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Gaudi before called Gaudi
✤ Back in autumn 1998 first ideas being 

layered-down
✤ Introduced new concepts ‘framework’, 

‘architecture’, ‘components’, …
✤ Most of them still valid…

✤ About the software development 
environment :-)
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First Architecture Review
✤ November 1998  (almost 18 years 

ago!)
✤ Use Cases
✤ Name, logo, initial development team, 

design criteria, architecture, etc. 
✤ Initial implementations 
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Development Strategy
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Ready for the LHCb Migration
✤ 1 year later the the framework had 

sufficient functionality to start the 
migration of the LHCb software

✤ Use the same framework for ALL 
applications (simu, reco, ana, trigger)  
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ATLAS interested in Gaudi
✤ February 2000, first presentation/discussion with ATLAS
✤ ATLAS decided to join efforts after some negotiations 

✤ ATLAS will call the framework “Athena”
✤ Incorporation of specific services like “StoreGate” 
✤  
 
 
 
 
 
 
 
 

✤ December 2000: ATLAS Architecture Review
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Major Additions/Evolutions
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Data Definition (GOD) - Dec 2001
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Gaudi Sequences - Mar 2003
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Conditions DB - Dec 2003
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Online Gaudi - June 2004

11



GaudiPython - June 2004
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New PluginMgr - Sept 2006
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Configurables - Sept 2007
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Parallel Gaudi - June 2008 
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Concurrency - Nov 2011
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Hive First Results - Nov 2012
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Mini-Brunel - May 2013
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To be continued…
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Main Messages
✤ The original design criteria still very valid

✤ Data vs. Algorithms,  different data representations, interfaces vs. 
implementations, types of data, etc. 

✤ The original development strategy still valid
✤ Use cases, architectural design, divide the work into components, etc.
✤ Re-use existing libraries for implementations, release often, etc.   

✤ Simple architecture with very simple design
✤ Very few concepts that translates into few classes (components) have enabled 

us to add continuously new functionality that was not foreseen from the 
beginning (resilient design)

✤ Keep it simple (and as stupid as possible)
✤ Hide complexity from ‘physicists’
✤ Not everybody masters all techniques (C++++, MT, etc.)
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