
Usage and Requirements
for Gaudi in ATLAS

Graeme Stewart

with much input from the ATLAS software community

Gaudi Workshop
September 21 2016

1

In the beginning…
• We started work serious for a multi-threading future by

• Beginning prototyping work in Athena, using the Gaudi
Hive demonstrator

• see, e.g., Charles’ talk at the concurrency forum 2
years ago

• Establishing a study group to see what our future
framework requirements really were

• Report dates from December 2014 and is now
approved as a public note

• I assume that by now most people here are quite familiar
with that work

• Here I will briefly run through the main use cases we have
and functional and technical requirements that arise from
that

2

http://indico.cern.ch/event/289682/contributions/664264/attachments/540907/745654/AtlasHive_ConcurrencyForum_2014.pdf
https://cds.cern.ch/record/2196967?ln=en

Reconstruction
• Mainline reconstruction is the classical use case that Gaudi addresses
• In the multi-threaded version we certainly anticipate taking advantage of the

key points of the new framework
• Multiple events in flight
• Parallelisation of independent algorithms

• This will probably open up enough parallelism to get us to ATLAS Run 3
conditions

• Without any more that basic thread safety for many algorithms (so that
should always be supported)

• Beyond that we would want to take more advantage of parallelism inside an
algorithm

• Mainly tracking, where CPU time/event is likely to be high
• Continuing to throw events into flight will exhaust our memory at some

point
• We should start prototyping this, bearing in mind the ATLAS pattern

would usually be to parallelise at the tool level

3

Event Data and Condition Data
• Evidently a hot topic
• We view conditions data as just another piece of data

• It has a scope, which is usually greater than a single event
• So it’s inefficient to store it directly as event data

• While most of our conditions change in step (e.g. at LB boundaries), there are others which are time-indexed and change
more frequently (can have hundreds of changes in a 1K event reco job)

• We are not at all convinced that trying to “bunch” conditions into groups makes that much sense — it looks like quite a
restriction

• Doesn’t fit all use cases (or experiments?)
• Consequently our prototyping has been concerned with trying to handle this data re-using as much of the current infrastructure

as possible
• Data dependency for event processing algorithms and data handles for access
• Retrieve data from underlying source with a service
• Process (calibrate) the data with an algorithm
• Orchestrate all of this using the scheduler

• At the moment we don’t see any compelling reason to have fundamentally different components handling conditions data
4

ATLAS Conditions in Practice
• Some parts of our workflows turn out to have none or relatively few changes in conditions data

• Most simulation and digitisation
• However, data reconstruction jobs need to access DCS data that may change frequently (e.g., 700 callbacks in a 1400 event job)

• This is true even of our stable beams physics_main stream (99% of Tier-0 jobs have a conditions boundary with at least one piece of
DCS data updated; even alignment can change in the muon system)

• In other areas we change conditions even more dramatically
• Processing skimmed streams (e.g., DRAW_ZMUMU)
• Detector calibration streams
• Data overlay (more on this later)

• Additionally, conditions come in all shapes and sizes — from simple floats to detector geometry
• We may discuss detector geometry more, e.g., Vakho’s prototype dealing with geometry and alignment efficiently

• Alignment objects overlayed onto base geometry
• No convincing case for adding barriers to handle conditions and it looks quite dangerous to some workflows that are important and

significant
• Should settle interfaces that can handle various approaches

• Allow for different prototypes testing real workflows

5

https://indico.cern.ch/event/508341/contributions/2182256/attachments/1285039/1910868/AlignmentsInMT.pdf

Re-Reconstruction
• This is an important use case for reconstruction and analysis

• We want to read event data, generate a modified version of it
• Can be recalculation of some values or decoration/augmentation

• Persistify new versions
• This is also a critical use case for framework development

• Not all components will be ready for multi-threading at the same time,
so it should be possible to test one domain independently of others

• e.g., testing an egamma algorithm running in parallel from already
reconstructed tracks and calorimeter data

6

Simulation and Digitisation
• Simulation use case does not look hard for Gaudi

• We have a well advanced multi-threaded simulation version of Athena
• Uses one event per thread (a la Geant4.10)
• This seems to suffice for utilising all cores, even on many core devices (low base memory footprint)

• Conditions are fixed for a whole job
• Digitisation is less trivial

• At least as ATLAS does it today, where background events are mixed at digitisation time
• Requires many events to be loaded at once — done for now with many StoreGate instances
• Large i/o demands on machine
• Future tradeoff would be to use freed up memory from multi-threading to hold background events longer

• However, we want a large sample of background events, picked in an unbiased way
• Background event might wait a long time to be reused

7

Data Overlay
• ATLAS uses a data overlay technique to build simulated events with a higher fidelity than is

possible with Geant4 alone
• Combine a Geant4 signal event with randomly selected background of detector events

• This is very good for physics as the backgrounds do not suffer from any uncertainties from
simulation

• However, like standard digitisation, there is a need for a large number of events to be loaded
only once

• Worse, as these are real data events, they require a priori different conditions each time
• At the moment this places a huge load on our Frontier servers
• Possibly a solution here (IMO) is to build an event that, in itself, contains the associated

conditions data
• Conditions handling infrastructure has to be able to cope with that

8

High Level Trigger
• High Level Trigger brings a number of use cases to Gaudi

• First, there should be a mechanism to run in daemon mode
• Event processing controlled from outside the event loop

• Including the ability to handle a change of some “conditions" on the fly, during the run
• In particular we change pre-scales during the run, as the luminosity drops
• Note that this is rather a limited set of in-run changes, not a full blown

reconfiguration
• This mode of running is also what we would like for the ATLAS Event Service, e.g., on an

opportunistic resource processing events one at a time fired in from a controller

9

HLT Processing
• HLT will process events with a very high rejection rate

• Typically 99%
• In addition the HLT farm has an overall CPU and network budget (latency less important —

assume sufficient buffers)
• So it’s important not to over-invest in events that do not get accepted

• Early rejection at lowest CPU cost
• Each trigger chain runs until it has flagged an event as accepted/rejected

• The trigger decision is the OR of these chains
• So all chains much be run until they make a decision
• Final event status not known until the end

• Each chain has multiple points at which it may decide not to proceed

10

Event Views
• A key strategy for HLT is to only reconstruct a limited part of the event data early in the event’s

processing chain
• These Regions of Interest are signalled by L1 triggers

• We have two ideas how to do this, which Ben has presented (and we discuss this again
tomorrow)
• Essential idea is a view is subset of event data, but it’s interface is exactly the same as the

main event store
• Thus algorithms and tools never need to know if they are running over a view

• A static view would consist of a scheduleable element that would always be the same for each
event (e.g., the jet view), but would have an event dependent set of geometric ROIs internally

• A dynamic view (actually a set of!) would generate a view for each L1 ROI, and would thus
vary event by event

11

https://indico.cern.ch/event/549616/contributions/2235191/attachments/1304771/1949427/EventViews.pdf

A view of views…

• It is a critical ATLAS use case that views are handled natively by Gaudi
• If not, the project has failed to deliver a key feature for our HLT

• Static views look much easier for the scheduler, but require deeper changes in the current HLT
code

12

Configuration
• Current Gaudi configuration system via python is working well as a base on which to build
• It is very desirable to be able to serialise a job/task configuration in a serialisable way

• Should be language neutral, i.e., JSON better than pickle
• Thus reload without needing the python layer

• This is done by ATLAS HLT, but it’s quite hacky at the moment (load from DB)
• Light resetting of a few options is needed, i.e., specific input file for a pre-configured task

• The lack of general structure to the configuration has led to rather a mess in ATLAS
• Procedural, complex, fragile (global namespace)
• Mostly this is our mess, but having a model of how to do it in Gaudi would help
• Especially for expressing a control flow syntax

• Configuration should be accessible to the quotidian day to day analyst — shouldn’t need a super expert

13

Analysis
• The failure of the Gaudi/Athena framework for Run 1 analysis was a big problem for ATLAS
• There is a general view that ATLAS analysis could migrate to Gaudi for Run3

• Bring benefits of much greater skills sharing
• And technical infrastructure (multi-threading)

• However, to do so we must understand the analysts' environment
• Laptop based (OS X)
• Frequent build cycles

• So we need Gaudi to be very portable and to have minimal dependencies
• Fine to have some optional dependencies (per experiment?), but going beyond ROOT, Boost, TBB,

UUID we should really try to avoid
• Build system should work ‘out of the box’ on supported platforms

• N.B. We don’t see any need for Windows support at the moment

14

Toolkits and Testing
• Analysis also likes to construct workflows as tinker toys

• Connect an algorithm and a few tools together, run from a simple executable
• That should be made easy to configure as well

• This is an important part of making Gaudi lightweight and accessible
• Lower the barrier of entry

• So, even if we have a default “framework” construction, it would be really useful to have a low level toolkit
interface

• Toolkit to framework works, but not the other way around
• As an example, running over two input files, side by side, then producing comparison histograms would

be easier with a toolkit approach
• This is also vital for unit testing framework components

• We know that we are weak on this point, and much of this weakness stems from how hard it is to spin up a
few components, inject data and compare results

15

Evolving ATLAS Infrastructure
• ATLAS will migrate from SVN to git and simplify its build setup
• We want to make sure that we can build and run against any arbitrary

commit/tag from the Gaudi repository
• We want to check that Gaudi HEAD didn’t break an ATLAS use case

• That said, we are quiet happy to deprecate old cruft out of Gaudi
• In fact, we see it as quite critical to the health and success of the

project
• Technically these migrations should follow the usual pattern

• Deprecation Warnings→ Removal

16

And don’t forget about…

• Documentation
• Think how a naive user would get started

• I/O
• Critical to do this well in a concurrent environment
• ROOT and nothing but…?

17

Timelines

• Finally, a reminder of the main timelines for ATLAS… and notice that we already
started to fall behind our schedule

• So we need to be quick and agile in our development now
18

Dates Framework Algorithmic Code

2015 Baseline Functionality Very few algorithms, concentrate on high inherent
parallelism; general clean-up

2016 Most functionality available (including
views)

Wider set, including CPU expensive algorithms with
internal parallelism; continue clean-up/prep; first trigger

chains

2017 Performance improvements and final
features Migration starts with select groups

2018 Performance improvements Start bulk migration

2019 Bug fixes Finish bulk migration

2020 Bug fixes Integration

