Gaudi History

Gaudi Workshop, 21-23 September 2016
Pere Mato/CERN

Gaudi before called Gaudh

* Back in autumn 1998 first ideas being
layered-down

* Introduced new concepts ‘framework’,
‘architecture’, ‘components’,

+ Most of them still valid...

* About the software development
environment :-)

Software Development Environment

¢ Development platform: NT
+ Design tool: Rational Rose
¢ Coding/debugging: Visual C++ e s et o oo o
¢ Code Management: Visual o) Ssslasl | siacioia) sonel
SourceSafe =

¢ Code repository: \
\alnts1\Packages\LHCDb\

¢ Documentation: ?
¢ Web authoring: Front Page 98 »

TR m——
cgfﬂl

LHCb Offline Application Framework

Status and planning
29 September 1998
P. Mato, CERN

= =

TOb;u

-l’a i
)‘" TObp:] _l TOb;«

First Architecture Review

Major design criteria * November 1998 (almost 18 years
Clear separation between “data” and “algorithms” a go')
¢ Three basic types of data:
— event data (data obtained from the particle collisions)
~ detector data (structure, geometry, calibration, alignment, iz Use Cases
environmental parameters,..)
statistical data: (histograns, ... + Name, logo, initial development team,
Clear separation between “persistent data” and “transient i 3 . :
data”. desi gn criteria, architecture, etc.
~ Isolation of user’ s code.
~ Different/incompatible optimization criteria. < Inltlal implementations
~ Transient as a bridge between various representations.

20%16 LHO® Computing 5

Architecture: Objecf Diagr'am

Major design criteria (2)

Data centered architectural style.
— Algorithms as data producers and consumers.

¢ User code encapsulated in few specific places:
~ “Algorithms”: Physics code
~ “Converters™: Converting data objects into other reprentations
¢ All components with well defined “interfaces” and as
“generic” as possible.

¢ Re-use components where possible
Integration technology standards

Development Strategy

Followed strategy

¢ Start with small design team of 6-8 people
— architect, librarian, domain specialists with design/programming experience

Collect User Requirements and use-cases

o

¢ Establish basic criteria for the overall design

¢ Make technology choices for implementation of initial prototypes
S

Incremental approach to development.
— Release every ~4 months.

~ Releases accompanied by complete documentation :

— Development cycle driven by the users: priorities, feedback, ete Pr, 0 J e CT H l s.l. 0 r.y
+ Strategic decisions after thorough design review (~1/y

+ Sep ‘98 - architect appointed, design team (6 people) constituted

— o Nov 25 ‘98 - external architecture review

— objectives, architecture design document, URD, scenarios
% ¢ Feb 8 ‘99 - first GAUDI release

— first software week, presentations, tutorials

— plan second release (together with users)

~ expand GAUDI team
{m] ¢ May 30 ‘99 - second GAUDI release

~ second software week, plan third release with users, expand team.
m ¢ Nov 23 ‘99 - third GAUDI release and software week

~ plan deployment for production applications
CE/RW ¢ Spring ‘00 - second external review

N4 !

Ready for the LHCDb Migration

* 1 year later the the framework had
sufficient functionality to start the

Strategy for Migrating the LHCb

migration of the LHCDb software Software o the GAUDI Framework
+ Use the same framework for ALL R m
0 . g 2 7th October 1999
applications (simu, reco, ana, trigger)
Planning
‘Possi ble strategies Portran —
1998 1999 2000
Qr3 | Qrs | Qw1 [Qr2 Qw3 [Qrs [Qr1 [Qw2 | Qw3 | Q4 S e e _
Architecture Design - : N - ?
Gaudi Development v1 — i
Gaudi Development v2 . ‘ [Fort trensiotion of
Gaudi Development v3 § S B e "\ ARG, |
Framework Functional 4 - ool "
Analysis Sicb - .
Transition phase — | s) Wrapging Fartron
Production program ¢ 3 Condl
Hybrid phase : : I
Migration completed q T:g e .

CE/RW
\
72

\

@

ATLAS interested in Gaud

* February 2000, first presentation /discussion with ATLAS

* ATLAS decided to join etforts after some negotiations
+ ATLAS will call the framework “Athena”

+ Incorporation of specific services like “StoreGate”

Possible Collaboration

¢ Scope
~ Common foundation libraries
~ Common interface model
~ Common frameworks (interfaces + basic services)
~ Different Event Model and Algorithms
~ Different Applications

¢ Benefits
~ Better design

~ Sharing development of basic infrastructure services
(higher quality)

— CERNI/IT efforts better focussed (single request may
fulfill more than one experiment) (AIDA project)

— Better communication (same vocabulary)

Possible Collaboration (2)

[=

o =

+—
sl 322
2 £ 2|5
= g E 2
- S B <
o
Frameworks
Toolkits

Foundation Libraries

¢ Disadvantages
— Less freedom

— Needs more formality (change procedures, upgrades, etc.)

— It may fail

¢ Practical aspects
— Regular meetings, workshops, ...
— Mailing lists and other collaborating tools
~ Common code repository ?

+ December 2000: ATLAS Architecture Review

N4

Major Additions/Evolutions

Data Defintion (GOD) - Dec 2001

Object Description / Introspection
C++
h
XML 7
7
Parser Cnv
4
DTD
—7 { Back Dict
. C End ‘
¢ Object Description Language
(XML) o | GenericCnv
- Single source o
- Programming language neutral IntrospectionSve—Cx-.._ | SeriptingSve
. .. (Python)
¢ Experiment Policies and Rules
¢ Various back-ends

CE/RW
g

N4

Gaudi Sequences - Mar 2005

Event Filtering Requirements

signature
- Different sequences of Algorithms
» Concept of processing path
» Concept of algorithm instances
signature

chain

» Concept of filter

— _ Obeys filtering/enabled protocols (see later)

CE/RW
\
Z

¢ The ability to vary the processing based on the physics

- Different parameters (properties) for Algorithms

¢ The ability o make event selections based ¢

- Not all the events passes through all the trigger

:

Implementation

- Early termination of processing if event fails sele - Subclass of Algorithm

¢ Sequencer Class

- Manages a set of members (other Algorithms or Sequencers).

- Allows hierarchical sequencing.

¢ Filter Handling
- Algorithms can call setFilterPassed(true/false)
» Default is true

- Algorithms downstream of the one that sets it's filter flag to
false will not get executed
» This default behavior can be overridden by the “StopOverride”
property of the Sequencer

Conditions DB - Dec 2003

CE/RW
g

N4

Ask for
Object

Retrieve

pointer

Gaudi Interface to Conditions Db

¢ Emphasis on the data retrieval functionality
¢ One new service was defined : ConditionSvc

¢ Independent from data content, only deals with data
retrieval depending on time, version and/or tag

¢ Fully transparent for the user

Check
presence

1

1

LLL Lvolume

1

Geomet

Ask creation

Ask for data

Retrieve them
from Database

Abstract interface

Condition
Db

10

Onhne Gaudi - June 2004

Online Gaudi
Framework for running the L1/HLT

¢ Goals and Requirements
¢ Tasks

Real Time Trigger Challenge, 16th June 2004
P. Mato / CERN

B

GAUCHO Components

CER”W
\
Z

PVSS

System

DI

......................................

ication Event |
Controller |_selector |
Event Datd | Transient |:
: EEECopia Service | | Event Store|!
i | Message r /
, I

| J obOpyioj ' Service ___ Store J:
' ervice u \ i
S : Other |[i R}
Monitor | Services Histogroml_ Transient ||
Service | : ° ‘ Histogram |i

A
'
' N
'

Algorithm [l . petec. Dat Transient |:
: Detector |

................

Store J!

11

GaudiPython - June 2004

GaudiPython

¢ Enabling the interaction of Gaudi components from Python
- Configuration, Interactivity, etc.

¢ Starting from Gaudi v14rl, GaudiPython has been re-
implemented using PyLCGDict

- (Generated dictionaries for most common Gaudi “Interfaces” and
“Base classes” (~80 classes)

- Not need to generate dictionaries for all classes (in particular the
implementations)
¢ The end-user module “gaudimodule.py” hides some of the
technicalities and adds some handy functionality
- Very easy to extern/modify/adapt since is written in Python
- Basically backward compatible with previous version

CE/RW
g

N4

PyLCGDict: Supported Features

¢ Conversion of C++ and Python primitive types
¢ C++ classes

- Mapped to Python classes and loaded on demand. Templated classes supported.

¢ C++ namespaces

- Mapped to python scopes. The “::" separator is replaced by the python "." separator

¢ Class methods

- Static and non static class methods are supported, Default arguments.

- Method arguments are passed by value or by reference

= The return values are converted into python types and new python classes are

created if required. Dynamic type returned if possible.
- Method overloadi

¢ Class data members
- Public data members are accessible as python properties

works by dispatching sequentially to the available methods with
the same name until a match with the provided arguments is successful.

+ Emulation of python containers

- Container C++ classes (std::vector, std::list, std::map like) are
the python collections to be use in iterations and slicing opera

¢ Operator overloading

given the behavior of
ions.

- Standard C++ operators are mapped to the corresponding python overloading

operators

“ 03/0672004

Python Scripting

12

New PluginMgr - Sept 2006

Using Plugin Manager

¢ Coding the plugin/component | ises ireiaes < pubiie common |
- No predefined model

)] };... MyClass.h
- Declaring factory with
1 PLUGIN_ FACTORY (MyClass, ICommon* (int,ISvc*)) ;
SIQnaTur‘e /* implementation */

o . MyClass.cpp
¢ Creating the rootmap file
- Text file IISTlng all plugins and Library.MyClass: MyLibrary.so
the associated dynamic library [iPzasy-AnothexClass: Mylibrazy.so
- The build system creates it rootmap

¢ Instantiating the plugin [~

- Library loaded if needed | zcommon* myc:
myc = PluginMgr: :create<ICommon*>(“MyClass”,10, svc);
- Strong argument If (myc) {

type checking e

Program.cpp
T R R I Ty

CE/RW
g

N4

Configurables - Sept 2007

Python Configuration

+ Background
- Proposed in Barcelona at collaboration meeting 2 years ago
- What was available from ATLAS at that time was not usable
- What is available from ATLAS is much better .. but it maybe some tuning
is still needed
+ Goals
- Use the power of a powerful and complete language to configure
applications
» Expressions, if-then-else logic, loops, modularization, etc.
- Validate configuration earlier in the process
» Incorrect type, non-existing property, non-existing component, etc.
- Increase user friendly-ness
» Less writing, avoid duplication of information, etc.
- Smooth migration from JobOptions files to Python confguration files
» The adoption/transition should happen when convenient and in steps

CE/RW
\
7z

Configurables

Gaudi/LHCb] genconf

A
' ¥

C++ code

J‘MyPackageConf.py

import

build

Dynamic
Libraries

from Configurationm import *
from MyPackageConf import MyAlgorithm

ApplicatiosMgr(TopAlg = [MyAlgoritha()],
BvtMax = 100)

load

Running 1Gaud iPython

Application J

Gaudi.py

Parallel Gaudi - June 2008

| Parallelization Model

» Introduced a very simple Model for parallel

l processing of tasks

» Common model that can be implemented using
either processing or pp modules (or others)

» The result of processing can be any ‘pickle-able’
Python or C++ object (with a dictionary)

» Placeholder for additional functionality
- Setting up the environment (including servers)
= Monitoring

- Merging results (summing what can be summed or
appending to lists)

Cluster Architecture

..................

! Node Allocation '
. and Reservation |

| S : 4

=,

LocalNode RemoteNode

" Network FS (AFS)

15

Concurrency - Nov 2011

Re-engineering
Frameworks for Concurrency

FNAL, 21-22 November 2011
B. Hegner & P. Mato, CERN

Many Concurrent Events

» Need to deal with the tails of sequential processing
» Introducing Pipeline processing
Never tried before!
- Exclusive access to resources
or non-reentrant algorithms
can be pipelined
= e.g. file writing
» Need to design or use a
powerful and flexible
scheduler

» Need to define the concept of
an “event context”

Framework Services

Scheduling .J

Logging

non-const 4 | Configuration

s
Algorithm e
Random 3
v
[
Geometry <
g
const Material Data Store <)
B-Field Persistency
Services

(") Ay resemblance 1o Gaud s pure concidonce

Concurrent ‘“Task’ processing

» Framework with the ability to schedule modules/algorithms
concurrently

Full data dependency analysis would be required (no global data or hidden -’
dependencies)

Need to resolve the DAGs (Direct Acyclic Graphs) statically and dynamically
» Not much gain expected with today's designed ‘Tasks'
Algorithm decomposition can be influenced by the framework capabilities

» ‘Tasks’ could be processed by different hardware/software
CPU, GPU, threads, process, etc.

Output

RS

16

CERN

2

\

Hive First Results - Nov 2012

Prototype: Gaudillive

*

4

-

-

So far a “toy” Framework implemented using TBB

*+ No real algorithms but CPU crunchers

*+ Timing and data dependencies from real workflows

Schedule an Algorithm when its inputs are available

+ Need to declare Algorithms’ inputs

* The tbb:task is the pair (Algorithm®, EventContext*)
Multiple events managed simultaneously

+ Bigger probability to schedule an Algorithm
+ Whiteboard integrated in the Data Store
+ Which has been made thread safe

Several copies of the same algorithm can coexist

+ Running on different events

+ Responsibility of AlgoPool to manage the copies
Some services have been made thread-safe

+ E.g. TBBMessageService

N/

i

EventLoopMgr

5

Scheduler

m]

GaudiHive Speedup (Brunel, 100 evts)

20 iore)|
—

; S e
2 s

5 w3 jetone)
——)

-] prere)

-) jehore)
——

0 5 10 % 20 25
Theoad Pool Soe

Test system with 12 physical cores x 2
hardware threads (HT)

Test On Brunel Workf{low

+ 214 Algorithms, real data
dependencies, (average) real
timing
+ Maximum speedup depends

strongly on the workflow
chosen

* Adding more simultaneous
events moves the maximum
concurrency from 3 to 4 with
single Algorithm instances

* Increased parallelism when
cloning algorithms

+ Even with a moderate number
of events in flight

17

Mini-Brunel - May 2015

Current Status

* Real algorithms running on real data
- January 2013 software stack, 2011 collision raw data

* Tested with various scenarios

~ Different number of events in flight

- Several algorithms in parallel

» Assumption: no change of detector conditions during run

CER”W
\
Z

Scaling on One Processor

MiniBrunel 10k evis et xs s12sm 013

{ Proliminary. 2 sockets * 8 cores * 2 HT, SLCA, mo malioc, T socket . . .
2., S S I 1,5,10 Event in Flight
B —— 12 algorithms simultancously
g f [Smdbws Clone 3 most time consuming
ol 5 (cloning) | algs (1 copy per event in flight)
| & 10 (cloning) i
' SI
Y s 3is Linear scaling up to 6 algos
% %0 ' simultaneously (number of real
6/ § cores)
10 events in flight already
4l ? enough for peak performance*
' * . x4 i i I Speedup of ~7x reached
P % ! (thanks to HT)
& | Successful test of “one job
.......... sl b oo persocket” deployment
0 2 4 8 - 0 a2 Por oS pioym
#aif scenario.
* See backup for a complete study

18

To be continued...

Main Messages

* The original design criteria still very valid

+ Data vs. Algorithms, different data representations, interfaces vs.
implementations, types of data, etc.

* The original development strategy still valid

+ Use cases, architectural design, divide the work into components, etc.

* Re-use existing libraries for implementations, release often, etc.

* Simple architecture with very simple design

+ Very few concepts that translates into few classes (components) have enabled
us to add continuously new functionality that was not foreseen from the
beginning (resilient design)

* Keep it simple (and as stupid as possible)
+ Hide complexity from ‘physicists’
Not everybody masters all techniques (C++++, MT, etc.)

cErn)
\ 20

N4

