

► two different calibrations β and β + π per given A → integration path Π_a specified by (A_a, β_a)

impose SUSY products of one-cycles @ orbifold point

$\mathbb{Z}_3 \times \Omega \mathcal{R}$ symmetry:

- Z₃: need for hexagonal tori
 & identification of Z₂ × Z₂ deformations ε⁽ⁱ⁾_{αβ} under Z₃
- Ω*R*-invariance: only real deformation parameters

Т	amongion line	Lagrangian lines on hexagonal torus T^2							
Lagrangian lines on square untilted torus T^2						displacement	condition in x	label	picture
(n^i, m^i)	displacement	condition in x	label	picture	±(1,0)	0	$1 \leq x$	PI0	<u></u>
±(1,0)	0	$\epsilon_2 \leq x$	aI			1	$ x-1 ^2 = 3, {\rm Re}(x) \leq -1/2$	ЫП0	E
					$\pm(-1,2)$	0	$x \leq 1$	ьп	Æ
	1 continuous	$\epsilon_4 \leq x \leq \epsilon_3$ $ x - \epsilon_4 ^2 = 2\epsilon_4^2 + \epsilon_2\epsilon_3$	aIII cI			1	$ x-1 ^2 = 3, -1/2 \le {\rm Re}(x)$	bIV ⁰	
					±(0,1)	0	$1 \leq \xi^2 x$	bI~	<u>[:</u>]
				• •		1	$ \xi^2 x - 1 ^2 = 3, \operatorname{Re}(\xi^2 x) \leq -1/2$	ын-	\square
±(0,1)	0	$x \leq \epsilon_4$	aII	•••	$\pm(2, -1)$	0	$\xi^2 x \leq 1$	bII-	\swarrow
						1	$ \xi^2 x - 1 ^2 = 3, -1/2 \leq \operatorname{Re}(\xi^2 x)$	bIV-	A
	1	$\epsilon_3 \leq x \leq \epsilon_2$	aIV		$\pm(1, -1)$	0	$1 \leq \xi x$	bI+	Δ
						1	$ \xi x - 1 ^2 = 3, {\rm Re}(\xi x) \leq -1/2$	bIII+	<u>λ</u> .Υ
	continuous	$ x-\epsilon_2 ^2=2\epsilon_2^2+\epsilon_4\epsilon_3$	cII		±(1,1)	0	$\xi x \le 1$	ыі+	
						1	$ \xi x-1 ^2=3, -1/2 \le {\rm Re}(\xi x)$	\mathbf{bIV}^+	E

G.H., Koltermann, Staessens '17

Gabriele Honecker Deformations, Moduli Stabilisation and Loop-Corrected Gauge

Deformations cont'd: Examples on $\mathbb{Z}_2 \times \mathbb{Z}_6$ Backgrd.

Ecker, G.H., Staessens '14-15

extensive computer scans boil down to prototypes

 $SU(3)_a \times USp(2)_b \times U(1)_Y \times SU(4)_h \times \mathbb{Z}_3 \subset U(3)_a \times USp(2)_b \times U(1)_c \times U(1)_d \times U(4)_h$

$$SU(3)_{a} \times USp(2)_{b} \times USp(2)_{c} \times \begin{cases} \mathbb{Z}_{3} & \mathbf{I} \\ \widetilde{U(1)}_{B-L} & \mathbf{II} \end{cases} \subset U(3)_{a} \times USp(2)_{b} \times USp(2)_{c} \times U(h)^{2} \end{cases}$$

 $SU(4)_a \times USp(2)_b \times USp(2)_c \times \begin{cases} SU(6) & \mathbf{I} \\ SU(2) & \mathbf{II} \end{cases} \subset U(4)_a \times USp(2)_b \times USp(2)_c \times U(h)$

- equivalent @ orbifold point:
 - closed & open string spectrum
 - gauge couplings (tree + 1-loop)

C	ounting	of stabilise	d complex st	complex structure moduli & flat directions with $1/g^2_{D6_{x \in \{a,b,c,d,h\}}}$					dependence		
$\mathbb{Z}_2\times\mathbb{Z}_6$	ρ	$\epsilon_{0,1,2}^{(1)}$	$\varepsilon_3^{(1)}$	$arepsilon^{(1)}_{4+5}$	$\varepsilon_{4-5}^{(1)}$	$\epsilon_{1,2}^{(2)}$	$\epsilon_{3,4}^{(2)}$	ε ⁽³⁾ 1,2	$\varepsilon_{3,4}^{(3)}$	# _{stab}	
MSSM	none		a, c, h		[b, d] _{flat}	<i>c</i> , <i>d</i>	none	a, d, h	none	6	
L-R I	none	h _{1,2}	a, d, h _{1,2}	a, d	[b, c] _{flat}	h _{1,2}	none	a, d	none	9	
L-R II	none	h _{1,2}	a, d, h _{1,2}	a, d	[b, c] _{flat}	[a, b, c, d, h _{1,2}] _{flat}	none	a, d, h _{1,2}	none	7	
L-R IIb	none	h _{1,2}	a, d, h _{1,2}	a, d	[b, c] _{flat}	[a, b, c, d] _{flat}	$[h_{1,2}]_{flat}$	a, d	h _{1,2}	9	
L-R IIc	none		a, d	a, d	$[b, c, h_{1,2}]_{flat}$	h1	h ₂	a, d, h ₁	h ₂	10	
PS I	none		a, h		[b, c] _{flat}	[a, b, c, h] _{flat}	none	a, h	none	4	
PS II	none	h	a, h	а	[b, c] _{flat}	[a, b, c, h] _{flat}	none	a, h	none	7	

Gabriele Honecker

Deformations, Moduli Stabilisation and Loop-Corrected Gauge

Deformations: Flat Direction of MSSM Example

• $USp(2)_b$ and $U(1)_d \subset U(1)_Y$ feel flat direction $arepsilon_{4-5}^{(1)} < 0$

hypercharge slightly weaker

Caveat on 'stabilised' moduli:

- compensation by charged matter vev in D-terms
 - only bifundamentals under $U(N) \times U(N) (cd^{(\prime)})_{MSSM}$
 - only if string derived field theory couplings exist

1-Loop Corrections to Gauge Couplings @ Orbifold Point

Why?

- deformations by twisted moduli change couplings @ tree-level
- untwisted moduli enter 1-loop corrections
 - only known at orbifold point
 - independent of *absolute* choice of $\mathbb{Z}_2 \times \mathbb{Z}_2$ eigenvalues
 - can *in principle* contribute to hierarchy $M_{\rm string} \ll M_{\rm GUT}$

```
G.H., Ripka, Staessens '12
```

Unusual feature here:

net O6-plane charge along one direction on T²₍₁₎

Einstein-Hilbert $\rightsquigarrow \frac{M_{\text{Planck}}^2}{M_{\text{string}}^2} = \frac{4\pi}{g_{\text{string}}^2} v_1 v_2 v_3$ with $v_1 = R_1^{(1)} R_2^{(1)}$ DBI action $\rightsquigarrow \frac{8\pi^2}{g_{SU(3)a/SU(4)_h,\text{tree}}^2} = \frac{\pi}{2\sqrt{6}} \sqrt{\frac{R_1^{(1)}}{R_2^{(1)}}} \frac{M_{\text{Planck}}}{M_{\text{string}}}$ $\sim M_{\text{string}} \ll M_{\text{Planck}}$ can be compensated by $R_2^{(1)} \gg R_1^{(1)}$ \ldots spoilt by 1-loop effects??

1-Loop Corrections

Kähler moduli v_i enter via parallel D6-branes

$$\Lambda_{0,0}(v) \equiv -\frac{1}{4\pi} \ln(\eta(iv)) \stackrel{v \to \infty}{\longrightarrow} \frac{v}{48}$$
$$\Lambda_{\tau,\sigma}(v) \equiv -\frac{1}{4\pi} \ln\left(e^{-\frac{\pi\sigma^2 v}{4}} \frac{|\vartheta_1(\frac{\tau-i\sigma v}{2}, iv)|}{\eta(iv)}\right) \stackrel{v \to \infty}{\longrightarrow} \frac{\left[3(1-\sigma)^2 - 1\right] v}{48} - \delta_{\sigma,0} \frac{\ln[2\sin(\frac{\pi\tau}{2})]}{4\pi}$$

• sign depends on discrete brane data (τ, σ)

▶ sum over sector-by-sector (Annulus + Möbius strip) e.g.

$$\frac{\Delta_{SU(3)_a}^{\mathcal{A}+\mathcal{M},\mathsf{MSSM}}}{2} \xrightarrow{v \gg 1} 2\pi v_1 + \frac{\pi}{3} \left(v_2 + c_{1,1}^{\frac{1}{2}} \left(v_2 - v_3 \right) \right) - \ln\left(\left(\frac{R_1^{(1)}}{R_2^{(1)}} v_1 \right)^6 v_2 \right) - 12$$

$$\frac{\Delta_{SU(4)_{h}}^{\mathcal{A}+\mathcal{M},\text{MSSM}}}{2} \xrightarrow{v \gg 1} 2\pi v_{1} + \frac{\pi}{3} \left(-v_{2} + c_{1,1}^{\frac{1}{2}} \left(v_{2} - v_{3} \right) \right) - \ln \left(\left(\frac{R_{1}}{R_{2}} v_{1} \right)^{6} v_{2}^{-1} \right) - 7$$

▶
$$v_1 \gg 1$$
 disfavoured by $1/g_a^2 \sim \mathcal{O}(1) \rightsquigarrow R_1^{(1)} \ll R_2^{(1)}$

- for $v_2 \gg 1$, $SU(4)_h$ more strongly coupled than $SU(3)_a$
- for $v_1 \approx 1$ and $v_2 = v_3 \lesssim 6$: $M_{\text{string}} \sim M_{\text{GUT}}$, $\Delta_{SU(3)_a}^{\mathcal{A} + \mathcal{M}, \text{MSSM}} < 0$

G.H., Koltermann, Staessens to appear

Conclusions

- ► deformations of T⁶/Γ with Z₂ × Z₂ ⊂ Γ can be described by hypersurface formalism
- identifications & reality conditions of deformation parameters under $\mathbb{Z}_3 \times \Omega \mathcal{R}$
- ▶ **D6-brane** couples $\Omega \mathcal{R}$ -odd \rightsquigarrow stabilisation @ orbifold point
- ► all D6-branes couple (at most) $\Omega \mathcal{R}$ -even \rightsquigarrow flat direction
 - mild change in gauge couplings for small deformation
 - lifts degeneracies of tree-level gauge couplings
 - depends on *absolute* $\mathbb{Z}_2 \times \mathbb{Z}_2$ eigenvalues
- competing effect: 1-loop corrections
 - only computable @ orbifold point
 - depend on *relative* $\mathbb{Z}_2 \times \mathbb{Z}_2$ eigenvalues
 - concrete models disfavour very low M_{string}

Open questions:

- Iow M_{string} disfavoured: generic feature or artefact of concrete model?
- any (fine-tuned) model matching all pheno couplings?
- needed: exact results for low-energy effective field theory
 - @ orbifold point: not even Möbius strip contributions for $\delta \frac{1}{g_a^2}$ fully understood; Yukawas . . .
 - ▶ generic *CY*₃ ???

Appendix

Ex: MSSM on rigid D6-branes on $T^6/(\mathbb{Z}_2 \times \mathbb{Z}_6 \times \Omega \mathcal{R})$

Ecker, G.H., Staessens '15

D6	D6-brane configuration of a global 5-stack MSSM model on the aAA lattice								
	wrapping #	$\frac{\text{Angle}}{\pi}$	$\mathbb{Z}_2^{(i)}$ eigenv.	$(\vec{\tau})$	$(\vec{\sigma})$	gauge gr.			
а	(1,0;1,0;1,0)	(0,0,0)	(+++)	(0, 1, 1)	(0, 1, 1)	U(3)			
b	(1,0;-1,2;1,-2)	$(0,\frac{1}{2},-\frac{1}{2})$	(+)	(0, 1, 0)	(0, 1, 0)	USp(2)			
c	(1,0;-1,2;1,-2)	$(0, \frac{1}{2}, -\frac{1}{2})$	(-+-)	(0, 1, 1)	(0, 1, 1)	U(1)			
<u>d</u>	(1,0;-1,2;1,-2)	$\left(0, \frac{1}{2}, -\frac{1}{2}\right)$	(+)	(0, 0, 1)	(0, 0, 1)	U(1)			
h	(1,0;1,0;1,0)	(0,0,0)	(+)	(0, 1, 1)	(0, 1, 1)	U(4)			

► Green-Schwarz mech.: $\prod_{x \in \{a,c,d,h\}} U(1)_x \rightarrow | U(1)_Y \times \mathbb{Z}_3$

- perturbatively $U(1)^3_{\text{massive}} \supset U(1)_{PQ} = U(1)_c U(1)_d$
- non-pert. only: $SU(3) \times SU(2) \times U(1)_Y \times \mathbb{Z}_3 \times SU(4)_{hidden}$

Ex: MSSM spectrum on $T^6/(\mathbb{Z}_2 \times \mathbb{Z}_6 \times \Omega \mathcal{R})$

Ecker, G.H., Staessens '15

► MSSM matter of
$$(SU(3)_a \times USp(2)_b \times SU(4)_h)_{U(1)_Y}^{(U(1)_{PQ}),\mathbb{Z}_3}$$

$$3 \times \left[(\mathbf{3}, \mathbf{2}, \mathbf{1})_{1/6}^{(0),0} + \underbrace{2 \times (\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1})_{1/3}^{(1),1} + (\mathbf{3}, \mathbf{1}, \mathbf{1})_{-1/3}^{(1),1} + (\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1})_{-2/3}^{(1),1} \right]$$

$$+ 3 \times \big[\underbrace{(\mathbf{1}, \mathbf{2}, \mathbf{1})_{1/2}^{(1), 1} + 2 \times (\mathbf{1}, \mathbf{2}, \mathbf{1})_{-1/2}^{(1), 1}}_{\bullet} + (\mathbf{1}, \mathbf{1}, \mathbf{1})_{0}^{(-2), 1} + (\mathbf{1}, \mathbf{1}, \mathbf{1})_{1}^{(0), 0}\big]$$

$$= 3 \times \left[Q_L + \overbrace{2 \times d_R + \overline{d_R}}^{2} + u_R \right] + 3 \times \left[\overbrace{H_u/\overline{L} + 2 \times L}^{2} + \nu_R + e_R \right]$$

► Higgses:
$$3 \times \left[(1, 2, 1)_{1/2}^{(1),1} + h.c. \right] + \tilde{2} \times \left[(1, 2, 1)_{1/2}^{(-1),2} + h.c. \right]$$

► axions:
$$3 \times [\Sigma^{cd} + \tilde{\Sigma}^{cd}] = 3 \times [(1,1,1)_0^{(-2),1} + h.c.]$$

► SM vector-like states:
$$(5_{Anti_b} + 4_{Adj_c} + 5_{Adj_d}) \times (1, 1, 1)_0^{(0),0} +$$

+ $[2 \times (3, 1, \overline{4})_{1/6}^{(0),1} + (3, 1, 4)_{1/6}^{(0),2} + 2 \times (3_A, 1, 1)_{1/3}^{(0),0} + h.c.]$
+ $[3 \times (1, 1, 1)_1^{(0),0} + (1, 1, 1)_1^{(-2),1} + 2 \times (1, 1, 6_A)_0^{(0),1} + h.c.]$
+ $3 \times (1, 2, 4)_0^{(0),2} + 6 \times (1, 1, \overline{4})_{-1/2}^{(-1),0} + 3 \times (1, 1, \overline{4})_{1/2}^{(-1),0} + 3 \times (1, 1, 4)_{1/2}^{(-1),1}$
Gabriele Monecker Deformations, Moduli Stabilisation and Loop-Corrected Gauge