The $E_{7(7)}$ black hole entropy

Geoffrey Compère
Université Libre de Bruxelles (ULB)

The String Theory Universe - COST MP1210 Conference Milano, February 24th, 2017

Fundamental questions :

- Universality of black hole entropy $\frac{A}{4 G}$?
- Non-extremal entropy counting?

In this talk I will concentrate on the IR sector of string theory : non-extremal black holes in supergravity.

Fundamental questions :

- Universality of black hole entropy $\frac{A}{4 G}$?
- Non-extremal entropy counting?

In this talk I will concentrate on the IR sector of string theory : non-extremal black holes in supergravity.

Practical questions answered in this talk :

- What is the structure of non-extremal black holes in string theory?
- Are there universal relations which are unexplained in the IR?
- What is the structure of the entropy?

Based on

- "Seed for general rotating non-extremal black holes of $\mathcal{N}=8$ supergravity", D.Chow \& G.C., arXiv :1310.1925
- "Dyonic AdS black holes in maximal gauged supergravity", D.Chow \& G.C., arXiv :1311.1204
- "Black holes in $\mathcal{N}=8$ supergravity from $S O(4,4)$ symmetries", D.Chow \& G.C., arXiv :1404.2602
- " $E_{7(7)}$ invariant non-extremal entropy", G.C. \& V. Lekeu, arXiv :1510.03582

Outline

(1) Lightning review of $\mathcal{N}=8$ supergravity
(2) The non-extremal black hole of $\mathcal{N}=8$ supergravity
(3) The $E_{7(7)}$ invariant entropy

Lightning review of of $\mathcal{N}=8$ supergravity

Amazing features

- Unique
- Can be obtained as low energy regime of M-theory on T^{7}
- Maximally supersymmetric
- Admits $E_{7(7)}(\mathbb{R})$ symmetries (U-dualities) Cremmer and Julia (1978), etc
- Perturbative UV cancellations Bern et al. (2009), etc
- Cannot be decoupled from string theory Green, ooguri, Schwarz (2007)
- Contains BPS black holes with known microscopics

Maldacena, Strominger, Witten (1997) .

The STU supergravity subsector

The $4 d$ metric is preserved under U-dualities. Matter fields are shuffled.

> A generic black hole has 56 electromagnetic charges. However, with 5 (appropriate) charges turned on, one can U-dualize to the generic black hole cvetici-Hull, 1996

> A suitable sector of $\mathcal{N}=8$ supergravity is a $\mathcal{N}=2$ supergravity with three vector multiplets known as the STU supergravity cremmer et al '85; Duff et al. '96.

The STU supergravity subsector

The $4 d$ metric is preserved under U-dualities. Matter fields are shuffled.

A generic black hole has 56 electromagnetic charges. However, with 5 (appropriate) charges turned on, one can U-dualize to the generic black hole cvetici-Hul, 1996

A suitable sector of $\mathcal{N}=8$ supergravity is a $\mathcal{N}=2$ supergravity with three vector multiplets known as the STU supergravity Cremmer etal '85; Duff e tal. '96.

The STU supergravity subsector

The $4 d$ metric is preserved under U-dualities. Matter fields are shuffled.

A generic black hole has 56 electromagnetic charges. However, with 5 (appropriate) charges turned on, one can U-dualize to the generic black hole cvetici-Hul, 1996

A suitable sector of $\mathcal{N}=8$ supergravity is a $\mathcal{N}=2$ supergravity with three vector multiplets known as the STU supergravity Cremmer et al '85; Duff e tal. '96.

STU supergravity

In a specific U-duality frame the Lagrangian has the general form Duffetal. '96

$$
\begin{aligned}
\mathcal{L}_{4}= & d^{4} x \sqrt{-g}\left(R-\frac{1}{2} f_{a b}(z) \partial_{\mu} z^{a} \partial^{\mu} z^{b}\right. \\
& \left.-\frac{1}{4} k_{I J}(z) F_{\mu \nu}^{I} F^{J \mu \nu}+\frac{1}{4} h_{I J}(z) \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{I} F_{\rho \sigma}^{J}\right)
\end{aligned}
$$

where

- $z^{a}=x^{a}+\mathrm{i} y^{a}, a=1,2,3$ are three complex scalar fields
- $A^{I}=\left(A^{1}, A^{2}, A^{3}, A^{4}\right)$ are the four $U(1)$ gauge fields.

Triality symmetry : $S L(2, \mathbb{R}) \times S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$ and their \mathbb{Z}_{3} permutations.

From $\mathcal{N}=8$ to $S T U$ supergravity

A little bit of representation theory

The electromagnetic charges are conveniently organized as the charge tensor $\gamma_{a a^{\prime} a^{\prime \prime}}$, with components

$$
\begin{array}{ll}
\left(\gamma_{000}, \gamma_{111}\right)=\left(P^{4},-Q_{4}\right), & \left(\gamma_{100}, \gamma_{011}\right)=\left(Q_{1},-P^{1}\right) \\
\left(\gamma_{010}, \gamma_{101}\right)=\left(Q_{2},-P^{2}\right), & \left(\gamma_{001}, \gamma_{110}\right)=\left(Q_{3},-P^{3}\right)
\end{array}
$$

The charge tensor transforms as

$$
\gamma_{a a^{\prime} a^{\prime \prime}} \mapsto\left(S_{1}\right)_{a}^{b}\left(S_{2}\right)_{a^{\prime}}^{b^{\prime}}\left(S_{3}\right)_{a^{\prime \prime}}{ }^{b^{\prime \prime}} \gamma_{b b^{\prime} b^{\prime \prime}}
$$

under $S L(2, \mathbb{R})^{3}$, where the group elements $S_{i} \in S L(2, \mathbb{R})_{i}$ are

$$
S_{i}=\left(\begin{array}{ll}
a_{i} & b_{i} \\
c_{i} & d_{i}
\end{array}\right) \quad \text { with } a_{i} d_{i}-b_{i} c_{i}=1
$$

in order to define the Quartic Invariant

The quartic invariant is defined as

$$
\begin{aligned}
\Delta= & \frac{1}{16}\left[4\left(Q_{1} Q_{2} Q_{3} Q_{4}+P^{1} P^{2} P^{3} P^{4}\right)\right. \\
& \left.+2 \sum_{J<K} Q_{J} Q_{K} P^{J} P^{K}-\sum_{J}\left(Q_{J}\right)^{2}\left(P^{J}\right)^{2}\right]
\end{aligned}
$$

It is a Cayley hyperdeterminant, and is manifestly invariant under $\operatorname{SL}(2, \mathbb{R})^{3}+$ permutations upon rewriting as [Duff, ${ }^{06]}$

$$
\Delta=\frac{1}{32} \epsilon^{i i^{\prime}} \epsilon^{i j^{\prime}} \epsilon^{k k^{\prime}} \epsilon^{l l^{\prime}} \epsilon^{m m^{\prime}} \epsilon^{n n^{\prime}} \gamma_{i j k} \gamma_{i^{\prime} j^{\prime} m} \gamma_{n p k^{\prime}} \gamma_{n^{\prime} p^{\prime} m^{\prime}}
$$

This invariant is a special case of the more general $E_{7(7)}$ quartic invariant $\diamond\left(Q_{I}, P^{I}\right)$ Cartan, 1894 ; Cremmer, Julia, '79.

The non-extremal black hole of $\mathcal{N}=8$ supergravity

1. The general (rotating, charged, non-extremal) single-center black hole of $\mathcal{N}=8$ has been constructed.
2. It unifies the two regular extremal limits (Fast/BPS and Slow/non-BPS)
3. It has some universal thermodynamic properties
4. It has some universal algebraic properties

Expected Thermodynamics

First law and Smarr relation hold

$$
\begin{aligned}
\delta M & =T_{+} \delta S_{+}+\Omega_{+} \delta J+\Phi_{+}^{I} \delta Q_{I}+\Psi_{I}^{+} \delta P^{I}, \\
M & =2 T_{+} S_{+}+2 \Omega_{+} J+\Phi_{+}^{I} Q_{I}+\Psi_{I}^{+} P^{I},
\end{aligned}
$$

Also at the inner horizon, formally,

$$
\begin{aligned}
\delta M & =T_{-} \delta S_{-}+\Omega_{-} \delta J+\Phi_{-}^{I} \delta Q_{I}+\Psi_{I}^{-} \delta P^{I}, \\
M & =2 T_{-} S_{-}+2 \Omega_{-} J+\Phi_{-}^{I} Q_{I}+\Psi_{I}^{-} P^{I} .
\end{aligned}
$$

Warning : $T_{-} S_{-}<0$.

Universal unexplained thermodynamic properties

Product of area law : Cvetič, Gibbons, Pope, 10

$$
\frac{A_{+}}{4} \frac{A_{-}}{4}=4 \pi^{2}\left(J^{2}+\frac{1}{16} \diamond\left(Q_{I}, P^{I}\right)\right) \in \pi^{2} \mathbb{Z}
$$

Angular momentum law :

$$
8 \pi^{2} J=\frac{\Omega_{+}}{T_{+}}\left(\frac{A_{+}}{4}-\frac{A_{-}}{4}\right) \in 4 \pi^{2} \mathbb{Z}
$$

Kinematical relationship :

$$
\frac{\Omega_{+}}{T_{+}}=-\frac{\Omega_{-}}{T_{-}}
$$

Quadratic mass formula

All black holes obey the quadratic mass formula

$$
M^{2}+\left.\frac{1}{4} G_{i j} \partial_{r} z^{i} \partial_{r} z^{j}\right|_{r=\infty}=|Z|^{2}+\left|D_{i} Z\right|^{2}+4 S_{+}^{2}\left(T_{+}^{2}+\frac{\Omega_{+}^{2}}{4 \pi^{2}} .\right)
$$

This generalizes the one given by Gibbons, 1982 .
This relationship follows from the conservation of $\operatorname{Tr}\left(\mathcal{Q}^{2}\right)$ under coset model transformations (where \mathcal{Q} is the charge matrix).

Universal algebraic properties

- Kerr-Neumann admits a Killing-Yano tensor

$$
\nabla_{[a} Y_{b] c}=0, \quad Y_{a b}=-Y_{b a}
$$

\Rightarrow Separability of Dirac equation

- Several classes of black holes with 2 electromagnetic charges admits a Killing-Stäckel tensor

$$
\nabla_{(a} K_{b c)}=0, \quad K_{c b}=K_{b c}
$$

\Rightarrow Separability of massive Klein-Gordon

- Generic black hole admits a conformal Killing-Stäckel tensor

$$
\nabla_{(a} Q_{b c)}=q_{(a} g_{b c)}, \quad Q_{c b}=Q_{b c}
$$

\Rightarrow Separability of massless Klein-Gordon and hidden conformal symmetries Castro, Maloney, Strominger, 2010
[subcases : Chow, '08; Keeler, Larsen, '12]

The Kerr metric (1963)

$$
\begin{aligned}
\mathrm{d} s^{2} & =-\frac{R-U}{W}\left(\mathrm{~d} t+\frac{2 m r U}{a(R-U)} \mathrm{d} \phi\right)^{2}+\frac{W R U}{a^{2}(R-U)} \mathrm{d} \phi^{2} \\
& +\left(\frac{\mathrm{d} r^{2}}{R}+\frac{\mathrm{d} u^{2}}{U}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
W(r, u) & =r^{2}+u^{2}, \\
R(r) & =r^{2}-2 m r+a^{2}, \\
U(u) & =a^{2}-u^{2},
\end{aligned}
$$

and $u=a \cos \theta$ in terms of the standard polar angle θ.
It admits a Killing-Yano tensor.

Generic algebraically special metric

 The non-extremal rotating metric falls into the class :$$
\begin{aligned}
d s^{2}= & -\frac{R-U}{W} \mathrm{~d} t^{2}-\frac{\left(L_{u} R+L_{r} U\right)}{a W} 2 \mathrm{~d} t \mathrm{~d} \phi+\frac{\left(W_{r}^{2} U-W_{u}^{2} R\right)}{a^{2} W} \mathrm{~d} \phi^{2} \\
& +W\left(\frac{\mathrm{~d} r^{2}}{R}+\frac{\mathrm{d} u^{2}}{U}\right),
\end{aligned}
$$

where

$$
W^{2}=(R-U)\left(\frac{W_{r}^{2}}{R}-\frac{W_{u}^{2}}{U}\right)+\frac{\left(L_{u} R+L_{r} U\right)^{2}}{R U},
$$

and

$$
\begin{aligned}
& R=R(r), \quad L_{r}=L_{r}(r), \quad W_{r}=W_{r}(r), \\
& U=U(u), \quad L_{u}=L_{u}(u), \quad W_{u}=W_{u}(u)
\end{aligned}
$$

It admits a conformal Killing-Stäckel tensor.

III. The $E_{7(7)}$ invariant entropy

The extremal $E_{7(7)}(\mathbb{R})$ entropy

There are two branches of regular extremal black holes in $\mathcal{N}=8$ supergravity. Their entropy takes a universal form [Kallosh and Kol, 1996].

Fast rotating/BPS Branch It has $\diamond\left(Q_{I}, P^{I}\right)>0$ and

$$
S_{+}=2 \pi \sqrt{\frac{1}{16} \diamond\left(Q_{I}, P^{I}\right)+J^{2}}
$$

Microscopics : Maldacena, Strominger, Witten, 1997, ...
Slow rotating/non-BPS Branch It has $\diamond\left(Q_{I}, P^{I}\right)<0$ and

$$
S_{+}=2 \pi \sqrt{\frac{1}{16} \diamond\left(Q_{I}, P^{I}\right)-J^{2}}
$$

Microscopics : Emparan, Horowitz, 2006

The non-extremal $E_{7(7)}(\mathbb{R})$ entropy
Using the universal properties, one can prove Cardy's form :

$$
S_{+}=2 \pi\left(\sqrt{\frac{1}{16} \diamond\left(Q_{I}, P^{I}\right)+F}+\sqrt{-J^{2}+F}\right)
$$

Since $S_{+}, J, \diamond\left(Q_{I}, P^{I}\right)$ are $E_{7(7)}(\mathbb{R})$ invariants, then

$$
F=F\left(M, Q_{I}, P^{I}, z_{\infty}^{i}\right)
$$

is invariant as well.
Known special cases:

- For BPS black holes, $F=J=0$.
- In the extremal "fast" rotating limit, $F=J^{2}$.
- In the extremal "slow" rotating limit, $F=-\frac{1}{16} \diamond\left(Q_{I}, P^{I}\right)$
- For Kerr-Newman : $F=M^{4}-M^{2} Q^{2}$.
- In the AdS/CFT regime $Q_{1,2,3} \rightarrow \infty$:
$F=\frac{1}{2} Q_{1} Q_{2} Q_{3}\left(M-M_{B P S}\right)$ cvetic-Larsen (2014)

Rewrite the F invariant

$$
\begin{aligned}
F_{S T U}[\text { solution parameters }] & =F_{S T U}\left[S L(2, \mathbb{R})^{3} \text { invariants }\right] \\
& =F_{\mathcal{N}=8 \text { sugra }}\left[E_{7(7)} \text { invariants }\right]
\end{aligned}
$$

Note : We also rewrote it in terms of invariants of $\mathcal{N}=2$ supergravity with cubic prepotential, which gives a conjecture of the entropy formula for such theories.

Asymptotic scalars of the STU model

The scalar fields parametrize the three coset matrices

$$
\mathcal{M}_{i}=\frac{1}{y_{i}}\left(\begin{array}{cc}
1 & -\chi_{i} \\
-x_{i} & x_{i}^{2}+y_{i}^{2}
\end{array}\right)=\mathcal{M}_{i}^{(0)}+\frac{\mathcal{M}_{i}^{(1)}}{r}+\mathcal{O}\left(\frac{1}{r^{2}}\right)
$$

which are invariant under the $S L(2, \mathbb{R})_{j}$ group with $j \neq i$ but transform under $S L(2, \mathbb{R})_{i}$ as

$$
\mathcal{M}_{i} \mapsto\left(S_{i}^{-1}\right)^{T} \mathcal{M}_{i} S_{i}^{-1}
$$

Here $\mathcal{M}_{i}^{(1)}$ encodes the scalar moduli at infinity while $\mathcal{M}_{i}^{(1)}$ encodes the scalar charges. We define the dressed scalar charge tensor as

$$
R_{i}=\left(\mathcal{M}_{i}^{(0)}\right)^{-1} \mathcal{M}_{i}^{(1)}
$$

which transforms under $S L(2, \mathbb{R})_{i}$ as

$$
R_{i} \mapsto S_{i} R_{i} S_{i}^{-1}
$$

Building $S L(2, \mathbb{R})^{3}$ and triality invariants

We can now form invariants from the following objects :

- charge tensor $\gamma_{a a^{\prime} a^{\prime \prime}} \mapsto\left(S_{1}\right)_{a}{ }^{b}\left(S_{2}\right)_{a^{\prime}}{ }^{b^{\prime}}\left(S_{3}\right)_{a^{\prime \prime}}{ }^{b^{\prime \prime}} \gamma_{b b^{\prime} b^{\prime \prime}}$;
- moduli tensors $\left(\mathcal{M}_{i}^{(0)}\right)^{a b} \mapsto\left(\mathcal{M}_{i}^{(0)}\right)^{c d}\left(S_{i}^{-1}\right)_{c}{ }^{a}\left(S_{i}^{-1}\right)_{d}{ }^{b}$;
- dressed scalar charge tensors $\left(R_{i}\right)_{a}{ }^{b} \mapsto\left(S_{i}\right)_{a}{ }^{c}\left(R_{i}\right)_{c}{ }^{d}\left(S_{i}^{-1}\right)_{d}{ }^{b}$.
- the invariant epsilon tensor $\varepsilon^{a b}$

To build triality invariants, we proceed in two steps.
(1) First, we make $S L(2, \mathbb{R})^{3}$ invariants by contracting all indices, with the constraint that only indices corresponding to the same $S L(2, \mathbb{R})$ can be contracted together.
(2) Second, we implement invariance under permutations of the three $S L(2, \mathbb{R})$ factors by summing the expression with all others obtained by permuting its different $S L(2, \mathbb{R})$ internal indices.

We define the degree as follows : $[M]=[N]=\left[Q_{I}\right]=\left[P^{I}\right]=1$, $\left[\varphi^{a}\right]=0$. Then $[F]=4$. We find the invariants :

- Degree 1:

$$
M, N .
$$

- Degree 2 :

$$
\begin{aligned}
& L_{1}=M_{1}^{a b} M_{2}^{a^{\prime} b^{\prime}} M_{3}^{a^{\prime \prime} b^{\prime \prime}} \gamma_{a a^{\prime} a^{\prime \prime}} \gamma_{b b^{\prime} b^{\prime \prime}}, \\
& L_{2}=\frac{1}{3}\left(\operatorname{Tr} R_{1}^{2}+\operatorname{Tr} R_{2}^{2}+\operatorname{Tr} R_{3}^{2}\right) .
\end{aligned}
$$

- Degree 3 :

$$
\begin{aligned}
& C_{1}=\frac{1}{3} \sum \varepsilon^{a c} R_{1 c}{ }^{b} \varepsilon^{a^{\prime} b^{\prime}} \varepsilon^{a^{\prime \prime} b^{\prime \prime}} \gamma_{a a^{\prime} a^{\prime \prime}} \gamma_{b b^{\prime} b^{\prime \prime}}, \\
& C_{2}=\frac{1}{3} \sum M_{1}^{a c} R_{1 c}^{b} M_{2}^{a^{\prime} b^{\prime}} M_{3}^{a^{\prime \prime} b^{\prime \prime}} \gamma_{a a^{\prime} a^{\prime \prime}} \gamma_{b b^{\prime} b^{\prime \prime}} .
\end{aligned}
$$

- Degree 4 :

$$
\begin{aligned}
\Delta & =\frac{1}{32} \varepsilon^{a c} \varepsilon^{a^{\prime} b^{\prime}} \varepsilon^{a^{\prime \prime} b^{\prime \prime}} \varepsilon^{b d} \varepsilon^{c^{\prime} d^{\prime}} \varepsilon^{c^{\prime \prime} d^{\prime \prime}} \gamma_{a a^{\prime} a^{\prime \prime}} \gamma_{b b^{\prime} b^{\prime \prime}} \gamma_{c c^{\prime} c^{\prime \prime}} \gamma_{d d^{\prime} d^{\prime \prime}}, \\
\Delta_{2} & =\frac{1}{96} \sum M_{1}^{a c} \varepsilon^{a^{\prime} b^{\prime}} \varepsilon^{a^{\prime \prime} b^{\prime \prime}} M_{1}^{b d} \varepsilon^{c^{\prime} d^{\prime}} \varepsilon^{c^{\prime \prime} d^{\prime \prime}} \gamma_{a a^{\prime} a^{\prime \prime}} \gamma_{b b^{\prime} b^{\prime \prime}} \gamma_{c c^{\prime} c^{\prime \prime}} \gamma_{d d^{\prime} d^{\prime \prime}}, \\
\Delta_{3} & =\frac{1}{96}\left(\operatorname{Tr} R_{1}^{4}+\operatorname{Tr} R_{2}^{4}+\operatorname{Tr} R_{3}^{4}\right) .
\end{aligned}
$$

Match with the solution

We know F, the electromagnetic charges and all the final solution in terms of charging parameters and seed parameters.

We can therefore check a relation among them.
Using numerical checks, we find that the F-invariant is

$$
F=M^{4}-\frac{M^{2}}{4} L_{1}+\frac{M}{8} C_{2}+\frac{-\Delta+\Delta_{2}+\Delta_{3}}{2}-\frac{3}{128}\left(L_{2}\right)^{2} .
$$

First found by Sárosi, 2015 using a $S L(6, \mathbb{R})$ embedding

Embed in $E_{7(7)}$

Use the embedding of STU model in $\mathcal{N}=8$ supergravity.
Cremmer et al, 1985, Duff et al, 1995; Cremmer, Julia, Lu, Pope, 1997
Find the corresponding invariants in $\mathcal{N}=8$ supergravity.

The fundamental representation of $e_{7(7)}(\mathbb{R})$

The 56 charges of $\mathcal{N}=8$ supergravity transform in the fundamental representation of $e_{7(7)}$ which consists of a pair of antisymmetric tensors $X \equiv\left(X^{i j}, X_{i j}\right), i, j=1 \ldots 8$ transforming as

$$
\delta X=g X, \quad g \in e_{7(7)}
$$

The algebra $e_{7(7)}$ admits $s u(8)$ as a maximal compact subalgebra. One can change basis to

$$
X_{A B}=\frac{1}{4 \sqrt{2}}\left(X^{i j}+i X_{i j}\right)\left(\Gamma^{i j}\right)_{A B}, \quad A, B=1 \ldots 8
$$

which transforms under $\Lambda_{A}^{C} \in \operatorname{su}(8)$ as

$$
\delta X_{A B}=\Lambda_{A}{ }^{C} X_{C B}+\Lambda_{B}{ }^{C} X_{A C}
$$

Cartan's quartic invariant

The quartic invariant is a quartic form over one fundamental representation

$$
\begin{aligned}
\mathcal{I}_{4}(X)= & X^{i j} X_{j k} X^{k l} X_{l i}-\frac{1}{4}\left(X^{i j} X_{i j}\right)^{2} \\
& +\frac{1}{96} \varepsilon^{i j k l m n p q} X_{i j} X_{k l} X_{m n} X_{p q}+\frac{1}{96} \varepsilon_{i j k l m n p q} X^{i j} X^{k l} X^{m n} X^{p q} .
\end{aligned}
$$

Using the $s u(8)$ basis, we can also build the quartic invariant
$\diamond(X)=\bar{X}^{A B} X_{B C} \bar{X}^{C D} X_{D A}-\frac{1}{4}\left(\bar{X}^{A B} X_{A B}\right)^{2}$

$$
+\frac{1}{96} \varepsilon^{A B C D E F G H} X_{A B} X_{C D} X_{E F} X_{G H}+\frac{1}{96} \varepsilon_{A B C D E F G H} \bar{X}^{A B} \bar{X}^{C D} \bar{X}^{E F} \bar{X}^{G H}
$$

In fact, these invariants are proportional to each other :

$$
\diamond(X)=-\mathcal{I}_{4}(X)
$$

Scalar sector

The 70 scalar fields parametrize the coset matrix

$$
\mathcal{V} \in \frac{E_{7(7)}}{S U(8)}
$$

which transforms under the group $G \in E_{7(7)}$ as

$$
\mathcal{V} \mapsto K \mathcal{V} G^{-1}
$$

where $K \in S U(8)$.
From \mathcal{V}, we define the usual matrix $\mathcal{M}=\mathcal{V}^{T} \mathcal{V}$ which transforms as

$$
\mathcal{M} \mapsto\left(G^{-1}\right)^{T} \mathcal{M} G^{-1}
$$

Scalar sector

Again, from the asymptotic expansion

$$
\mathcal{M}=\mathcal{M}^{(0)}+\frac{\mathcal{M}^{(1)}}{r}+\mathcal{O}\left(\frac{1}{r^{2}}\right)
$$

we define the dressed charge matrix

$$
\mathcal{R}=\left(\mathcal{M}^{(0)}\right)^{-1} \mathcal{M}^{(1)}
$$

that transforms in the adjoint representation of $E_{7(7)}$,

$$
\mathcal{R} \mapsto G \mathcal{R} G^{-1}
$$

Since $E_{7(7)} \in \operatorname{Sp}(56, \mathbb{R})$, we can also use Ω, which has the property

$$
G^{T} \Omega G=\Omega, \quad G \in E_{7(7)}
$$

Additional invariants

We can now construct several additional invariants :
$X^{T} \mathcal{M}^{(0)} X, \quad X^{T} \mathcal{M}^{(0)} \mathcal{R} X, \quad X^{T} \Omega \mathcal{R} X, \quad(\mathcal{V} X)_{A B} \overline{(\mathcal{V} X)}^{B C}(\mathcal{V} X)_{C D} \overline{(\mathcal{V} X)}^{D A}$
where $\overline{(\mathcal{V} X)}^{A B}=\left((\mathcal{V} X)_{A B}\right)^{*}$.
Since \mathcal{R} transforms in the adjoint, all traces

$$
\operatorname{Tr}\left(\mathcal{R}^{k}\right)
$$

are invariant. Mathematicians tell us that the only independent ones are those with

$$
k=2,6,8,10,12,14 \text { and } 18
$$

Note that $k \neq 4$.

Match STU invariants with $E_{7(7)}$ invariants

- Order two :

$$
\begin{aligned}
& L_{1}=X^{T} \mathcal{M}^{(0)} X, \\
& L_{2}=\frac{1}{36} \operatorname{Tr}\left(\mathcal{R}^{2}\right) .
\end{aligned}
$$

- Order three :

$$
\begin{aligned}
& C_{1}=\frac{1}{3} X^{T} \Omega \mathcal{R} X, \\
& C_{2}=\frac{1}{3} X^{T} \mathcal{M}^{(0)} \mathcal{R} X .
\end{aligned}
$$

- Order four :

$$
\begin{aligned}
\Delta: & \frac{1}{16} \diamond(X), \\
\Delta_{2}= & \frac{1}{96}\left(8 T_{4}+6 \mathcal{I}_{4}-\left(X^{T} \mathcal{M}^{(0)} X\right)^{2}\right), \\
0= & 2^{17} 3^{7} 5\left(\Delta_{3}\right)^{2}-2^{8} 3^{3} 5 \Delta_{3}\left(\operatorname{Tr}\left(\mathcal{R}^{2}\right)\right)^{2}-5\left(\operatorname{Tr}\left(\mathcal{R}^{2}\right)\right)^{4} \\
& +2^{5} 3^{2} 11 \operatorname{Tr}\left(\mathcal{R}^{2}\right) \operatorname{Tr}\left(\mathcal{R}^{6}\right)-2^{6} 3^{5} \operatorname{Tr}\left(\mathcal{R}^{8}\right) .
\end{aligned}
$$

We find a non-polynomial expression for Δ_{3},

Match STU invariants with $E_{7(7)}$ invariants

- Order two :

$$
\begin{aligned}
& L_{1}=X^{T} \mathcal{M}^{(0)} X, \\
& L_{2}=\frac{1}{36} \operatorname{Tr}\left(\mathcal{R}^{2}\right) .
\end{aligned}
$$

- Order three :

$$
\begin{aligned}
& C_{1}=\frac{1}{3} X^{T} \Omega \mathcal{R} X, \\
& C_{2}=\frac{1}{3} X^{T} \mathcal{M}^{(0)} \mathcal{R} X .
\end{aligned}
$$

- Order four :

$$
\begin{aligned}
& r: \\
& \Delta= \frac{1}{16} \diamond(X), \\
& \Delta_{2}= \frac{1}{96}\left(8 T_{4}+6 \mathcal{I}_{4}-\left(X^{T} \mathcal{M}^{(0)} X\right)^{2}\right), \\
& 0= 2^{17} 3^{7} 5\left(\Delta_{3}\right)^{2}-2^{8} 3^{3} 5 \Delta_{3}\left(\operatorname{Tr}\left(\mathcal{R}^{2}\right)\right)^{2}-5\left(\operatorname{Tr}\left(\mathcal{R}^{2}\right)\right)^{4} \\
&+2^{5} 3^{2} 11 \operatorname{Tr}\left(\mathcal{R}^{2}\right) \operatorname{Tr}\left(\mathcal{R}^{6}\right)-2^{6} 3^{5} \operatorname{Tr}\left(\mathcal{R}^{8}\right) .
\end{aligned}
$$

We find a non-polynomial expression for Δ_{3},
$\Delta_{3}=\frac{1}{2^{10} 3^{4} 5}\left[5 \operatorname{Tr}\left(\mathcal{R}^{2}\right)^{2}+\sqrt{5} \sqrt{5^{3} \operatorname{Tr}\left(\mathcal{R}^{2}\right)^{4}-2^{8} 3^{3} 11 \operatorname{Tr}\left(\mathcal{R}^{2}\right) \operatorname{Tr}\left(\mathcal{R}^{6}\right)+2^{9} 3^{6} \operatorname{Tr}\left(\mathcal{R}^{8}\right)}\right]$

The answer of F in terms of $E_{7(7)}$ invariants

We have enough invariants to be able to express the missing F function.

The answer is

The answer of F in terms of $E_{7(7)}$ invariants

We have enough invariants to be able to express the missing F function.

The answer is

$$
\begin{aligned}
F= & M^{4}-\frac{M^{2}}{4} X^{T} \mathcal{M}^{(0)} X+\frac{M}{24} X^{T} \mathcal{M}^{(0)} \mathcal{R} X-\frac{1}{16} \diamond(X)+\frac{1}{24} T_{4} \\
& -\frac{1}{192}\left(X^{T} \mathcal{M}^{(0)} X\right)^{2}-\frac{1}{2^{10} 3^{4}} \operatorname{Tr}\left(\mathcal{R}^{2}\right)^{2} \\
& +\frac{5}{2^{11} 3^{4}} \sqrt{\operatorname{Tr}\left(\mathcal{R}^{2}\right)^{4}-\left(2^{8} 3^{3} 5^{-3} 11\right) \operatorname{Tr}\left(\mathcal{R}^{2}\right) \operatorname{Tr}\left(\mathcal{R}^{6}\right)+\left(2^{9} 3^{6} 5^{-3}\right) \operatorname{Tr}\left(\mathcal{R}^{8}\right)}
\end{aligned}
$$

Conclusions

- The general non-extremal stationary solution, including the matter sector, is written in a manageable form.
- Solution admits a conformal Killing tensor, implying separability and hidden conformal symmetries.
- The relations $\frac{\Omega_{+}}{T_{+}}\left(S_{+}-S_{-}\right) \in 4 \pi^{2} \mathbb{Z}$ and $\frac{\Omega_{+}}{T_{+}}=-\frac{\Omega_{-}}{T_{-}}$are universal.
- The non-extremal entropy depends upon another $E_{7(7)}$ invariant, $F\left(M, Q_{I}, P^{I}, z_{\infty}^{i}\right) \geq J^{2}$, as

$$
S_{+}=2 \pi \sqrt{\frac{1}{16} \diamond(X)+F}+2 \pi \sqrt{-J^{2}+F}
$$

