
Gaudi History
Gaudi Workshop, 21-23 September 2016
Pere Mato/CERN

Gaudi before called Gaudi
✤ Back in autumn 1998 first ideas being

layered-down
✤ Introduced new concepts ‘framework’,

‘architecture’, ‘components’, …
✤ Most of them still valid…

✤ About the software development
environment :-)

2

First Architecture Review
✤ November 1998 (almost 18 years

ago!)
✤ Use Cases
✤ Name, logo, initial development team,

design criteria, architecture, etc.
✤ Initial implementations

3

Development Strategy

4

Ready for the LHCb Migration
✤ 1 year later the the framework had

sufficient functionality to start the
migration of the LHCb software

✤ Use the same framework for ALL
applications (simu, reco, ana, trigger)

5

ATLAS interested in Gaudi
✤ February 2000, first presentation/discussion with ATLAS
✤ ATLAS decided to join efforts after some negotiations

✤ ATLAS will call the framework “Athena”
✤ Incorporation of specific services like “StoreGate”
✤  
 
 
 
 
 
 
 
 

✤ December 2000: ATLAS Architecture Review
6

Major Additions/Evolutions

7

Data Definition (GOD) - Dec 2001

8

Gaudi Sequences - Mar 2003

9

Conditions DB - Dec 2003

10

Online Gaudi - June 2004

11

GaudiPython - June 2004

12

New PluginMgr - Sept 2006

13

Configurables - Sept 2007

14

Parallel Gaudi - June 2008

15

Concurrency - Nov 2011

16

Hive First Results - Nov 2012

17

Mini-Brunel - May 2013

18

To be continued…

19

Main Messages
✤ The original design criteria still very valid

✤ Data vs. Algorithms, different data representations, interfaces vs.
implementations, types of data, etc.

✤ The original development strategy still valid
✤ Use cases, architectural design, divide the work into components, etc.
✤ Re-use existing libraries for implementations, release often, etc.

✤ Simple architecture with very simple design
✤ Very few concepts that translates into few classes (components) have enabled

us to add continuously new functionality that was not foreseen from the
beginning (resilient design)

✤ Keep it simple (and as stupid as possible)
✤ Hide complexity from ‘physicists’
✤ Not everybody masters all techniques (C++++, MT, etc.)

20

