
Modernizing Gaudi

M. Clemencic
September 21, 2016

CERN - LHCb



Introduction

• Gaudi initially developed with C++98
• Main development guideline: backward compatibility
• After almost 20 years

• old style of coding
• a lot of legacy/unused code

2



Table of contents

1. C++

2. Legacy code

3



C++



A new programming language

a new programming language in town

C++14

• more powerful
• more robust
• easier to use

5



A new programming language

a new programming language in town

C++14

• more powerful
• more robust
• easier to use

5



A new programming language

a new programming language in town

C++14

• more powerful
• more robust
• easier to use

5



What’s wrong with Gaudi?

• Old fashion, for example
• a lot of std::vector<T*>
• for(std::vector::iterator it = …
• new + delete

• New C++ standards have better ways
• std::vector<T> can be very efficient
• for(auto element: container) …
• handles / smart pointers

• But there’s worse
• we are mixing the two styles

6



What’s wrong with Gaudi?

• Old fashion, for example
• a lot of std::vector<T*>
• for(std::vector::iterator it = …
• new + delete

• New C++ standards have better ways
• std::vector<T> can be very efficient
• for(auto element: container) …
• handles / smart pointers

• But there’s worse
• we are mixing the two styles

6



What’s wrong with Gaudi?

• Old fashion, for example
• a lot of std::vector<T*>
• for(std::vector::iterator it = …
• new + delete

• New C++ standards have better ways
• std::vector<T> can be very efficient
• for(auto element: container) …
• handles / smart pointers

• But there’s worse
• we are mixing the two styles

6



What can we do?

• Replace old style code with new style
• Follow “C++ Core Guidelines”
• But it requires changing interfaces

what about backward compatibility?

7

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines


What can we do?

• Replace old style code with new style
• Follow “C++ Core Guidelines”
• But it requires changing interfaces

what about backward compatibility?

7

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines


Legacy code



Origins

Backward compatibility is useful,

but not for too long.

• improvements in the framework should not break current code
• existing code should be adapted to new features

It’s inconceivable that we cannot remove a method used
by an unused class written 20 years ago.

9



Origins

Backward compatibility is useful, but not for too long.

• improvements in the framework should not break current code
• existing code should be adapted to new features

It’s inconceivable that we cannot remove a method used
by an unused class written 20 years ago.

9



Origins

Backward compatibility is useful, but not for too long.

• improvements in the framework should not break current code
• existing code should be adapted to new features

It’s inconceivable that we cannot remove a method used
by an unused class written 20 years ago.

9



What to do?

C++14 provide a standard way to mark deprecated methods/classes.

• Mark old code as [[deprecated("…")]]
• Provide useful messages

• when it will be removed
• what to use instead
• possibly a link to a web page describing the change

• Remove the code when promised

Some developers may not like having to maintain their code (?),
but, usually, the changes aim to simplify user code.

10



What to do?

C++14 provide a standard way to mark deprecated methods/classes.

• Mark old code as [[deprecated("…")]]
• Provide useful messages

• when it will be removed
• what to use instead
• possibly a link to a web page describing the change

• Remove the code when promised

Some developers may not like having to maintain their code (?),
but, usually, the changes aim to simplify user code.

10



What to do?

C++14 provide a standard way to mark deprecated methods/classes.

• Mark old code as [[deprecated("…")]]
• Provide useful messages

• when it will be removed
• what to use instead
• possibly a link to a web page describing the change

• Remove the code when promised

Some developers may not like having to maintain their code (?),
but, usually, the changes aim to simplify user code.

10



Summary



Summary

• Gaudi is not dead, but it’s very old
• Using the new C++ will make it more maintainable
• Legacy code should go away
• It’s also a good moment to review some concepts

• properties (merge request 182)
• reference counting (GAUDI-1114)
• …

12

https://gitlab.cern.ch/gaudi/Gaudi/merge_requests/182
https://its.cern.ch/jira/browse/GAUDI-1114

	C++
	Legacy code

